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Abstract. Active imaging is a recently developed approach to model-
based optimisation of imaging protocols. In the application we discuss
here, a diffusion magnetic resonance imaging (dMRI) protocol is op-
timised for directly measuring aspects of biological tissue microstruc-
ture, subject to appropriate scanner hardware and acquisition time con-
straints. We present the theoretical basis for active imaging with the
dual spin-echo (DSE) dMRI pulse sequence, which is more complex than
the standard sequence, but widely used due to its robustness to image
distortion. The new formulation provides the basis for future active imag-
ing studies using DSE. To demonstrate the approach, we optimise DSE
sequences for estimating parameters in a simple model of neural white
matter, specifically axon density and diameter. Results show that sen-
sitivity to these important parameters is at least as good as with more
traditional pulse sequences that are not robust to image distortion.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) is an umbrella term for a set
of magnetic resonance acquisition and processing techniques in which MRI is
sensitised to the random movement of particles in a sample or subject [1]. In
living subjects, the diffusing species is almost invariably water. By characterising
the diffusion process, information about the microstructure and connectivity of
the underlying tissue can be obtained; and in the brain, in particular, dMRI
has proven to be a practical and versatile tool for clinical and neuroscientific
work. By applying diffusion sensitivity along one or more directions, diffusion
weighted images are produced, and these have been particularly valuable in the
study of stroke [2]. However, the later development of diffusion tensor imaging
(DTI) [3] has broadened the usefulness of dMRI considerably. DTI uses diffusion
weighted measurements along at least six noncollinear directions to estimate a
rank-two diffusion tensor at each point in the image, which is proportional to the
covariance matrix of a 3D Gaussian distribution over molecular displacements.
A scalar value commonly derived from the tensor is fractional anisotropy, a



measure of dispersion in the tensor eigenvalues, which has been shown to be
locally or globally reduced in a number of diseases [4], as well as some psychiatric
disorders such as schizophrenia [5], reflecting changes in the underlying tissue.
The principal eigenvector of the tensor, indicating the direction of greatest mean-
squared displacement, was the original basis for dMRI-based white matter fibre
tracking, which has provided insights in basic neuroscience with regard to the
connectivity of the brain (e.g. [6]).

As useful as simple, DTI-derived measures of diffusion magnitude, direction
and anisotropy have proven to be, they do not provide specific information about
tissue microstructure. In reality, several distinct populations of water molecules,
both inside and outside of neural cells, contribute to the dMRI signal, and so
the displacement distribution is more complex than the Gaussian model used
in DTI. However, analytical expressions for the displacement distribution and
dMRI signal in a number of regular, bounded geometries are now well estab-
lished [7], allowing more sophisticated approaches to construct geometric tissue
models and combine these expressions to obtain better signal models [8, 9]. These
models potentially include a wide variety of parameters relating directly to mi-
crostructure, such as the radius and density of neuronal axons and other cellular
structures, diffusivities in various parts of the tissue, permeabilities of different
cell types, myelin thickness or the relative proportions of white matter and other
tissue types in the imaged region—since all of these parameters affect water mo-
bility and thus the dMRI signal. This exciting new area of development for dMRI
offers the possibility of measuring these parameters in live tissue, thereby pro-
viding new insight into the workings of the brain and the mechanisms of disease,
as well as important new biomarkers.

Previous work has demonstrated the viability of estimating microstructure
parameters both in simulation and in real tissue [10–12]. For example, Stanisz et
al. [11] used a white matter model incorporating two cell types, axons (modelled
with prolate ellipsoids) and glia (spheres), with permeable membranes; and they
fitted their model to image data acquired from excised optic nerve tissue. More
recently, Assaf et al. [10] used a model incorporating cylindrical axons with radii
following a gamma distribution, whose parameters were fitted to data from ex
vivo optic and sciatic nerves. The imaging protocols in these studies are, however,
impractical for use on live humans, due to the large gradient strengths and scan
times required: the former up to 1400 mT m−1 (compared to the 32 mT m−1

available on a typical clinical scanner), and the latter often on the order of many
hours to days. Moreover, they exploit a priori knowledge of white matter tract
orientation, which is not generally available in vivo.

Active imaging optimises imaging protocols for sensitivity to specific param-
eters of a tissue model, subject to scan hardware and time constraints [13, 14].
The term “active imaging” comes from active learning, which is a branch of
machine learning that aims to identify the minimum set of enquiries required
to determine the state of a system [15]. Optimising an imaging paradigm for
estimating tissue microstructure parameters reduces to the same problem. In
[16], an active imaging algorithm is constructed for optimising dMRI protocols



when the fibre orientation is unknown. Simulations using a signal model similar
to that in [10] demonstrate the feasibility of measuring axon size and density
in live human subjects on current systems. The technique generalises to more
complex models incorporating a variety of useful microstructural parameters and
provides the opportunity, for the first time, to map these parameters over the
live human brain.

A limitation of the approach in [16] is that it assumes the dMRI measure-
ments come from the standard pulsed-gradient spin-echo (PGSE) pulse sequence.
Here, we extend the method to the more complex dual spin-echo (DSE) sequence,
which is more useful in practice as it is more robust to distortion effects. In §2 we
give some background on how MRI is sensitised to diffusion, and on microstruc-
tural models of the dMRI signal. In §3 we develop a full parameterisation of
the DSE pulse sequence, and establish bounds on each parameter; we extend a
previous model of the dMRI signal arising from cylindrical axons to the DSE
case; and we integrate the new encoding into the optimisation framework in [16].
In §4, we demonstrate the approach, comparing optimised DSE and PGSE pro-
tocols for estimating axon density and diameter in simulation. We conclude in
§5. This study provides the foundational techniques for the future development
of DSE pulse sequences optimised for any suitable tissue model, with recovered
parameters as specific as the data admit.

2 Background

In this section we provide relevant background material on dMRI pulse sequences
and the nature of diffusion in white matter.

2.1 Pulse Sequences

There are a number of ways of using magnetic gradient pulses to achieve diffusion
sensitivity in an MRI experiment. The original PGSE sequence was described
by Stejskal & Tanner [17], and is shown schematically in Fig. 1a. It consists of
a pair of gradient pulses of equal magnitude and length δ, either side of a radio
frequency (RF) inversion, or 180◦, pulse. The first gradient applies a spatially
varying phase shift to diffusing spins, which is reversed by the second pulse if
the molecules do not move. However, molecular movement results in a residual
phase offset, which manifests as an attenuation in the signal. The greater the
aggregate distance moved due to diffusion along the direction of the gradient,
the more greatly attenuated is the signal measured.

Unfortunately this sequence has a practical problem: electric eddy currents
are induced by the onset and offset of the gradient pulses, causing distortion
effects in the acquired image data. Some of these effects decay with time con-
stants comparable to the length of the sequence, and so in practice they tend
to accumulate. The recently developed DSE sequence [18]—shown in Fig. 1b—
works similarly, but has much improved robustness to eddy current effects. In
fact, the sequence can be configured to eliminate entirely eddy current effects
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Fig. 1. Schematic representations of the standard pulsed-gradient spin-echo (a) and
dual spin-echo (b) dMRI pulse sequences. The axis represents time.

with a particular time constant. For this reason, it is becoming the standard
diffusion sequence on commercial MRI scanners. In DSE, the initial phase shift
is provided by a combination of the first two gradient pulses, with lengths δ1 and
δ2. (These pulses appear with opposite sign in the figure, but the phase effect of
all gradients is inverted between the two 180◦ RF pulses.) Rephasing is effected
by the remaining two pulses, and there is therefore a “balance” requirement that

δ1 + δ2 = δ3 + δ4 . (1)

Since large gradient magnitudes are usually required for measuring tissue
microstructure features, and eddy current effects scale with gradient strength,
the DSE sequence is particularly appealing for this application. However, the
sequence has not previously been used for estimating tissue model parameters,
due to the relative difficulty of designing by hand a suitable protocol based on
this more complex sequence, combined with an absence of analytical signal mod-
els. This paper provides an encoding of the DSE sequence, enabling optimisation
of the protocol with active imaging. We also derive models of the DSE signal
from water in simple restricted geometries, which allows us to extend the mi-
crostructural dMRI models in [10, 11, 16] for DSE. In combination, these novel
contributions enable microstructure imaging protocols free of image distortion,
which is an essential step towards their realisation in practice.

2.2 Hindered and Restricted Diffusion

Under the simple model used in [8], neural white matter tissue consists of two
compartments: a homogeneous substrate, and a set of impermeable cells with



regular geometry embedded within the substrate. Diffusion within the cells is
therefore restricted by their geometry, while extracellular diffusion is merely
hindered. In common with the CHARMED model [9], it is assumed that the total
normalised signal, E, arising from the two compartments is a linear combination
of contributions from each, viz.

E(G, Θ, Φ) = fEr(G, Θ, Φ) + (1− f)Eh(G, Θ, Φ) , (2)

where f ∈ [0, 1] is the volume fraction of the intracellular compartment, G is
the diffusion gradient direction, Θ is a set of sequence parameters, and Φ is a
set of parameters for the tissue model.

The signal due to hindered diffusion, Eh, can be modelled by assuming a stan-
dard Gaussian displacement distribution, as in DTI. Diffusion in the restricted
compartment is far from Gaussian, however, and depends on the geometry of the
cells. By solving the diffusion equation subject to suitable boundary conditions,
Neuman [7] derives expressions for the displacement distributions in spheres and
cylinders. He then calculates approximations for the signal, Er, within these re-
stricted domains in the presence of a single continuous gradient, based on the
assumption of a Gaussian distribution over phases among the diffusing molecules.
The equivalent expression for cylindrical domains with the PGSE sequence was
given by van Gelderen [19], and we give the new DSE solution below.

3 Methods

This section begins with our parameterisation of the DSE pulse sequence. We
then derive a model for the restricted signal arising from a dMRI experiment
under this parameterisation.

3.1 Parameterisation and Constraints

Figure 1b shows the DSE pulse sequence. It involves four individual diffusion-
sensitising pulses of lengths δ1, δ2, δ3 and δ4, split into three blocks separated by
two 180◦ RF pulses. The first gradient pulse occurs at a time t1 after the initial
excitation (90◦) RF pulse. The second occurs at time t2, the third immediately
after the second, and the fourth at time t3. Additionally, we choose to arrange
that the first 180◦ pulse occurs immediately after the first gradient pulse.

The diffusion sensitisation pulses cannot take up the whole echo time (TE) of
a DSE sequence, because time is required for the 180◦ pulses; and for excitation
and “readout”, or signal measurement, at the beginning and end of the sequence
respectively. We denote the total amount of time actually available for the dif-
fusion pulses with τ = TE− T prep − T read, and the time required for each 180◦

pulse with P180. The time between the two 180◦ pulses, within which the sec-
ond and third diffusion gradients must fit, is exactly T inner = TE/2−P180. The
time available for the outer two pulses is therefore T outer = τ −TE/2− P180. It
should be noted that as TE increases, the basic signal-to-noise ratio (SNR) of the
sequence will decrease because of spontaneous dephasing due to spin relaxation.



We encode the sequence with the parameter setΘ = {TE, T, ts, δ1, t1, t2, t3, G},
where T = δ1 +δ2 +δ3 +δ4 and ts = δ2 +δ3−δ1−δ4. We include T and ts rather
than δ2 and δ3 for convenience when nulling eddy currents in §3.2. The fourth
pulse length need not be included because of the balancing constraint in (1). A
number of constraints on these parameters must be satisfied in order to ensure
that the diffusion weighting properties of the sequence remain intact, and that
all pulse lengths are nonnegative. These are outlined below.

The time available for the outer two pulses, δ1 and δ4, must be nonnegative;
and so it follows directly from the definitions of T outer and τ above that

TE ≥ 2(P180 + T prep + T read) . (3)

Due to the balancing constraint, we can write T = 2(δ1 + δ2), which has bounds

0 ≤ T ≤ TE− 2(P180 + T prep + T read) = 2τ − TE− 2P180 . (4)

It follows from the balancing constraint and the definitions of T and ts that
T + ts = 2(δ2 + δ3), which is bounded by the time available for the inner two
pulses. Similarly, T − ts = 2(δ1 + δ4), so we have

T + ts ≤ 2T inner and T − ts ≤ 2T outer . (5)

Moreover, since no single diffusion pulse can be longer than T/2, or negative in
length, the absolute difference between δ3 and δ1 also cannot exceed T/2. As a
result, |ts| cannot exceed T . The full bounds on ts are therefore

max{−T,TE− 2τ + 2P180 + T} ≤ ts ≤ min{T,TE− 2P180 − T} . (6)

Given valid choices of T and ts, subject to these bounds, we will be able to
recover the lengths of the second and third pulses as

δ2 = T/2− δ1 and δ3 = ts/2 + δ1 , (7)

subject to first choosing δ1. The latter must be constrained such that none of
the other three pulse lengths will be negative:

max{0,−ts/2} ≤ δ1 ≤ min{T/2, (T − ts)/2} . (8)

The times of onset are also constrained. They must all be nonnegative, and
must leave room for each pulse. The upper bound on t3 is set by the requirement
that the last pulse must finish before t = τ , but it must occur after the second
refocussing pulse. We therefore have

0 ≤ t1 ≤ T outer − 2δ1 − δ2 + δ3 ; (9)
t1 + δ1 + P180 ≤ t2 ≤ t1 + δ1 + TE/2− δ2 − δ3 ; (10)

t1 + δ1 + P180 + TE/2 ≤ t3 ≤ τ − (δ1 + δ2 − δ3) . (11)

The final relevant parameter is G, the magnitude of the gradient pulses, but
this is independent of the other quantities and bounded simply by 0 ≤ G ≤ Gmax,
for some Gmax appropriate to the scanner being used. All four gradient pulses
in each arrangement use the same G.



3.2 Nulling Eddy Current Effects

The ability to null eddy current induced distortion effects is the major benefit
of DSE over PGSE. Heid [20] established that eddy current effects proportional
to e−λ0t will vanish exactly if

δ1 =
1
λ0

ln

(
1 + cosh λ0T

2

exp λ0ts
2 + exp −λ0T

2

)
. (12)

Off-design eddy current effects, with time constants different from λ0, will also
be reduced, although not totally nulled. We can substitute this fixed form for
the bounds given by (8), thus improving the eddy current distortion properties
of the sequence further, at the cost of losing one degree of freedom in the pa-
rameterisation. In this case, the bounds on T , t1, t2 and t3 remain exactly as
before, although the limits on ts take a different form. The right hand side of
(12) must be nonnegative, so we constrain

ts ≤
2
λ0

ln
(

1 + sinh
λ0T

2

)
. (13)

In addition, we observe from (7) that δ2 is negative unless δ1 ≤ T/2. This
condition imposes the additional constraint

ts ≥
2
λ0

ln
(

1 + e−λ0T

2

)
. (14)

The limits described by (5) also continue to apply.

3.3 Signal Model

The model of neural white matter that we use here to demonstrate active imag-
ing with DSE consists of nonabutting cylinders of radius R, representing neural
axons, in a homogeneous substrate [8]. The signal model takes the form of (2),
assuming cylindrically symmetric Gaussian diffusion in the hindered, extracel-
lular compartment. Here we derive an expression for the DSE signal in the
intracellular compartment.

We decompose the intracellular signal into components parallel and perpen-
dicular to the axons. In the parallel case, diffusion is assumed to be univariate
Gaussian with diffusivity d‖; and the effective gradient strength is G cosβ, where
β is the angle between the gradient direction, G, and the fibre direction, n. The
perpendicular component, however, exhibits restricted diffusion due to the inner
walls of the axons. Following Neuman [7], assuming a Gaussian distribution of
phases in the tissue, we integrate over molecular displacements during the course
of the sequence to arrive at the form

Er⊥(G, Θ, Φ) = −2γ2(G sinβ)2
∞∑
m=1

ζm
α6
md

2
⊥(α2

mR
2 − 1)

, (15)



where

ζm = 2α2
md⊥(δ1 + δ2)−

[
5 + Ym(t2 − t1)− Ym(t3 − t1)− Ym(t3 − t2)− Ym(δ1)

− Ym(t2 − t1 − δ1) + Ym(t3 − t1 − δ1)− 2Ym(δ2)− 2Ym(t2 − t1 + δ2)
+ 2Ym(t2 − t1 + δ2 − δ1) + 2Ym(t3 − t2 − δ2)− 2Ym(δ3) + Ym(δ2 + δ3)

+ Ym(t2 − t1 + δ2 + δ3)− Ym(t2 − t1 + δ2 + δ3 − δ1)
− 2Ym(t3 − t2 + δ1 − δ3)− Ym(t3 − t1 + δ2 − δ3)− Ym(δ1 + δ2 − δ3)

+ Ym(t3 − t1 + δ1 + δ2 − δ3) + Ym(t3 − t2 + δ1 + δ2 − δ3)

− Ym(t3 − t2 − δ2 − δ3) + Ym(t3 − t2 + δ1 − 2δ3)
]

(16)

and
Ym(x) = exp(−α2

md⊥x) . (17)

The term αm represents the mth smallest α solving the equation J ′1(αR) = 0,
where J ′1 is the derivative of the Bessel function of the first kind, order one. The
total signal from the restricted compartment is finally

Er(G, Θ, Φ) = Er‖(G, Θ, Φ)Er⊥(G, Θ, Φ) . (18)

The full set of model parameters is therefore Φ = {f,R,n, d‖, d⊥}.

4 Experiments and Results

In all our experiments, we use parameter settings similar to the natural values
in human white matter, and sequence constraints which are easily achievable
on most clinical MRI scanners. Specifically, we choose f = 0.7, d‖ = 1.7 ×
10−9 m2 s−1 and d⊥ = 1.2 × 10−9 m2 s−1. We take Gmax = 32 mT m−1 and
assume a base SNR of 10 at TE = 90 ms—both of which are well within reach
of most scanners.

We constrain the protocol to contain M different sets of sequence parame-
ters, each of which are applied along N noncollinear gradient directions. We use
the optimisation framework and cost function described in [16], based on the
Cramér–Rao Lower Bound (CRLB) and a Rician noise model, which is appro-
priate for MRI images [21]. The noise level used to calculate the cost function is
adjusted in line with the optimised TE, as in [16], which we choose to fix over all
pulse arrangements, leaving 7M+1 parameters to optimise over. Again following
[16], we use M = 4 and N = 90 throughout, for a total of 360 measurements,
which is achievable in under an hour with a modern human system.

The first experiment compares the sensitivity of the PGSE and DSE se-
quences to the parameters of the tissue model, as indicated by the cost function
itself. We optimise both sequences for each R ∈ {1, 3, 5, 10, 20} µm separately.
The DSE sequence is optimised both without and with the eddy current nulling
constraint in (12). For the latter, we set λ0 = 0.7/T̃ as in [20], where T̃ is the
maximal T across all pulse arrangements. The means and coefficients of variation
(CVs) of the cost function over 500 fibre orientations equally distributed on the



Fig. 2. Trends in the cost function with axon radius (a,b) and azimuth angle (c).
R = 3 µm in c; base SNR = 10 in all cases.

Fig. 3. Results from MCMC sampling of tissue model parameters: histograms of sam-
ples from the posterior distribution over f at base SNR 10 (a) and 30 (b), and relation-
ships between SNR and the means and standard deviations of these histograms for f
(c,d) and R (e,f). Error bars indicate mean ± standard error over ten fibre directions.
Generating values are f = 0.7 and R = 5 µm throughout (dashed lines in c,e).



sphere [22], are shown in Fig. 2. It can be seen from Fig. 2a that the mean values
vary by several orders of magnitude over the five axon radii, but there is little
difference between the three pulse sequences. On the other hand, the CVs are
slightly smaller for the PGSE case at large R, but substantially larger at small
R, suggesting that the DSE sequence has better orientation invariance when R
is small. (This effect persists when the base SNR is higher.) Figure 2c shows
the dependence of the cost function value on the azimuthal orientation of the
fibre: the spread is much larger for the PGSE sequence at R = 3 µm, whereas
it is almost identical at R = 5 µm (not shown). The absolute magnitude of the
variance is, however, small in all cases. Data for the constrained DSE sequence
is omitted from this subfigure for clarity, but the pattern is very similar to the
unconstrained sequence.

