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Abstract

We develop a novel statistical model, called multiscale adaptive regression model (MARM), for 

spatial and adaptive analysis of neuroimaging data. The primary motivation and application of the 

proposed methodology is statistical analysis of imaging data on the two-dimensional (2D) surface 

or in the 3D volume for various neuroimaging studies. The existing voxel-wise approach has 

several major limitations for the analyses of imaging data, underscoring the great need for 

methodological development. The voxel-wise approach essentially treats all voxels as independent 

units, whereas neuroimaging data are spatially correlated in nature and spatially contiguous 

regions of activation with rather sharp edges are usually expected. The initial smoothing step 

before the voxel-wise approach often blurs the image data near the edges of activated regions and 

thus it can dramatically increase the numbers of false positives and false negatives. The MARM, 

which is developed for addressing these limitations, has three key features in the analysis of 

imaging data: being spatial, being hierarchical, and being adaptive. The MARM builds a small 

sphere at each location (called voxel) and use these consecutively connected spheres across all 

voxels to capture spatial dependence among imaging observations. Then, the MARM builds 

hierarchically nested spheres by increasing the radius of a spherical neighborhood around each 

voxel and combine all the data in a given radius of each voxel with appropriate weights to 

adaptively calculate parameter estimates and test statistics. Theoretically, we first establish that the 

MARM outperforms classical voxel-wise approach. Simulation studies are used to demonstrate 

the methodology and examine the finite sample performance of the MARM. We apply our 

methods to the detection of spatial patterns of brain atrophy in a neuroimaging study of 

Alzheimers disease. Our simulation studies with known ground truth confirm that the MARM 

significantly outperforms the voxel-wise methods.

1 Introduction

Anatomical and functional magnetic resonance imaging (MRI) are powerful tools for 

understanding the neural development of neuropsychiatric disorders, substance use 

disorders, and normal brains. Specifically, anatomical MRI has been widely used to segment 

the cortical and subcortical structures (e.g., hippocampus) of the human brain in vivo and to 

generate various morphological measures of their morphology for understanding 

neuroanatomical differences in brain structure across different populations [1]. Functional 

MRI (fMRI) has been widely used to understand functional integration of different brain 
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regions in response to specific stimuli and behavioral tasks and detecting the association 

between brain function and covariates of interest, such as diagnosis, behavioral tasks, 

severity of disease, age, or IQ [2,3,4].

Much effort has been devoted to developing voxel-wise methods for analyzing various 

imaging measures including cortical thickness using numerical simulations and theoretical 

reasoning. The voxel-wise methods for analyzing imaging data are often sequentially 

executed in two steps. The first step involves fitting a general linear model (LM) (or a linear 

mixed model (LMM)) to imaging data from all subjects at each voxel and generating a 

statistical parametric map of test statistics (or p-values) [5,6]. The second step is to calculate 

adjusted p-values that account for testing the hypotheses across multiple brain regions or 

across many voxels of the imaging volume using various statistical methods (e.g., random 

field theory (RFT), false discovery rate, or permutation methods) [7,8]. Most of these 

methods have been implemented in existing neuroimaging software platforms, such as SPM 

(http://www.fil.ion.ucl.ac.uk), among many others.

The voxel-wise approach based on the LM (or LMM) and RFT has several obvious 

limitations for the analyses of imaging data, underscoring the great need for methodological 

development. (i) The voxel-wise approach essentially treats all voxels as independent units 

[9], whereas neuroimaging data are spatially correlated in nature and spatially contiguous 

regions of activation with rather sharp edges are usually expected. (ii) The initial smoothing 

step before the voxel-wise approach often blurs the image data near the edges of activated 

regions and thus it can dramatically increase the numbers of false positives and false 

negatives [11,12,13,9]. (iii) The voxel-wise approach is also based on a strong assumption 

that after an image warping procedure, the location of a voxel in the images of one person is 

assumed to be in precisely the same location as the voxel identified in another person—-an 

assumption that is demonstrably false.

Spatially modeling imaging data in all voxels of the 3D volume (or 2D surface) represents 

both computational and theoretical challenges. Spatial dependencies were commonly 

characterized using conditional autoregressive (CAR) or Markov random field (MRF) 

priors, but estimating spatial correlation for the 3D volume, in which the number of voxels 

ranges from ten thousands to more than 500,000 voxels, is computationally prohibited. 

Moreover, given the complexity of imaging data, it can be restrictive to assume parametric 

spatial correlation such as CAR and MRF for the whole 3D volume (or 2D surface). Another 

method, called ROI analysis, is to model the imaging data from all voxels within multiple 

regions of interest (ROIs) [14]. The ROI method based on anatomically defined ROIs only 

models the spatial correlation among these ROIs [14], so it essentially ignores the spatial 

correlation structure in the neighboring voxels within each ROI. Moreover, the ROI method 

is also based on a strong assumption that all voxels in the same ROI are homogeneous, and 

this assumption is largely false.

This paper aims to develop and apply a multiscale adaptive regression model (MARM) for 

the joint analysis of neuroimaging data with behavioral and clinical variables, and then to 

demonstrate its superiority over the voxel-wise approach using simulated and real imaging 

data. The MARM is a spatial, hierarchical and adaptive procedure. The MARM builds a 
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small sphere at each voxel and use these consecutively connected spheres across all voxels 

to capture local and global spatial dependence among imaging observations. The MARM 

also builds hierarchically nested spheres by increasing the radius of a spherical 

neighborhood around each voxel and combine all the data in a given radius of each voxel 

with appropriate weights to adaptively calculate parameter estimates and test statistics. Thus, 

the MARM explicitly utilizes the spatial information to carry out statistical inference, while 

avoiding explicitly estimating spatial correlation. The hierarchical nature of the MARM can 

dramatically reduce the computational complexity in computing parameter estimates. The 

adaptive feature of the MARM can efficiently utilize all available information in the 

neighboring voxles to increase the precision of parameter estimates and the power of test 

statistics.

The MARM represents a novel generalization of the propagation separation (PS) approach, 

which was originally developed for nonparametric estimation of regression curves or 

surfaces [11,12], in several aspects. The MARM provides a general framework for carrying 

out statistical inference on imaging data, whereas the PS is applied to smooth the images of 

parameter estimates obtained from the voxel-wise approach based on classical linear models 

[9]. As shown in Section 2, it is inadequate to directly use the PS approach to smooth the 

images of parameter estimates, which are obtained from the voxel-wise method, for most 

regression models, such as nonlinear regression. Compared to the parametric assumptions in 

the PS method for the LM, the MARM is solely based on the pseudo-likelihood function, 

and thus it avoids specifying any parametric distribution for imaging data. This feature is 

desirable for the analysis of real neuroimaging data, including brain morphological 

measures, because the distribution of the univariate (or multivariate) neuroimaging 

measurements often deviates from the Gaussian distribution [15]. We also establish the 

theoretical properties of the MARM, which differs substantially from those of the original 

PS approach, which were developed for nonparametric estimation of regression curves or 

surfaces based on observations from the exponential family model [12]. Particularly, we 

show that the MARM outperforms the voxel-wise method theoretically.

Section 2 of this paper presents the MARM just described and establishes the associated 

theoretical properties. We establish the consistency and asymptotic normality of the adaptive 

estimators and the asymptotic distribution of the adaptive test statistics for the MARMs. In 

Section 3, we conduct simulation studies to examine the finite sample performance of the 

MARMs. Section 4 illustrates an application of the proposed methods in a neuroimaging 

dataset. We present concluding remarks in Section 5.

2 Multiscale Adaptive Regression Model

2.1 Data Structure and Model Formulation

Suppose we have 2D surfaces or 3D volumes of MRI measures and clinical variables from n 

subjects for i = 1, · · ·, n. MRI measures might be the shape representation of the surfaces of 

cortical or various subcortical regions, the determinant of the Jacobian matrices based on the 

deformation fields estimated by the registration algorithm, functional MRI signals, or 

diffusion tensors and their associated invariant measures, such as fractional anisotropy [1]. 

Clinical variables might include pedigree information, time, demographic characteristics 
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(e.g., age, gender, height), and diagnoses, among others. Thus, for the i–th subject, we 

observe an ND × 1 vector of MRI measures, denoted by  = {Yi(d) : d ∈ }, and a k × 1 

vector of clinical variables xi, where  and d, respectively, represent a 3D volume (or 2D 

surface) and a voxel in  and ND equals the number of points on .

Our primary scientific interest in the analysis of neuroimaging data is to identify important 

brain regions to characterize the neural development of neuropsychiatric disorders, 

substance use disorders, and normal brains. Statistically, we often use {  : i = 1, · · ·, n} as 

responses and establish their association with a set of covariates xi, such as age and gender. 

This requires the specification of the conditional distribution of

given X = {xi : i = 1, · · ·, n}, that is, p( |X). For MRI measures from the cross-sectional 

studies, it is natural to assume the independence across all subjects, that is given by

Thus, we only need to specify p( |Xi) for each subject. However, even for a single 

observation within each cluster, the number of voxels in each brain region varies from 

thousands to more than 500,000 voxels, and at each voxel, the dimension of Yi(d) can be 

univariate or multivariate, thus totaling a billion or more data points in an entire study. In 

addition, imaging data  are spatially correlated in nature, and thus given the large number 

of voxels on each brain structure, it is statistically challenging to directly model the spatial 

correlations among all pairs of points [14].

The voxel-wise approach essentially assumes that

(1)

where p(Yi(d)|xi, θ(d)) is the marginal density of p( |Xi) or a ‘pseudo’ density function for 

Yi(d) parameterized by an unknown parameter vector θ(d) = (θ1(d), · · ·, θp(d))T in an open 

subset Θ of Rp. Note that we use the pseudo density to emphasize the possible 

misspecification of p(Yi(d)|xi, θ(d)). Model (1) comprises many statistical models such as the 

LM. For instance, for univariate measure, the LM assumes that

where β(d) is a (p − 1) × 1 regression coefficients, εi1(d) ~ N(0, σ(d)2), and θ(d) = (β(d), 

σ(d)). However, the linear link function  and the Gaussian assumption 
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are questionable in many applications [15]. Moreover, since the voxel-wise approach does 

not account for the fact that imaging data are spatially correlated and contain spatially 

contiguous regions of activation with rather sharp edges, it may lead to the loss of power in 

detecting statistical significance in the analysis of imaging data.

We formally introduce the multiscale adaptive regression model as follows. It is first 

assumed that for a relatively large radius r0,

(2)

where N(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with 

radius r0. That is, we can approximate the joint distribution of  by the product of the joint 

distributions of {Yi(d′) : d′ ∈ N(d, r0)}. Using data in N(d, r0) for relatively large r0 

preserves the neighboring correlation structure in the imaging data (see the panel (a) in 

Figure 1 for an illustration). Moreover, since the spherical neighborhoods for all voxels are 

consecutively connected, equation (2) can capture a substantial amount of spatial 

information in the imaging data. Note that the right hand-side of equation (2) is essentially a 

composite likelihood [16,17].

Second, we consider the specification of p({Yi(d′) : d′ ∈ N(d, r0)}|xi). Since our primary 

interest is to make statistical inference about θ(d), we avoid specifying spatial correlations 

among all the {Yi(d′) : d′ ∈ N(d, r0)}. Instead, we assume that p({Yi(d′) : d′ ∈ N(d, r0)}|xi) 

can be approximated by

(3)

where ω(d, d′; h) is a weight function of two voxels and a radius h that characterizes the 

similarity between the data in voxels d and d′. We require that ω(d, d′; h) be independent of i 

just for simplicity. In imaging data, voxels, which are not on the boundary of regions of 

activation, often have a neighborhood in which θ(d) is nearly constant. This assumption 

reflects the fact that imaging data are spatially correlated and contain spatially contiguous 

regions of activation with rather sharp edges. Incorporating this assumption leads to

(4)

Equation (4) allows us to combine all data in N(d, r0) to make inference about θ(d), which 

can substantially increase the efficiency in estimating θ(d). Moreover, the weights ω(d, d′; 

r0) can prevent incorporating voxels whose data do not contain information on θ(d), and thus 

preserve the edges of the regions of activation.

