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Abstract. Image segmentation in microscopy, especially in interference-
based optical microscopy modalities, is notoriously challenging due to
inherent optical artifacts. We propose a general algebraic framework for
preconditioning microscopy images. It transforms an image that is un-
suitable for direct analysis into an image that can be effortlessly seg-
mented using global thresholding. We formulate preconditioning as the
minimization of nonnegative-constrained convex objective functions with
smoothness and sparseness-promoting regularization. We propose effi-
cient numerical algorithms for optimizing the objective functions. The
algorithms were extensively validated on simulated differential interfer-
ence (DIC) microscopy images and challenging real DIC images of cell
populations. With preconditioning, we achieved unprecedented segmen-
tation accuracy of 97.9% for CNS stem cells, and 93.4% for human red
blood cells in challenging images.

1 Introduction

Microscopy image segmentation lays the foundation for shape analysis, motion
tracking, and classification of biological objects. Despite its importance, auto-
mated segmentation remains challenging for several widely used non-fluorescence,
interference-based microscopy imaging modalities, such as phase contrast mi-
croscopy and differential interference contrast (DIC) microscopy. These modal-
ities employ interference optics to convert phase shifts of light induced by oth-
erwise transparent objects into visible intensity variations. While being visually

Fig. 1. DIC microscopy images of unstained cell populations. (a) CNS stem cells. (c) Human
red blood cells. (b) and (d) are the thresholding outputs of (a) and (c), respectively, showing
nonuniform background and unsymmetrical pixel intensity distribution in cells.
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contrastive, images generated by these modalities are often unsuitable for direct
computer segmentation or measurement, owing to inherent optical artifacts.

The noninvasiveness of interference-based microscopy makes them uniquely
suitable for long-term monitoring of living biological specimens. Recent advances
in biology intensified the interest in using them for quantitative measurement
of ongoing biological processes, e.g., for recognition and tracking of stem cell
behaviors. These emerging applications call for novel algorithms that facilitate
automated segmentation of interference-based optical microscopy images.

We propose in this paper a general algebraic framework for preconditioning
interference-based microscopy images, which dramatically facilitates automated
segmentation and analysis. Based on physical principles of microscopy image
formation, we formulate preconditioning as the minimization of nonnegative-
constrained convex objective functions with smoothness and sparseness-enhancing
regularization. Taking advantage of recent advances in convex optimization [I,
2,3], we propose efficient algorithms to solve the minimization problems.

The effectiveness of the proposed algorithms will be demonstrated for pre-
conditioning DIC microscopy images. The dual-beam interference optics of DIC
microscopes introduces nonuniform shadow-cast artifacts (Fig. 1), making direct
segmentation notoriously difficult. Existing techniques for DIC image segmen-
tation either are application-specific, relying on template matching and edge
detection [41], or require ad hoc image preprocessing, e.g., line integration [5] or
the Hilbert transform [6]. Attempts have also been made to derive exact imaging
models, resulting in computationally expensive algorithms that are impractical
for routine utilization [7,8]. In contrast, our preconditioning algorithms efficiently
reconstruct images according to well-defined optimality criteria, enabling high-
quality segmentation using global thresholding. Moreover, our approach can be
easily extended to other modalities (e.g., phase contrast microscopy) by incor-
porating appropriate imaging models, or to higher dimensions.

2 Algebraic Image Model

Our generic model for microscopy images consists of three components: 1) an
imaging model h(-) that represents the image formation process of the micro-
scope; 2) an additive bias b(x,y) that compensates for a nonzero background
level, nonuniform illumination, and spatial sensitivity variations of the detector;
and 3) a noise model n(-) that accounts for imaging and detection noise. The
model can be written as:

9(z,y) = n(h(f(z,y)) + b(x,y)), (1)

with g(z,y) being the observed image, and f(z,y) being the ideal object image
that we want to retrieve, which could represent the optical path length distribu-
tion in the object, fluorescence intensities, or an phenomenological image that
simply facilitates object segmentation.
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Under the assumption of additive noise, we can express our model succinctly
in a linear algebraic framework, given by

g=Hf+b+n. (2)

Here g denotes a vector representation of the observed image, which is formed
by concatenating the image pixels in raster order. Specifically, given an image
with N = N, x N, pixels {g.,}', where z = 1,...,N, and y = 1,..., N,, the
corresponding vector g is defined as:

)" 3)

where ()7 denotes vector (or matrix) transposition, and (z;,7;) are the spatial
coordinates of pixel g, y,, or equivalently, of the ith element of vector g. The
vectors f, b, n are defined likewise for the object, bias, and noise, respectively.
The imaging model is expressed as a matrix-vector multiplication between the
N x N transfer matrix H and f, which is adequate for representing a wide range
of microscopy image formation processes. Since H can naturally represent shift-
variant transfer functions, our expression is more flexible than the conventional
convolution formulation in terms of a point spread function (PSF).

In the next section, we will elaborate on the preconditioning framework under
the assumption of additive Gaussian noise. We will return to the discussion of
alternative noise models in Section 6.

g= (gla"'agia"'7gN)T: (gxl,yla'"agxi,ym"'aga:N,yN

3 Nonnegative Mixed-Norm Preconditioning

With the image model specified in Eq. (2), we need to compute the ideal object
image f given an observed image g. We tackle this inverse problem through a
two-step process. First, we estimate and subsequently eliminate the bias from
an observed image. Second, we reconstruct the object image f from the bias-
corrected image by minimizing a constrained mix-norm objective function. Col-
lectively, we refer to this two-step process as preconditioning, which transforms
an observed image that is unfriendly for computer analysis into an image that
facilitates automated object segmentation and measurement.

3.1 Bias Elimination

As the first step of preconditioning, we estimate the bias field from an image
and obtain a bias-corrected image. This process is also known as flat-field cor-
rection or background subtraction. While many methods exist for this purpose,
we present a simple approach that is sufficient for most microscopy images.

Under the assumption that the bias field is smooth and spatially slowly vary-
ing, we model it as a K-th order polynomial surface:

K k
ba.y) =D D 0y s 2Ty = potpratpay+psa’ +pazy+psy’ - (4)
k=0 j—0

! g+, denotes the discrete value sampled from the continuous function g(z, ) at (z, y).
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Algebraically, we can express the polynomial as b = Xp, where p = (pg, p1,p2 . ..)"
is the coefficient vector, and X is a matrix of N rows and (K + 1)(K + 2)/2
columns with the i-th row being (1, i, v, 2%, 2;y:,y7,...). To eliminate the
bias, we first compute the optimal coefficients by solving the over-determined
linear system Xp = g. This amounts to solving the least-squares problem
p* = argmin,, | Xp—g||3, which has a closed-form solution p* = (XTX)"1XTg.
The bias-corrected image is then computed as g* = g — Xp*.

3.2 Object Reconstruction via Convex Optimization

The second step of preconditioning reconstructs the object from the bias-corrected
image. Ideally, the background pixels of the reconstructed image should be uni-
formly zero while the foreground pixels are positive, facilitating foreground-
background separation. This goal is achieved by minimizing;:

O(f) = |lg* — Hf||3 +~ySmoothness(f) + BSparsity(f), subject to f >0, (5)

where || - ||2 denotes a Lo norm.

The objective function O(f) consists of three terms. Their relative impor-
tance is controlled by the positive coefficients v and (. The first term penal-
izes the sum-of-squares difference between the reconstructed and observed im-
ages, promoting data fidelity. The second and third terms encourage the spatial
smoothness and sparseness of the reconstructed image, respectively, which col-
lectively provide regularization. Regularization ensures the well-posedness of the
objective function, and is essential for high-quality reconstruction.

Next, we will introduce two specific formulations of the objective function
and discuss the corresponding optimization algorithms.