Additionally, we investigated the ability of the method to recover tissue pa-
rameters from a synthetic data set. We obtain very accurate synthetic signal
data using a simulation of 10,000 molecules undergoing Brownian motion, by
tracking the phase of each molecule through the optimised sequences to calcu-
late the final signal [23]. The geometric environment in the simulation was the
same as in the tissue model, although with uniform diffusivity. Cylinder radius
was fixed to 5 µm and cylinder separation adjusted to produce an intracellular
volume fraction of 0.7. Rician noise was added. We used Markov chain Monte
Carlo (MCMC) to sample from posterior distributions over the tissue param-
eters of interest, using Metropolis–Hastings samplers with zero-mean Gaussian
proposal distributions. Variances of these proposal distributions were tuned by
hand to give reasonable acceptance rates. Priors were uninformative within ap-
propriate bounds. A burn-in period of 10,000 iterations was used, after which
100 samples were taken with a sampling interval of 1000 iterations. Parameters
were initialised with their true values to speed up convergence. This process was
repeated for ten generative fibre orientations, n, equally spaced on the sphere.
PGSE and unconstrained DSE sequences were tested, and sampling was repeated
with protocols optimised using base SNRs of 20, 30, 40 and 50.

Figure 3 shows the results of the MCMC experiments. The sampled posterior
distributions over intracellular volume fraction, f , a proxy for axon density, are
broad at a base SNR of 10 (Fig. 3a); and although both modes are close to
the generating value of 0.7, they differ slightly from one another. By contrast,
at a base SNR of 30 (Fig. 3b), both distributions are far tighter. Figure 3c
shows that DSE tends to underestimate f at SNR = 10, although it is generally
both more accurate and more stable where SNR ≥ 20. DSE also has a slight
precision advantage at these lower noise levels (Fig. 3d). Both sequences produce
underestimates of axon radius, R, at low SNR, and their accuracies are largely
similar; although PGSE exhibits somewhat greater precision for this parameter
over the whole SNR range (Fig. 3e,f). Overall, the differences between the two
sequences are small, and neither is consistently superior.



5 Discussion

We have developed the analytical infrastructure needed for active imaging with
DSE, facilitating the optimisation of this widely deployed dMRI pulse sequence
for estimating the parameters of arbitrarily complex models of living tissue.
The DSE sequence has been shown to perform very similarly to PGSE, both
in terms of a cost function based on the CRLB, and in terms of its ability
to recover generative parameters from simulated data. However, it has a major
practical benefit in its reduced sensitivity to eddy currents, which are particularly
significant at the large gradient strengths used for experiments of this type. We
have shown that eddy current effects can be nulled completely for a particular
time constant with little impact on the cost function.

The exact performance of the two dMRI sequences discussed in this paper
has been shown to depend on the SNR achievable and the parameter of interest.
For the example tissue model we have described, DSE appears to have some
advantage for small axon radii. This is probably due to the ability to position
pulses next to one another, making effective diffusion times short (cf. Fig. 1b).
The noise level is clearly an important factor in performance, and there is a
substantial improvement in accuracy and precision in the step from a base SNR
of 10 to 20 with both sequences. The latter is quite achievable for in vivo work.
We have found no evidence of a consistent noise penalty with DSE, which is
sometimes thought to be a problem with the sequence.

A very significant avenue for future work will be the application of DSE-
based active imaging to other tissue models and related problems. DSE may
prove to be more flexible than PGSE due to the extra degrees of freedom in
the parameterisation (7M + 1 parameters rather than 3M). We also intend to
investigate the effect of eddy currents in acquired images on estimates of tissue
model parameters. Implementation of our protocol will be complex due to the
substantial number of parameters, but it will be essential to quantify the full
benefits of the DSE sequence in active imaging applications.
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