Zhu et al. Page 5

Inf Process Med Imaging. Author manuscript; available in PMC 2014 November 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



An important question that we need to address is how to determine ω(d, d′; r0). We use a 

multiscale strategy to adaptively determine {ω(d, d′; r0) : d, d′ ∈ } and estimate θ(d). 

Specifically, we select a sequence of bandwidths h0 = 0 < h1 < · · · < hS = r0 ranging from 

the smallest scale h0 = 0 to the largest scale hS = r0. By setting ω(d, d′; h0 = 0) = 1, we can 

estimate θ(d) at scale h0, denoted by θ̃(d; h0 = 0), and then we use some methods as detailed 

below to calculate ω(d, d′; h1) at scale h1 based on {θ̃(d; h0 = 0) : d ∈ }. In this way, we 

can sequentially determine ω(d, d′; hs) and adaptively update θ̃(d; hs) from h0 = 0 to hS = r0 

(see the panel (b) of Figure 1 for an illustration). A path diagram is given below:

(5)

At each iteration, the computation involved for the MARM is of the same order as that for 

the voxel-wise approach. Thus, this multiscale method provides an efficient method for 

adaptively exploring the neighboring areas of each voxel. Since this multiscale method 

sequentially includes more data at each voxel, it will adaptively increase the statistical 

efficiency in estimating θ(d) in a homogenous region and decreases the variation of the 

weights ω(d, d′; h). This multiscale method distinguishes MARM from the composite 

likelihood methods proposed in the literature [16,17].

2.2 Estimation and Hypothesis Testing at a Fixed Scale

At a fixed scale h, we consider the weighted maximum likelihood estimates of θ(d) across 

all voxels d ∈  for given weights ω(d, d′; h). The weighted quasi-likelihood function 

ℓn(θ(d); h, ω) is given by

(6)

The maximum weighted quasi-likelihood (MWQL) estimate of θ is

(7)

We use the Newton-Raphson algorithm to calculate θ̂(d, h) by iterating

where ∂θ(d) and  denote, respectively, the first- and second-order partial derivatives with 

respect to θ(d) evaluated at θ̂(d, h)(t). In practice, to stabilize the Newton-Raphson algorithm, 

we may approximate  by . The 

Newton-Raphson algorithm stops when the absolute difference between consecutive θ̂(d, 
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h)(t)s is smaller than a predefined small number, say 10−4. After convergence, Cov[θ̂(d, h)] = 

Σn(θ̂(d, h)) can be approximated by [Σn,1(θ̂(d, h))]−1Σn,2(θ̂(d, h))[Σn,1(θ̂(d, h))]−1, where 

 and 

, in which a⊗2 = aaT for 

any vector a.

Our choice of which hypotheses to test was motivated by either a comparison of brain 

structure across diagnostic groups or the detection of a change in brain structure across time 

[1]. These questions usually can be formulated as the testing of linear hypotheses about θ(d)

(8)

where μ = Rθ(d), R is a r × k matrix of full row rank and b0 is an r × 1 specified vector. We 

test the null hypothesis H0,μ : Rθ(d) = b0 using the score test statistic

(9)

To test whether H0,μ holds in all voxels of the region under study, we consider the false 

discovery rate (FDR) method [10].

2.3 Adaptive Estimation and Testing Procedure

We develop an adaptive estimation and testing (AET) procedure for MARM. The AET 

procedure starts with a single voxel d and then successively increases the radius (or 

bandwidth) h of a spherical neighborhood around d. Each voxel d′ in the neighborhood of d 

will be given a weight ω(d, d′; hs) that depends on the distance between d and d′ and the 

similarity between θ̂(d, hs−1) and θ̂(d′, hs−1). Then, we use all the data in a given 

neighborhood of d with bandwidth hs and the weight in each of these voxels to obtain 

updated estimates θ̂(d, hs) and Wμ(d, hs) at d, respectively. Finally, we use a sequence of θ̂(d, 

hs) and Wμ(d, hs) as a function of h to construct the final estimate for θ(d) and calculate the 

final test statistic Wμ(d) for testing hypotheses on θ(d) at d.

The AET procedure consists of five key steps as follows.

In the initialization step (i), we generate a geometric series  of 

bandwidths with h0 = 0, where ch is a number in (1, 2), say ch = 1.25. At each voxel d, we 

calculate θ̂(d, h0) and Wμ(d, h0), which are the same as those from the voxel-wise approach. 

