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Abstract. The main goal of this work is to introduce a new SIS epi-
demic model based on a particular type of finite state machines called
cellular automata on graphs. The state of each cell stands for the frac-
tion of the susceptible and infected individuals of the cell at a particular
time step and the evolution of these classes is given in terms of a local
transition function.
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1 Introduction

The public health issues have a lot of importance in our society, particularly viral
spread through populated areas. Epidemics refer to a disease that spreads rapidly
and extensively by infection and affecting many individuals in an area at the
same time. In this way, the most recent worrying epidemic was the Severe Acute
Respiratoy Syndrome (SARS) outbreak in Asia. Infectious disease accounts for
29 of 96 major causes of human morbidity and mortality listed by the World
Health Organization and the World Bank, and 25% of global deaths (over 14
million deaths annually). Consequently, since the publication of the first modern
mathematical epidemic models in the first years of XX century (see [6,9]), several
mathematical models to study the dynamics of epidemics have been appeared
in the literature.

Traditionally, mathematical models are based on differential equations. Nev-
ertheless, this approach has some drawbacks since they do not take into account
spatial factors such as population density, they neglect the local character of the
spreading process, they do not include variable susceptibility of individuals, etc.
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As a consequence, this can lead to very unrealistic results, such as, for example,
endemic patterns relaying on very small densities of individuals, which are called
“atto-foxes” or “nano-hawks” (see [8]). Other mathematical models are based on a
particular type of discrete dynamical systems called cellular automata (see, for ex-
ample [2,5,7,10,11]). These simple models of computation eliminate the last men-
tioned shortcomings, and are specially suitable for computer simulations. Roughly
speaking, cellular automata (CA for short) are a special type of finite state ma-
chines capable to simulate physical, biological or environmental complex phenom-
ena. Consequently, several models based on such mathematical objects have
been proposed to simulate growth processes, reaction-diffusion systems, self-
reproduction models, epidemic models, forest fire spreading, image processing al-
gorithms, cryptographic protocols, etc. (see, for example, [12,13]). Specifically, a
two-dimensional CA is formed by a two-dimensional array of identical objects
called cells which can be disposed in a rectangular, triangular or an hexagonal lat-
tice (called cellular space). These cells are endowed with a state that changes in
discrete steps of time according to a specific rule. As the CA evolves, the updated
function (whose variables are the states of the neighbor cells) determines how local
interactions can influence the global behaviour of the system.

Usually, mathematical models to study epidemic spreading are divided into
three types: SIS models, SIR models and SEIR models, depending on the classes
in which the population can be classified. The model introduced in this paper
deals with SIS epidemic diseases (for example the group of those responsible for
the common cold), that is, the population is divided into susceptible individuals
(S) and infected individuals (I). The susceptible individuals are those capable
to contracting the disease whereas the infected individuals are those capable
of spreading the disease. For a SIS model, infected individuals return to the
susceptible class on recovery because the disease confers no immunity against
reinfection. Moreover, some assumptions will be common to all models: (1) The
disease is transmitted by contact between an infected individual and a susceptible
individual; (2) There is no latent period for the disease, hence the disease is
transmitted instantaneously upon contact; (3) All susceptible individuals are
equally susceptible and all infected individuals are equally infectious; (4) The
population under consideration is fixed in size. This means that no births or
migration occurs, and no deaths are taken into account.

Themain goal of thiswork is to introduce a newSISmodel to simulate the spread
of a general epidemic based on cellular automata on graph. Specifically, in the pro-
posed model, the state of each cell stands for the fraction of the susceptible and in-
fected individuals of the cell at a particular time step. The local transition function
is a function involving the states of the neighbor cells and other parameters such
as the virulence of the epidemic, the rate of recovered infected individuals, etc.
Moreover, as is mentioned above, the standard paradigm for cellular automata
states that the topology of the cellular space is given in terms of a regular rect-
angular or hexagonal lattices. Nevertheless, in this paper we will consider a more
efficient topology to model an epidemic disease, which is given by an undirected
graph where its nodes stand for the cells of the cellular automata.
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There are several CA-based algorithms to simulate a SIS epidemic model (see,
for example [1,3,4]). The standard paradigm of these models states that each cell
stands for an only one individual. Unfortunately, there are few models consid-
ering more than one invidual in each cell (see for example [5]). We think that
this new paradigm is more accurate than the other one in order to obtain more
realistic simulations. The main advantage of the model presented in this paper
over the model introduced in [5] is the use of graph tology and a more realis-
tic transition function involving new parameters as the portion of susceptible
individuals that moves from one cell to another one.

The rest of the paper is organized as follows: In Section 2 the basic theory
about cellular automata on graphs is provided; the proposed model is introduced
in Section 3; the analysis of the model is shown in Section 4; and, finally, the
conclusions and the future work are presented in Section 5.

2 Basic Theory of Cellular Automata on Graphs

A graph G is a pair (V, E) where V = {v1, v2, . . . , vn} is a ordered non-empty
finite set of elements called nodes (or vertices), and E is a finite family of pairs
of elements of V called edges. Two nodes of the graph, vi, vj ∈ V , are said to
be adjacent (or neighbors) if there exists an edge in E of the form (vi, vj). We
consider undirected graphs, that is, (vi, vj) = (vj , vi) ∈ E. A graph G is called
simple if there is not two edges of G with the same ends and no loops exist, i.e.
edges whose start and end is located at the same node.

The neighborhood of a node v ∈ V , Nv, is the set of all nodes of G which are
adjacent to v, that is: Nv = {u ∈ V such that (v, u) ∈ E}. The degree of a node
v, dv, is the number of its neighbors.

A cellular automaton on an undirected graph G = (V, E) is a 4-uple A =
(V, S, N, f) where: The set V defines the cellular space of the CA such that each
node stands for a cell the cellular automaton. S is the finite set of states that
can be assumed by the nodes at each step of time. The state of the node v at
time step t is denoted by st

v ∈ S. These states change accordingly to the local
transition function f . N is the neighborhood function which assigns to each node
its neighborhood, that is:

N : V → 2V , vi �→ N (vi) = Nvi =
{
vi1 , vi2 , . . . , vidv

}

Note that the neighborhoods of the nodes are, in general, different from others.
The local transition function f calculates the state of every node at a particular
time step t + 1 from the states of the its neighbors at the previous time step t,
that is, st+1

v = f
(
st

vi1
, st

vi2
, . . . , st

vidv

)
∈ S, where Nv =

{
vi1 , vi2 , . . . , vidv

}
.

3 The SIS Mathematical Model

In the mathematical epidemiological model introduced in this paper, the popu-
lation is divided into two classes: those who are susceptible to the disease and
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those who are infected to the disease. Moreover, the population is located at
city centres which stand for the nodes of a graph G. If there is some type of
transport connection (by car, train, airplane, etc.) between two of these cities,
the associated nodes are connected by an edge. The following assumptions are
also made:

1. The population of each node remains constant over time, that is, no births
or deaths are taking into account (it is a SIS model without vital dynam-
ics). Moreover, the population distribution is inhomogeneous: Let Pu be the
number of individuals of the node u ∈ V , and set P = max {Pu, u ∈ V }.

2. The transmission of the disease (that is, the passing of the disease from
an infected individual to a susceptible individual) is through direct physical
contact: touching an infected person, including sexual contact.

3. The population (susceptible and infected people) are able to move from its
node to another one and return to the origin node at every step of time.

Since the model introduced in this work is a SIS model, then the state of the
node u ∈ V at time step t is: st

u = (St
u, It

u) ∈ Q × Q = S, where St
u ∈ [0, 1]

stands for the fraction of susceptible individuals of the node u at time t, and
It
u ∈ [0, 1] stands for the fraction of infected individuals of the node u at time t.

Consequently, the transition function of the CA is as follows:

st
u = f

(
st−1

v1
, . . . , st−1

vdu

)
=

(
St

u, It
u

)

=
(
(d ◦ fS)

(
st−1

v1
, . . . , st−1

vγu

)
, (d ◦ fI)

(
st−1

v1
, . . . , st−1

vγu

))

where d is a suitable discretization function.
The ground where the epidemic is spreading is modeled as a weighted graph

where each node stands for a city or a town, and the arc between two nodes
represents the connection between the corresponding cities. In this sense, the
connection factor between the nodes u and v is the weight associated to the arc
(u, v) ∈ E and it is denoted by wuv. It depends on the transportation capacity
of the public and non-public transport. Consequently

wuv =
huv

max {hxy, ∀x, y ∈ V } ∈ [0, 1] ,

where huv is the total amount of population wich move from u to v during a
time step.

The evolution of the number of infected individuals of the node u ∈ V is as
follows: The infected individuals of u at time step t is given by the sum of:

1. The infected individuals at the previous time step which have not been
recovered from the disease.

2. The susceptible individuals which have been infected during the time step. In
this case we have to take into account the recovery rate r ∈ [0, 1]. These new
sick individuals of u can be infected both by the infected individuals of u or



A SIS Epidemiological Model Based on Cellular Automata on Graphs 1059

by the infected individuals of the neighbor nodes of u which have moved to u
during the time step. In the first case, only the rate of transmission, p ∈ [0, 1],
is involved, whereas in the second case we have to consider the connection
factors between the nodes, and the population and movement factor of each
node. Moreover we also consider the susceptible individuals of u moved to
a neightbor node during the step of time and infected in this neighbor node
by its corresponding infected individuals; in this case ηu ∈ [0, 1] yields the
portion of moved susceptible individuals from u to its neighbor nodes.

Then, the mean-field equation for infected individuals is the following:

fI

(
st−1

v1
, . . . , st−1

vγu

)
= (1 − r) It−1

u + p (1 − ηu) St−1
u It−1

u

+ p (1 − ηu) St−1
u

∑

v∈Nu

Pv

P
wvuIt−1

v

+ pηuSt−1
u

∑

v∈Nu

(1 − wvu) It−1
v . (1)

On the other hand, the susceptible individuals of each node is given by the
difference of the susceptible individuals of the node at the previous time step and
the susceptible individuals which have been infected as is mentioned above. Note
that, as a simple calculus shows: It

u + St
u = It−1

u + St−1
u = Pu, and consequently

equation the equation which rules the evolution of the susceptible is as follows:

fS

(
st−1

v1
, . . . , st−1

vγu

)
= 1 − It

u.

Moreover, since fS

(
st−1

v1
, . . . , st−1

vγu

)
∈ [0, 1] and fI

(
st−1

v1
, . . . , st−1

vγu

)
∈ [0, 1],

then a discretization function d : [0, 1] → Q must be used in order to get a finite
state set. In our case, the discretization function used is the following:

d : [0, 1] −→ Q, x �→ d (x) =
[100 · x]

100
where [m] stands for thenearest integer tom.Asa consequence,Q={0, 0.01, . . . , 1}.
Then, the system of equations governing the evolution of the two classes of
population is:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

It
u = d

(
(1 − r) It−1

u + p (1 − ηu) St−1
u It−1

u

+p (1 − ηu) St−1
u

∑

v∈Nu

Pv

P wvuIt−1
v + pηuSt−1

u

∑

v∈Nu

(1 − wvu) It−1
v

)

St
u = d (1 − It

u)

4 Analysis of the Model

One of the most important question in a mathematical epidemiological model
is the study of the possibility of the eradication of disease. In relation with ev-
ery mathematical epidemiological model, it is very important to determine under
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what circumstances the epidemic occurs. Taking into account the intrinsic char-
acteristics of our model, we will demand two conditions: (1) The epidemic disease
must spread among the nodes of the graph; and (2) The infected population grows.

The initial conditions in the study are the following: At time step t = 0, we
will consider only one node, for example u ∈ V , with infected individuals:

I0
u > 0, S0

u = 1 − I0
u, I0

v = 0, S0
v = 1 ∀v ∈ Nu.

