Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Included in the following conference series:

  • 2622 Accesses

Abstract

An approach to the inverse protein folding problem is described which combines a simulated annealing algorithm with template matching using the Bellman criteria. Solutions to proposed target structures are found by iteratively constructing the most similar solution. The folding model is based upon the traditional 2D HP protein lattice with a modified Viterbi dynamic programming algorithm. Initial results of both the optimal folding problem and the inverse protein problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  2. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) is NP-complete. In: Proceedings of the second annual international conference on Computational molecular biology, pp. 30–39 (1998)

    Google Scholar 

  3. Berloff, N.G.: Nonlinear dynamics of secondary protein folding. Phys. Lett. A 337, 391–396 (2005)

    Article  MATH  Google Scholar 

  4. Candru, V., DattaSharma, A., Anil Kumar, V.S.: The algorithmics of folding proteins on lattices. Discrete Appl. Math. 127, 145–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, H.S., Dill, K.A.: The Protein folding problem. Physics Today 46(2), 24–32 (1993)

    Article  Google Scholar 

  6. Deutsch, J.M., Kurosky, T.: New Algorithms for Protein Design. Phys. Rev. Lett. 76(2), 323–326 (1996)

    Article  Google Scholar 

  7. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24(6), 1501–1509 (1985)

    Article  Google Scholar 

  8. Grassberger, P.: Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 100000. Phys. Rev. E 56(3), 3682–3693 (1997)

    Article  Google Scholar 

  9. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoustic Speech. and Signal Proc. 23(2), 67–72 (1975)

    Article  Google Scholar 

  10. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spacres of proteins. Macromolecules 22(10), 3986–3997 (1989)

    Article  Google Scholar 

  11. Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure. J. Mol. Biol. 249, 493–507 (1995)

    Article  Google Scholar 

  12. Pelta, D., Carrascal, A.: Inverse protein folding on 2D Off-Lattice Model: Initial Results and Perspectives. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 207–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Sako, H., Chiba, S.: Dynamic programming algorithm optimizations for spoken word recognition 26(2), 43–49 (1978)

    Google Scholar 

  14. Santana, R., Larrañaga, P., Lozano, J.A.: Protein Folding in Simplified Models with Estimation of Dsitribution Algorithms. IEEE Trans. Evol. Comp. 12(4), 418–438 (2008)

    Article  Google Scholar 

  15. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Elsevier Press, San Diego (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olivieri, D. (2009). Iterative Lattice Protein Design Using Template Matching. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_179

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_179

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics