Skip to main content

A New Model of Synthetic Genetic Oscillator Based on Trans-Acting Repressor Ribozyme

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Abstract

We present a new model of synthetic genetic oscillator based on a typical motif with one positive and one negative feedback loop. The repressor is a ribozyme, rather than a protein, which acts post-transcriptionally binding and cleaving to target mRNA. The properties of the ribozyme simplify our genetic oscillator that involves only two genes, one mRNA and one activator protein, apart from the ribozyme. Moreover, the genetic oscillator generates limit cycle oscillations, essential condition for resist the effects of the stochastic fluctuations due to the inherent randomness of the chemical reactions. As example of operation, we have chosen parameter values that produce circadian period in both deterministic and stochastic simulations, and the effects of stochastic fluctuations are quantified by a period histogram and autocorrelation function. Such new biochemical network designs may yield both new behaviors and better understanding of cellular processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isaacs, F.J., Dwyer, D.J., Collins, J.J.: RNA Synthetic Biology. Nat. Biotechnol. 24, 545–554 (2006)

    Article  Google Scholar 

  2. Saito, H., Inoue, T.: Synthetic Biology with RNA Motifs. Int. J. Biochem. Cell Biol. 41, 398–404 (2009)

    Article  Google Scholar 

  3. Serganov, A., Patel, D.J.: Ribozymes, Riboswitches and Beyond: Regulation of Gene Expression without Proteins. Nat. Rev. Genet. 8, 776–790 (2007)

    Article  Google Scholar 

  4. Elowitz, M.B., Leibler, S.: A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  5. Atkinson, M.R., Savageau, M.A., Myers, J.T., Ninfa, A.J.: Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia Coli. Cell. 113, 597–607 (2003)

    Article  Google Scholar 

  6. Fung, E., Wong, W.W., Suen, J.K., Bulter, T., Lee, S.G., Liao, J.C.: A Synthetic Genemetabolic Oscillator. Nature 435, 118–122 (2005)

    Article  Google Scholar 

  7. Stricker, J.S., Cookson, S., Bennett, M.R., Mather, W.H., Tsimring, L.S., Hasty, J.: A Fast, Robust and Tunable Synthetic Gene Oscillator. Nature 456, 516–519 (2008)

    Article  Google Scholar 

  8. Tigges, M., Marquez-Lago, T.T., Stelling, J., Fussenegger, M.: A Tunable Synthetic Mammalian Oscillator. Nature 457, 309–312 (2009)

    Article  Google Scholar 

  9. Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell, J.E.: Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops. Science 321, 126–129 (2008)

    Article  Google Scholar 

  10. Barkai, N., Leibler, S.: Circadian Clocks Limited by Noise. Nature 403, 267–268 (2001)

    Google Scholar 

  11. Dunlap, J.C.: Molecular Bases for Circadian Clocks. Cell. 96, 271–290 (1999)

    Article  Google Scholar 

  12. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  13. Dublanche, Y., Michalodimitrakis, K., Kümmerer, N., Foglierini, M., Serrano, L.: Noise in Transcription Negative Feedback Loops: Simulation and Experimental Analysis. Mol. Syst. Biol. 2(41), 1–12 (2006)

    Google Scholar 

  14. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of Noise-Resistance in Genetic Oscillators. Proc. Natl. Acad. Sci. USA. 99, 5988–5992 (2002)

    Article  Google Scholar 

  15. Gonze, D., Halloy, J., Goldbeter, A.: Robustness of Circadian Rhythms with Respect to Molecular Noise. Proc. Natl. Acad. Sci. USA. 99, 673–678 (2002)

    Article  Google Scholar 

  16. Earnshaw, D.J., Gait, M.J.: Hairpin Ribozyme Cleavage Catalyzed by Aminoglycoside Antibiotics and the Polyamine Spermine in the Absence of Metal Ions. Nucleic Acids Res. 26, 5551–5561 (1998)

    Article  Google Scholar 

  17. Percival, D.B., Waldron, A.T.: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bueno, J.M.M., Rodríguez-Patón, A. (2009). A New Model of Synthetic Genetic Oscillator Based on Trans-Acting Repressor Ribozyme. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_177

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_177

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics