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Abstract. In this paper we present a soft computing system developed to 

optimize the face milling operation under High Speed conditions in the 

manufacture of steel components like molds with deep cavities. This applied 

research presents a multidisciplinary study based on the application of neural 

projection models in conjunction with identification systems, in order to find 

the optimal operating conditions in this industrial issue. Sensors on a milling 

centre capture the data used in this industrial case study defined under the frame 

of a machine-tool that manufactures industrial tools. The presented model is 

based on a two-phase application. The first phase uses a neural projection 

model capable of determine if the data collected is informative enough. The 

second phase is focus on identifying a model for the face milling process based 

on low-order models such as Black Box ones. The whole system is capable of 

approximating the optimal form of the model. Finally, it is shown that the Box-

Jenkins algorithm, which calculates the function of a linear system from its 

input and output samples, is the most appropriate model to control such 

industrial task for the case of steel tools. 

1 Introduction 

Soft computing represents a collection or set of computational techniques and 

intelligent systems principles in machine learning, computer science and some 

engineering disciplines, which investigate, simulate, and analyze very complex issues 

and phenomena in order to solve real-world problems. High Speed Machining is 

nowadays a technology widely used to manufacture many different industrial tools. 

High Speed Machining, in general, consists on the machining –milling, boring, etc- 

under cutting conditions where the transfer of generated heat from chip to tool could 

not take place.  



The industrial expansion of High Speed Machining requires the optimization of its 

different subprocesses. This optimization depends mainly on the spindle capabilities. 

The spindle is the element of the machine that provides power and torque to the 

cutting tool. The subprocesses that requires less power and torque from the machine, 

like the finishing, are easily optimized, because if the programmed cutting conditions 

are too high, no damage is expected as for the machine as for the milled piece. 

Therefore the trial and error method is mainly used in the industry for theses 

subprocesses. But the subprocesses that require the highest power or torque 

capabilities usually are not so easily optimizable under industrial conditions. If the 

programmed cutting conditions are too high, damage could easily be produced to the 

spindle. The most critical subprocess is the roughing, the first stage of the machining 

process. During this operation, the highest cutting forces of the whole process will 

take place. Therefore it is necessary to optimize the cutting conditions to maximise 

productivity and to avoid damage to the spindle. This difficult balance is especially 

important during the first task of the roughing operation of deep cavities: the face 

milling or slotting. This task mills a slot on the metallic piece that will allow the 

roughing of the deep cavity following a contourning strategy, a softer strategy in 

terms of cutting forces. Although cutting forces could be calculated [1], the result of 

this calculation can be only considered as estimation mainly because the chip 

formation process is still not well known [18]. Then a soft computing model for face 

milling that could predict the generated cutting forces will contribute to maximise the 

productivity and the industrial use of High Speed Milling on roughing operations.  

In this case we focus on high speed face milling of steel components. Two of the 

main applications of this technology in this material are the roughing of deep cavities 

in molds and the machining of slots in machine-tools tables. The soft computing 

model proposed in this paper is able to predict the cutting forces level for steel face 

milling depending only on cutting conditions and tool parameters. 

2 An Industrial Process to Perform Face Milling Operations 

Cooperative Maximum-Likelihood Hebbian Learning (CMLHL) [3] is used in this 

research in order to analyse the internal structure of the data set, which describe the 

face milling of a steel piece to establish whether it is “sufficiently informative”. In the 

worse case, the experiments have to be performed again in order to collect a proper 

and informative data set. 

CMLHL is a Exploratory Projection Pursuit (EPP) method [2] [4], [5]. In general, 

EPP provides a linear projection of a data set, but it projects the data onto a set of 

basic vectors which help reveal the most interesting data structures; interestingness is 

usually defined in terms of how far removed the distribution is from the Gaussian 

distribution [6]. 

One connectionist implementation is Maximum-Likelihood Hebbian Learning 

(MLHL) [5], [7]. It identifies interestingness by maximising the probability of the 

residuals under specific probability density functions that are non-Gaussian. An 

extended version is the CMLHL [3] model, which is based on MLHL [5], [7] but adds 



lateral connections [8], [3] that have been derived from the Rectified Gaussian 

Distribution [6].  

Considering an N-dimensional input vector ( x ), and an M-dimensional output 

vector ( y ), with 
ijW  being the weight (linking input j to output i), then CMLHL can 

be expressed [8] as:  

1. Feed-forward step: 
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4. Weight change: 
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Where: η is the learning rate,τ is the "strength" of the lateral connections, b the 

bias parameter, p a parameter related to the energy function [3], [8] and A  a 

symmetric matrix used to modify the response to the data [3]. The effect of this 

matrix is based on the relation between the distances separating the output neurons. 