Case 1: Ly Smoothness + Weighted L, Sparsity The first formulation
employs an Ly (Tikhonov) smoothness term and a weighted L sparseness term:

O:(f) =llg* — Hf|3 + 7RSI+ BIWfl1, st f=>0. (6)

The smoothness term penalizes the Lo norm of the Laplacian of f, where the
N x N matrix R represents an algebraic Laplacian operator with symmetric
boundary condition. In particular, the i-th element of R f is computed as:

RE)i = frog — 3 Jrctiwst @)

Jike{-1,1} ®

with z; +j =x; — j if x; +j < 1 or > N, and likewise for y;. The sparseness
term penalizes the weighted L; norm of f, where W is a diagonal matrix with
positive weights w1, ..., wy on the diagonal and zeros elsewhere.

By rewriting O (f) in terms of the symmetric positive definite matrix Q =
H™H + vRTR and the vector I = —H”g*, and letting w denote the weight
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vector (w1, ..., wyn)?, we can express the minimization problem as the following
nonnegative-constrained quadratic program (NQP):

= argfmin %fTQf + (14 Bw)Tf, st. £>0. (8)

We propose a simple and efficient iterative algorithm, the sparseness-enhanced
multiplicative update (SEMU) algorithm, which is well-tailored for the NQP.
Our algorithm exploits a nonnegativity-preserving multiplicative update rule [2]
and the sparseness-enhancing effect of an iteratively reweighted L; scheme. To
introduce the algorithm, we express the matrix Q in Eq. (8) in terms of its pos-
itive and negative components. Specifically, we let Q = QT — Q~, where QT
and Q™ are nonnegative matrices given by:

+ _ Qi,'aifQi,'>O> - ‘Qi,'laifQi,‘<07
Q= { J J and Q;; = J j

0, otherwise, 0, otherwise.

The algorithm, defined in terms of Q* and Q~, alternates between updating f
and (optionally) recomputing w, as outlined below:

Initialize Set iteration number ¢ = 0, and fi(o) =1, wgo) =1,Vie{l,...,N}
Repeat Update f and w alternately according to:

oy [+ Bu®) )+ Bu®) + 4QrFO)(QFO),
fi — 2(Q+f(t))i

(t+1)

(optional)  w; , where o is a positive constant, (10)

fi(H_l) +a
Until ||f**D — f®|2 <€, where € is a small positive constant.

The multiplicative updates as given by Equations (9) and (10) are applied inde-
pendently to each pixel, and can be trivially parallelized.

To understand the algorithm, we first exclude Eq. (10) and consider w being
constant at unity. In this case, the sparseness term in O;(f) is reduced to an
ordinary L; norm. If we define a; = (QT f);, b; = l; + Bw;, and ¢; = (Q™ f)s,
it is instantly recognizable that the multiplicative factor in Eq. (9) is the larger
root of the quadratic equation aiyf +b;v; — ¢; = 0. This factor, which we denote
as Vj , is guaranteed to be real and nonnegative as long as f is nonnegative,
which in return preserves the nonnegativity of f. Moreover, using the fact that
001/0f; = a; + b; — ¢;, we can verify that the update rule have fixed points at
fi = 0 and 001/0f; = 0 (i.e., v;” = 1), which are consistent with the Karush-
Kuhn-Tucker (KKT) condition for the NQP. While a rigorous convergence proof
is nontrivial, it is evident that 00;/9f; < 0 implies v;* > 1, and 00;/9f; >
0 implies u;r < 1. Hence, the updates increase or decrease each f; along the
opposite direction of its partial derivative. Thanks to the convexity of O1(f),
the iterations convergence monotonically to the unique global minimum [2].
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If we iteratively reweight w according to Eq. (10), the Ly sparseness term in
O (f) is in effect replaced with a log-sum penalty function ), log(f; + a) [3].
The log-sum penalty is much more sparseness-encouraging than the L; norm,
because it charges increasingly larger penalties for smaller nonzeros. Despite the
change, f; = 0 and 001/df; = 0 remain as fixed points of the updates, and
the monotonic convergence of the algorithm is not violated. However, since the
log-sum penalty function is concave, we cannot expect the algorithm to always
achieve a global minimum. Nevertheless, achieving global optimality is immate-
rial for preconditioning. In practice, iterative reweighting encourages background
pixels to quickly converge to zero, achieving faster and superior reconstruction.