4.1 Spreading from an Initial Infected Cell to Another

First of all we will show the necessary condition for epidemic spreading from
the node u to its neighbor v ∈ Nu, at the next step of time t = 1. Thus, it
occurs if I1

v ≥ q where q = min {x ∈ Q − {0}}. As the unique node with infected
population at time t = 0 is u, then taking into account (1), it yields:

I1
v = p (1 − ηv)

Pu

P
wuvI0

u + pηv (1 − wuv) I0
u ≥ q.

As a consequence:

I0
u ≥ q

p (1 − ηv) Pu

P wuv + pηv (1 − wuv)
.

This equation must hold for every neighbor nodes of u, then the following result
holds:

Theorem. The epidemic disease spreads from node u to its neighbor nodes if
the following condition holds:

I0
u ≥ q

p (1 − η) Pu

P w + pη (1 − w)
,

where: η = max {ηv, v ∈ Nu}, w = max {wuv, v ∈ Nu}.

4.2 Growth of Infected Population

Now we will study what conditions that must be held to get a growth of the
infected population in a node u. We have to distinguish two cases: (1) There not
exist infected individuals from neighbor nodes to u; (2) There exist such infected
individuals.

1. In the first case it is It+1
u > It

u, that is:

(1 − r) It
u + p (1 − ηu) St

uIt
u > It

u.

As a consequence the growth occurs if:

St
u >

r

p (1 − ηu)
.
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2. In the second case, the inequality It+1
u > It

u gives:

It
u < (1 − r) It

u + p (1 − ηu)St
uIt

u + p (1 − ηu)St
u

∑

v∈Nu

Pv

P
wvuIt

v

+ pηuSt
u

∑

v∈Nu

(1 − wvu) It
v

which occurs if:

St
u >

r

p (1 − ηu) + p (1 − ηu)
∑

v∈Nu

Pv

P wvu
It

v

It
u

+ pηu

∑
v∈Nu

(1 − wvu) It
v

It
u

.

4.3 Computer Simulations

In this example, for the sake of simplicity we will suppose that the epidemic is
spreading over n = 10 cities, v1, . . . , v10, forming a complete graph K10. In this
example, we will consider the following initial configuration:

S0
u1

= 0.9, I0.1
u1

= 0.1, S0
ui

= 1, I0
ui

= 0, 2 ≤ i ≤ n.

That is, there is only one node at time t = 0 with infected population. Moreover,
the parameters used are p = 0.25, r = 0.8, ηui = 0.2, 1 ≤ i ≤ 6. Moreover, let us
suppose that the population of each node is the same: Pui = 100 with 1 ≤ i ≤ 6,
and also the transport capacity between two nodes is the same: wuiuj = 1 for
1 ≤ i, j ≤ 6. Note that this example deals with an homogeneous-symmetric case.

In Figure 1 the evolution of the total number of infected and susceptible
individuals is shown. If we set p = 0.15 instead of p = 0.25, the number of
infected and susceptible individuals also remains constant with time, but in this
case the number of susceptible is greater than the number of infected individuals.

5 Conclusions and Future Work

In this work a new mathematical model to simulate the spreading of an epidemic
is introduced. It is based on the use of cellular automata on graphs endowed with

Fig. 1. Evolution of the total number of infected and susceptible individuals
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a suitable local transition function. The state of each cell is considered to be the
portion of its population which is infected at each time step. The analysis of the
model proposed in this paper seems to be in agreement with the results obtained
for other mathematical models not based on discrete event systems, such as
ODEs or PDEs. Future work aimed at designing a more complete CA-based
epidemic model involving additional effects such as the population movement,
virus mutation, etc. Furthermore, it is also interesting to consider non-constant
connections factors and also the effect of migration between the cells must be
considered.

Acknowledgments. This work has been partially supported by Consejeŕıa de
Sanidad, Junta de Castilla y León (Spain).
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