2.1. The identification criterion 

The identification criterion evaluates which of the group of candidate models is best 

adapted to and which best describes the data sets collected in the experiment; i.e., 

given a model )( *θM  its prediction error may be defined by equation (5); and a good 

model [9] will be that which makes the best predictions, and which produces the 

smallest errors when compared against the observed data. In other words, for any 

given data group tZ , the ideal model will calculate the prediction error ),( θε t , 

equation (5), in such a way that for any one t=N, a particular Nθ̂  (estimated 

parametrical vector) is selected so that the prediction error )ˆ,( Nt θε  in t=1,2,3…N, is 

made as small as possible. 

)|(ˆ)(),( ** θθε tytyt −= . 
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The estimated parametrical vector θ̂  that minimizes the error, equation (8), is 

obtained from the minimization of the error function (6). This is obtained by applying 

the least-squares criterion for the linear regression, i.e., by applying the quadratic 

norm
2

2

1
)( εε =l , equation (7). 
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The methodology of black-box structures has the advantage of only requiring very 

few explicit assumptions regarding the pattern to be identified, but that in turn makes 

it difficult to quantify the model that is obtained. The discrete linear models may be 

represented through the union between a deterministic and a stochastic part, equation 

(9); the term e(t) (white noise signal) includes the modelling errors and is associated 

with a series of random variables, of mean null value and variance λ. 

)()()()()( 11 teqHtuqGty −− += . (9) 

The structure of a black-box model depends on the way in which the noise is 

modelled )( 1−qH ; thus, if this value is 1, then the OE (Output Error) model  is 

applicable; whereas, if it is different from zero a great range of models may be 

applicable; one of the most common being the BJ (Box Jenkins) algorithm. This 

structure may be represented in the form of a general model, where )( 1−qB  is a 

polynomial of grade nb, which can incorporate pure delay nk in the inputs, and 

)( 1−qA , )( 1−qC , )( 1−qD  and )( 1−qF  are autoregressive polynomials ordered as na, 

nc, nd, nf, respectively (10). Likewise, it is possible to use a predictor expression, for 

the on-step prediction ahead of the output  )|(ˆ θty  (11). In Table 1, the generalized 

polynomial expressions are presented, as well as those that represent the polynomials 

used in the case of each particular model.   
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Table 1. Black-box model structures 

Polynomials in (10) Polynomials used 
in (10) 

Name of model 
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Procedure for Modelling the Face Milling Process. The identification procedure 

used to identify a parameterized model M, which will eventually be selected as the 

best from among those that modelled the face milling characteristics on the basis of 

the variable measurements, is carried out in accordance with two fundamental 

patterns: a first pre-analytical and then an analytical stage that assists with the 

determination of the parameters in the identification process and the model 

estimation. The pre-analysis test is run to establish the identification techniques [9], 

[10], [11], [12], [13], [14], the selection of the model structure and its order estimation 

[15], [16], the identification criterion and search methods that minimize it and the 

specific parametrical selection for each type of model structure. 

A second validation stage ensures that the selected model meets the necessary 

conditions for estimation and prediction. Three tests were performed to validate the 

model: residual analysis ))(ˆ,( tt θε , by means of a correlation test between inputs, 

residuals and their combinations; final prediction error (FPE) estimate, as explained 

by Akaike [17]; and the graphical comparison between desired outputs and the 

outcome of the models through simulation one (or k) steps before. 

3 Modelling the Face milling of Steel: An Industrial Task 

To obtain the experimental data required to develop and validate the modelling 

procedure, different face milling tests were performed. The experimental set-up and 

procedure were described in detail beforehand [19]. A machining centre Kondia 

HS1000 equipped with a Siemens 840D open-architecture CNC was used. The blank 

material used for the tests was a 180 mm profile of F114 steel. The cutting tools were 

Karnash end-mill tools model 30.6472 with two flutes and model 30.6455 with six 

flutes. For the tests, each tool (diameters 6, 8, 10 and 12 mm) mechanized slots each 

one with constant spindle speed maintaining constant feed rate and depth of cut. For 

all the tests, new tools and combinations of parameters free of chatter were used. A 

data set of 250 records was obtained. Each record includes the information on the 

following six variables: tool diameter, tool number of flutes, axial depth of cut, 

machine feed rate, spindle speed and tangential cutting force. To measure the 

tangential cutting force a multi-component dynamometer with an upper plate was 

used. Since the data were thought to be used with Bayesian network algorithms [19], 

the variables were discretized. The selected discretization algorithm and the possible 

values that each variable could take are shown in Table 2. 
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Table 2. Variables, units, values and discretization algorithms used during the experiments. All 

values are common to this face milling process.  Output y(t), Input u(t). 