Case 2: Total Variation Smoothness + L; Sparsity As an alternative to
the Ly smoothness term in Eq. (6), total variation (TV) regularization [9] can
be incorporated into the objective function:

0x(f) = llg" = HF|3 + I fllvv + Bl fllr. subject to f£>0.  (11)

The TV norm, denoted as || - [Ty in Eq. (11), is defined as:

N
Iy = > /(. )2+ (D, 12, (12

where D, and D, are matrix representations of the forward-difference operators
with homogeneous Neumann boundary conditions, i.e.,

(Dm.f)l = fa:iJrl,yi - fa:i,yia and (Dyf>z = f:pi7yi+1 - fwi7yi7 (13>

with the exception that (D, f); = 0 if z; > N,, and (D, f); = 0 if y; > N,.
The TV norm is essentially the L; norm of the image gradient, which promotes
the sparseness of gradients in the reconstructed image. It is well-known for its
advantage in preserving discontinuities (i.e., sharp edges) in an image.
The minimization of Os(f) can be solved as a second-order cone program
(SOCP) [10]:
f*=argmin(17t + 17 f), (14)
t.f

st. Dof —u=0, D,f—v=0, Hf +w=g", wy=r,

and \/u? +v? <t;, \Jwi+- - +wd <wy, fi>0, ; >0, Vi=1,...,N,

where t, u, v, w and w are slack variables; 1 and 0 denote N-dimensional vec-
tors of ones and zeros, respectively; and 7 is an adjustable noise-tolerance pa-
rameter. The SOCP as given in (14) can be solved robustly using interior-point
methods (a.k.a. barrier methods) with general-purpose convex optimization soft-
ware [10,11]. We will refer to this approach as “TV-SOCP”. It alleviates the
slow convergence and instability issues that plague traditional gradient-based
algorithms [9], and allows easy incorporation of additional constraints.
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4 Differential Interference Contrast Microscopy

DIC microscopy is widely used to provide contrast of unstained, transparent
specimens, such as cells and microorganisms. Such specimens, known as phase
objects, cause no detectable amplitude change to the light that passes through
them. They are essentially invisible under an ordinary transmitted-light micro-
scope. However, they diffract light due to the difference of their refractive indices
with respect to the surrounding media, causing phase shifts to the incident light
waves. DIC microscopy employs dual-beam interference optics to transform the
invisible phase shifts into intensity variations in the observed image.

4.1 Physics of DIC Image Formation

The DIC image formation process can be summarized by the following equations.
First, consider an illuminating light beam with amplitude A that is entering a
DIC microscope parallel to its optical axis. Upon transiting through a polarizer,
the wavefront of the light becomes coherent and plane-polarized, represented by:

up(z) = Aexp(—ifo(x)). (15)

Here @ = (z,y), and fo(x) represents the phase of the light field. A condenser
prism splits the polarized light into two mutually coherent beams, spatially sep-
arated by a minute shear s = (scos(6), ssin(6)), where s is the shear distance
and 0 is the shear angle. The two beams pass through the condenser and interact
with the object, resulting in an altered phase f(x) containing object information:

uy(x) = Aexp(—if(x)), (16)
uz (@) = Aexp(—i(f(@ + 8) + o). (17)

In the above equations, f, is a constant relative phase shift between the two
wavefronts, known as the bias retardation. After being focused by the objective
lens, the two beams are recombined into a single beam by an objective prism
in the objective back aperture. Finally, another polarizer, called the analyzer,
transmits plane-polarized light from the objective that is able to interfere and
generate an image g(x). For ideal imaging, g(x) can be expressed as:

g(x) = 44°(1 — cos(Do f(x) + f1)), (18)

where Dof(x) = Vf(x) s = f(x + s) — f(x) is the first derivative of phase
shift taken along the shear axis. Therefore, the intensity of a DIC image is a
nonlinear function of the phase shift introduced by the object.