We then set s = 1, and h1 = ch.

In the weights adaptation step (ii), we compute adaptive weights

(10)
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where Kloc(·) and Kst(·) are two kernel functions with compact support, || · ||2 denotes the 

Euclidean norm, and Dθ(d, d′; hs−1) denotes a weighted function based on the estimates of 

{θ(d) : d ∈ } at the (s−1)th iteration. The adaptive weights can downweight voxels d′ in 

ℓn(θ(d); h, d) if Dθ(d, d′; hs−1) is large.

In the estimation step (iii), we calculate θ̂(d, hs) and Wμ(d, hs), which are defined in 

equations (7) and (10), respectively, at voxel d for the sth scale.

In the memory step (iv), we set θ̃(d, h0) = θ̂(d, h0) and then update θ̃(d, hs) for s > 0 as

(11)

where ηs = Kloc(Dθ(d, hs)/C0) ∈ (0, 1) and

(12)

The Dθ(d, hs) measures the difference between θ̂(d, hs) and θ̂(d, h0) at the same voxel d. 

Finally, we calculate an estimator of the covariance matrix of θ̃(d, hs), denoted by Cov(θ̃(d, 

hs)) and compute the Wald test statistic as

(13)

In the stopping step (v), when s = S, we compute the p-values for W̃
μ(d, h), apply FDR to 

detect significant voxels and then stop, otherwise set hs+1 = chhs, increase s by 1 and 

continue with the weight adaptation step (ii). The maximal step S can be taken to be 

relatively small, say 6, such that the largest spherical neighborhood of each voxel only 

contains a relatively small number of voxels compared with the whole volume.

Remark 1—The memory step in equation (11) differs substantially from that in the PS 

approach [12]. Equation (11) is exactly a stochastic approximation algorithm [18]. The 

sequence {1/s : s = 1, ···} is introduced to cancel out the noise introduced in each iteration. 

Putting more weight 1/s at the beginning is very appealing in imaging analysis, because use 

of a local approximation often decreases the estimation error in the first few steps of the 

procedure and starts to slowly increase the estimation error as hs gets large. In addition, 

compared with the memory step in the PS approach, we use the distance between θ̂(d, hs) 

and θ̂(d, h0) to control the estimation error of θ̃(d, h0). Since θ̂(d, h0) is a  consistent 

estimate of θ(d), ηs = Kloc(Dθ(d, hs)/C0) ensures that θ̃(d, hs) is also a  consistent estimate 

of θ(d) for all s > 0.

Remark 2—There is an efficient way for selecting the initial value θ(d, hs)(0) for the 

Newton-Raphson algorithm by setting θ(d, hs)(0) = θ̂(d, hs−1) for each s > 0. Since the AET 

procedure always downweights voxels d′ in ℓn(θ(d); h, d) if Dθ(d, d′; hs−1) is large, θ̂(d, hs−1) 

and θ̂(d, hs) should be close to each other. By starting from θ(d, hs)(0) = θ̂(d, hs−1), the 
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Newton-Raphson algorithm converges very fast, and thus the additional computation 

involved for the MARM is very light compared to the voxel-wise approach.

3 Simulation Study

We only presented one set of Monte Carlo simulations to examine the finite sample 

performance of W̃
μ(d, h) with respect to different scales h at the levels of a single voxel and 

an entire brain region with known ground truth.

We applied a simulation model to automatically simulate realistic intraindividual 

deformations associated with tissue atrophy or growth on brain images from two groups 

[19]. We chose a specified location and a fixed radius in the white matter and then simulated 

spherical atrophy for all 20 subjects in each group (see Figure 2). The growth rates for each 

subject in the first and second groups were generated from N(0.95, 0.01) and N(1, 0.01), 

respectively.