Variable (Units) Possible values Discretization algorithm 

Tangential cutting force (N), y1(t) 0, 1, 2, 3 Fuzzy K-means algorithm [20] 

Tool diameter (mm), u1(t) 6, 8, 10, 12 Already discrete 

Tool number of flutes, u2(t) 2, 6 Already discrete 

Axial depth of cut (mm), u3(t) 2, 4, 6, 8, 10, 12 Already discrete 

Machine feed rate (mm/min), u4(t) 0, 1, 2, 3 K-means algorithm [21] 

Spindle speed (min-1), u5(t). 0, 1, 2, 3 Fuzzy K-means algorithm [20] 

3.1. Application of the two phases of the modelling system 

The study has been organized into two phases or steps. 

Step 1: Analysis of the internal structure of the data set based on the application of 

several unsupervised connectionist models. 

Step 2: Application of several identification models in order to find the one that best 

defines the dynamic of a face milling process. 

 

Step 1. Figure 1.b shows the results obtained by means of CMLHL projections. 

This model is able to identify four different clusters order mainly by Feed rate. After 

studying each cluster it can be noted a second classification based on the tangential 

cutting force and spindle speed as it is shown in Fig. 1.b. All this indicates that the 

data analysed is sufficiently informative. 

We have also applied PCA. Both methods have identified a clear internal structure 

based on an initial classification, but CMLHL (Fig. 1.b) provides a sparser 

representation than PCA (Fig. 1.a) 

 

  

Fig 1.a Projection of PCA Fig 1.b Projection of CMLHL (Steps=     

1000000, η =0.01, p=0.5 and τ =0.1) 

 

 



Step 2. Modelling the face milling process. Fig. 2, shows the results of output 

y1(t), tangential cutting force (N), for the different models. Fig. 2 shows the graphic 

representations of the results, for OE y BJ models, in relation to the polynomial order 

and the delay in the inputs; various delays for all inputs and various polynomial 

orders [nb1 nb2 nb3 nb4 nb5 nc nd nf nk1 nk2 nk3 nk4 nk5] were considered to arrive at the 

highest degree of precision, in accordance with the structure of the models that have 

been used; see Table 1. In Fig. 2, the X-axis shows the number of samples used in the 

validation of the model (50 samples in intervals of 0,1s), while the Y-axis represents 

the normalized output variable, which is the tangential cutting force.  

Table 3 shows a comparison of the qualities of estimation and prediction of the 

best models obtained, as a function of the model, the estimation method, and the 

indexes, which are defined as follows: 

• The percentage representation of the estimated model (expressed as so many  

percent “%”) in relation to the true system: the numeric value of the 

normalized mean error that is computed with one-step prediction (FIT1), 

with ten-step prediction (FIT10), or by means of simulation (FIT). Also 

shown are the graphical representations of true system output and both the 

one-step prediction )|(ˆ1 mty , the ten-step prediction )|(ˆ
10 mty , and the 

model simulation )|(ˆ mty∞
. 

• The loss or the error function (V): the numeric value of the mean square 

error that is calculated from the estimation data set. 

• The generalization error value (NSSE): the numeric value of the mean 

square error that is calculated from the validation data set.  

• The average generalization error value (FPE): This is the numeric value of 

the FPE criterion that is calculated from the estimation data set. 
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Fig.2. Output response of two different models: the OE –left column- and BJ –right column- 

methods. The real measure (solid line) is graphically presented with the simulated output and 

with one step ahead prediction (dashed line). The order of the structure of the model are  nb1=1, 

nb2=1, nb3=3, nb4=1, nb5=1, nc=2, nd=1, nf=8, nk1=1, nk2=9, nk3=15, nk4=10, nk5=1. [1 1 3 1 1 2 

1 8 1 9 15 10 1], for tangential cutting force y1(t), according to the model type. 

 

From the graphical representation (Fig.2) it can be concluded that the BJ model is 

capable of simulating and predicting the behaviour of the tangential cutting force (N) 

(y1(t)) during the face milling process as it meets the indicators and it is capable of 



modelling more than 99% of the true measurements. The tests were performed using 

Matlab and the System Identification Toolbox. Table 4 shows the final BJ model. 

 

Table 3. Indicator values for several proposed models of tangential cutting force. 

 

Model Indexes 
Black-box OE model with nb1=1, nb2=1, nb3=3, nb4=1, nb5=1, 

nf=8, nk1=1, nk2=9, nk3=15, nk4=10, nk5=1. The model is 

estimated using the prediction error method, the degree of the 

model selection is carried out from the best AIC criterion (the 

structure that minimizes AIC). 

FIT:99.48%, FIT1:99.48% 

FIT10:99.48%, V: 0.482 

FPE:0.936, NSSE:1.21e-5 

Black-box BJ model with nb1=1, nb2=1, nb3=3, nb4=1, nb5=1, 

nc=2, nd=1, nf=8, nk1=1, nk2=9, nk3=12, nk4=10, nk5=1. The 

model is estimated using the prediction error method, the 

degree of the model selection is carried out with the best AIC 

criterion (the structure that minimizes AIC). 

FIT:93.1%, FIT1:87.25% 

FIT10:93.09%, V: 0.313 

FPE:0.90, NSSE:0.0071 

Black-box BJ model with The model is estimated using the 

prediction error method, the degree of the model selection is 

carried out with nb1=1, nb2=1, nb3=3, nb4=1, nb5=1, nc=2, 

nd=1, nf=8, nk1=1, nk2=9, nk3=15, nk4=10, nk5=1. the best AIC 

criterion (the structure that minimizes AIC). 

FIT:100%, FIT1:100% 

FIT10:100%, V: 0.258 

FPE:0.775, NSSE:1.48e-12 

 

Table 4. Function and parameters that represent the behaviour of face milling process for 

the tangential cutting force. The degree of the BJ model polynomials are nb1=1, nb2=1, 

nb3=3, nb4=1, nb5=1, nc=2, nd=1, nf=8, nk1=1, nk2=9, nk3=15, nk4=10, nk5=1. [1 1 3 1 1 2 1 8 1 

9 15 10 1]. 

 

Parameters and polynomials. 

B1(q) = 0.003639 q
-1
 B2(q) = -0.09618 q^

-9
 

B3(q) = -0.02963 q
-15
 - 0.1024 q

-16
 - 

0.01665 q
-17
                  

B4(q) = -0.02778 q
-10
                                                

 

B5(q) = -0.0631 q
-1
                                          C(q) = 1 + 0.06222 q

-1
 + 0.003241 q

-2
                               

D(q) = 1 - 0.7596 q
-1
                                                F1(q) = 1 + 0.02932 q

-1
 - 0.1422 q

-2
 + 1.13 

q
-3
 - 0.3719 q

-4
 - 0.07694 q

-5
 + 0.2387 q

-6
 - 

0.2382 q
-7
 + 0.2322 q

-8
 

F2(q) = 1 - 1.18 q
-1
 + 0.888 q

-2
 - 0.260 

q
-3
 - 0.4723 q

-4
 + 0.8265 q

-5
 - 0.5742 q

-

6
 + 0.3817 q

-7
 - 0.4978 q

-8
 

F3(q) = 1 + 0.261 q
-1
 + 0.799 q

-2
 + 0.1734 

q
-3
 + 1.093 q

-4
 + 0.04379 q

-5
 + 0.6479 q

-6
 + 

0.1822 q
-7
 + 0.4301 q

-8
 

F4(q) = 1 - 0.2047 q
-1
 + 0.5632 q

-2
 - 

0.4963 q
-3
 + 1.041 q

-4
 - 0.07187 q

-5
 + 

0.2924 q
-6
 - 0.2778 q

-7
 + 0.1622 q

-8
 

 

F5(q) = 1 - 0.4916 q
-1
 - 0.01854 q

-2
 + 

0.6543 q
-3
 - 0.5834 q

-4
 + 0.4833 q

-5
 - 0.2851 

q
-6
 - 0.1829 q

-7
 + 0.4553 q

-8
 

e(t) is white noise signal whit variance 0.52 

 

The obtained model can be used not only to predict the tangential cutting force but 

also to determine the optimal conditions to minimize it. Considering that the model is 

a polynomial model, if all but one input variables are fixed then the remaining 

variable could be calculated and fixed in order to minimize the tangential cutting 



force. This procedure could be used to assure that the axial cutting force will never be 

higher than the damage threshold of the spindle. 

4 Conclusions and Futures lines of Work 

This paper presents a study to identify the most appropriate modelling system to 

perform face milling operations. Different models were analysed to achieve the best 

practical solution to this industrial problem. The study shows that the Box-Jenkins 

algorithm is best adapted to this case, as the noise model is better, been lower than the 

other model (OE). 

Future work will be focus on the generation of the system inputs in a way that they 

minimize the output error, in a manner that the customer has access to a graphical 

representation allowing him to choose the inputs values in order to obtain the best 

response. Also we will extend this study to other kind of materials of industrial 

interest, such as aeronautical aluminium. We are also working on the application of 

this model to the optimization of different but similar industrial problems, like sloting 

by turning of steel components for wind generators, like seals groves of gearboxes 

covers. 
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