Linear Approximation The phase shift introduced by an object is related to
its optical path length distribution, which is the product of refractive index and
thickness distributions of the object relative to the surrounding medium. Since
most biological specimens have refractive indices that differ little from that of
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water (or the medium in which they are immersed), they introduce sufficiently
small phase shift differences. If a microscope is properly adjusted such that
fo =90°, the image that it produces can be approximated by

g(x) ~ 44*(1 + Dy f (), (19)

which is a linear function of the phase shift derivative.

4.2 Algebraic Imaging Model

Based on the previous derivation, we define the DIC imaging model as the first
derivative of the phase shift distribution f(x,y) along the shear angle 6. Specif-
ically, we define h(f(x,y)) = Dof(x,y) =~ f(z,y) * epsf(z,y), where epsf(z,y) is
an effective PSF, defined as a steerable first-derivative-of-Gaussian kernel:
x24y? 22442

epst(z,y) o« —xe” 2 cos(0) —ye” 2 sin(6). (20)
Rather than assuming fixed shear angles [5, 6], our definition can be adapted
to arbitrary angles according to particular microscopes. In practice, epst(z,y) is
discretized as an M x M matrix. We define the transfer matrix H such that

& M . M
(Hf)l = ZzepSf(i - ?7.7 - j)fwi—&-j—%,yﬁ-k—%' (21)
j=1k=1

5 Experiments

The proposed algorithms were implemented in ISO C++. Experiments were
carried out on a computer with a 2.53GHz Intel®Core™?2 Duo processor and 8
gigabytes of memory, running 64-bit Ubuntu Linux. The large-scale optimization
library MOSEK [11] was utilized as an SOCP solver.

5.1 Data
Our method has been validated on three different types of data:

1. Computer-simulated DIC images, including 12 simulated images of block
structures with sizes ranging from 162 to 10242. The images were gener-
ated according to the model given in Section 4.2, and were corrupted with
randomly-generated nonuniform bias and additive Gaussian noise.

2. Real DIC images of CNS stem cell populations, consisting of a sequence of
1795 images of central nervous system (CNS) stem cells. The images are
640 x 512 pixels each, captured every 5 minutes using a 12-bit Orca ER
(Hamamatsu) CCD camera mounted on a Zeiss Axiovert 135TV microscope
with a 40x, 1.3 NA oil-immersion DIC objective. 51 images were manually
segmented by an expert biologist, and utilized as the ground truth.

3. Real DIC images of human red blood cells, including three extremely chal-
lenging images from the Broad bioimage benchmark collection?, for which
ground-truth segmentations are available. The images are of size 800 x 600.

2 Available online at http://www.broad.mit.edu/bbbc.
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5.2 Parameter Settings

Our algorithms involve up to seven parameters. The common ones include the
bias order K, sparseness coefficient 3, DIC shear angle 6, and the DIC ker-
nel standard deviation o (Eq. 20). Parameters specific for SEMU include the
smoothness coefficient 7, the reweighting coefficient «, and the stopping thresh-
old e. TV-SOCP requires the noise factor 7 instead of ~.

We set K =2, 0 =1, and ¢ = 107% for all experiments. The shear angle
is defined to be zero along the three-o’clock direction, increasing clockwise. It is
usually multiples of 45°, and can be easily estimated by observation. Specifically,
we set 0 = 225° for the simulated DIC images and the images of red blood cells,
and we set § = 45° for the images of CNS stem cells. The parameters «, (3, 7,
and 7 were manually adjusted for the simulated images. For each dataset of cell
populations, the optimal parameters were determined using grid search based
on the receiver operating characteristic (ROC) of one image. The specific values
will be reported in the next section along with the results.

5.3 Results

Fig. 2 shows the preconditioning results for one of the simulated DIC images.
The pixel values of the input images was normalized to the range of [0, 1],
and was superposed with severe bias and zero-mean Gaussian noise of stan-
dard deviation 10~%. The figure shows that the image was effectively corrected
for bias, and the object was reconstructed with high fidelity. In particular, the
TV-SOCP algorithm, which is well-suited for regularizing “blocky” structures,
reconstructed the object near perfectly. The overall mean squared error (MSE)
of the reconstructed images in the dataset using SEMU and TV-SOCP are
1.95 x 1073£1.02 x 1074SD? and 4.48 x 107°+3.40 x 107%SD, respectively. The
running times of both algorithms are roughly linear with respect to the number
of pixels, as depicted in Fig. 2(f).