We used simulated deformations and images with the known ground truth to demonstrate 

the superiority of the MARM over the voxel-wise approach. The true deformation area was 

highlighted in red (see the panel (a) of Figure 2). We applied the MARM with ch = 1.25, S = 

6 and computed the p-values of W̃
μ(d, h) across the 3D volume at each iteration. Note that 

the results obtained from h0 = 0 correspond to those from the voxel-wise approach. Our 

results show a clear advantage of the MARM in detecting an accurate group difference as 

we increase the bandwidth h of the spherical neighborhood (compare the panels (b) and (c) 

of Figure 2). We calculated the ratio of voxels within the true deformation regions, whose p-

values are smaller than 0.0001. The ratios for h0 and h6 are 49% and 68%, respectively. That 

is, the MARM based on h6 leads to 19% improvement compared with the traditional voxel-

wise approach with h0 = 0.

4 Real Data Analysis

Alzheimer’s disease (AD) is the most common form of dementia in people over 65 years of 

age. MRI has been used to develop imaging-based biomarkers for AD, measure spatial 

patterns of atrophy, and their evolution with disease progressions. We used a subset of a 

large MRI dataset obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (www.loni.ucla.edu/ADNI). Our dataset includes 90 subjects, including 45 

cognitively normal individuals (CN) (mean age S.D., 77.07 3.89), and 45 AD patients (77.32 

6.01). The mini mental state examination (MMSE) scores (mean S.D.) of each group at 

baseline were 29.16 0.92, and 23.13 1.75, respectively. The two groups were relatively well-

balanced in terms of gender (23,25 women in each of the 2 groups, respectively). The 

imaging data include standard T1-weighted MR images acquired sagittally using volumetric 

3D MPRAGE with 1.25×1.25 mm2 in-plane spatial resolution and 1.2 mm thick sagittal 

slices (8 flip angle).

The T1-weighted MRIs were preprocessed in six consecutive steps. These steps included (i) 

alignment to the AC-PC plane; (ii) removal of extra-cranial material (skull-stripping); (iii) 

tissue segmentation into grey matter (GM), white matter (WM), and cerebrospinal fluid 

(CSF) using a brain tissue segmentation method proposed; (iv) high-dimensional image 
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warping to a standardized coordinate system, a brain atlas (template) that was aligned with 

the MNI coordinate space; (vi) formation of regional volumetric maps, named RAVENS 

maps, for GM, WM, and CSF using tissue preserving image warping.

We identify the spatial patterns of brain atrophy in Alzheimer’s disease (AD) via the 

analysis of the RAVENS maps of GM and WM obtained from the ANDI dataset. To control 

for the effects of covariates (diagnosis, age, weight, and gender), we considered model 

 for respective RAVENS maps at each voxel. The xi = (1, x1i, x2i, x3i, x4i)T 

is a 4 × 1 vector, in which x1i is Age/10, x2i is gender, x4i denotes the weight, and x4i denotes 

the diagnosis (1 AD and 0 CN). We applied the AET procedure with ch = 1.25 and S = 6 to 

carry out the statistical analysis. Figure 2 shows a clear advantage of the MARM in 

detecting more significant and smoothly area for the group differences between CN and AD 

as the bandwidth h increases. We observed the significant difference between CN and AD in 

the hippocampus and the entorhinal cortex.

5 Discussion

We have developed the MARM for spatial and adaptive analysis of imaging data. We have 

used simulation studies and real data to show that the MARM significantly outperforms the 

classical voxel-wise approach. Many issues still merit further research.
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Fig. 1. 
Illustrating the key features of the multiscale adaptive regression model. For a relatively 

large radius r0, panel (a) shows the spherical neighborhoods N(d, r0) of multiple points d on 

the cortical surface. Panel (b) shows the spherical neighborhoods with four different 

bandwidths h of the four selected points d on the cortical surface.
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Fig. 2. 
Voxel-wise analysis of group difference. From left to right in the first row, it shows the true 

deformation region in red in panel (a), the raw −log10(p) values of the Wald test statistics 

W̃
μ(d, h0) in panel (b), and the raw −log10(p) values of the Wald test statistics W̃

μ(d, h6) 

based on a χ2 distribution in panel (c). The second row shows the enlarged deformation 

regions of the corresponding figures in the first row.
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Fig. 3. 
Voxel-based analysis of group difference between CN and AD based on the raw −log10(P) 

values of the Wald test statistics. Four selected slices are presented. The first and second 

rows represent the results from the multiscale LM with h0 = and h6, respectively.
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