—SEMU
---Tv-SOCP

5 10
Number of Pixels ;45

Fig. 2. Preconditioning of simulated DIC images. (a) Ground truth. (b) Observed image.
(c) Bias-corrected image. (d) Preconditioned image with SEMU. (e) Preconditioned image
with TV-SOCP. (f) Running time of the preconditioning algorithms in logarithmic scale.

Next, we present the results for the two datasets of living cell populations.
Each of the datasets possesses unique challenges. The CNS stems cells have long,

3 8D stands for (one) standard deviation.
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thin processes that extend from the cell body, which sometimes interconnect
different cells (see Fig. 1(a)). Segmenting the processes is of significant biological
value, and yet extremely challenging. The images of the red blood cells are of
very low contrast, and contain various visual contaminations (see Fig. 1(c)).
Despite the various artifacts in the DIC images, the preconditioned images
became dramatically clean-cut. In particular, Fig. 3(a) shows an image of CNS
stem cells corresponding to Fig. 1(a), which was preconditioned using the SEMU
algorithm with parameters a = 0.2, § = 0.0005, and v = 0.5. The pixel inten-
sities are displayed in decibel scale to increase the visibility of thin structures.
The average processing time was 32.5 seconds/image. Preconditioning preserved
the fine details in the original images, especially the thin processes. Fig. 3(c)
shows an image of red blood cells corresponding to Fig. 1(c), which was pre-
conditioned using TV-SOCP with 8 = 0.05 and 7 = 9. The average processing
time was 102.9 minutes/image. Preconditioning removed the nonuniformity in
the original image, while preserving details of the internal structures of cells.

Fig. 3. Preconditioned images of cell populations. (a) CNS stem cells (brightness in decibel
scale). (c) Human red blood cells. (b) and (d) are color-coded thresholding outputs of (a)
and (c). Green stands for true positive, red for false positive, and blue for false negative.

The preconditioned images enabled us to achieve high-quality cell segmenta-
tion using global thresholding. To evaluate the performance of preconditioning
and not the separate problem of thresholding, we plotted the ROC curves for
each dataset in Fig. 4 by trying every possible threshold on the preconditioned
images. We use “positive” (or P) to refer to the set of pixels belonging to cells
according to the ground truth, and “negative” (or N) for the background pixels.
For pixels that are labeled as cells by thresholding, the subset that indeed be-
longs to cells is true positive (or TP), and the remaining subset is false positive
(or F'P). True positive rate and false positive rate are defined, respectively, as
TPR = |TP|/|P|, and FPR = |FP|/|N|. In addition, we define accuracy as
ACC = (|[TP|+|TN|)/(|P| + |N|), where TN = N — FP is the true negative.

As shown in Fig. 4(a), both SEMU and TV-SOCP achieved excellent perfor-
mances for preconditioning the images of CNS stem cells. The areas under the
ROC curves (AUC) for SEMU and TV-SOCP are 96.3% and 93.6%, respectively.
By visual inspection, we found that TV-SOCP was less capable in preserving
long, thin processes of CNS stem cells. It was also slightly more sensitive to pa-
rameter settings, i.e., the optimal settings vary according to cell density. Since
we used identical parameters to process all images, the performance was sub-
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ROC for CNS Stem Cells ROC for Red Blood Cells
1 = I
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= - - =TV-SOCP - - -TV-SOCP
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False Positive Rate False Positive Rate

Fig. 4. ROC curves for the proposed preconditioning algorithms.

optimal for some. Contrarily, SEMU was relatively insensitive to cell density
changes, which contributed to its superior performance. Excellent performance
was also achieved for images of red blood cells, for which we tested TV-SOCP
only. The ROC curve is shown in Fig. 4(b), and the corresponding AUC is 95.4%.

Finally, we segmented each image using the threshold value that maximizes
the segmentation accuracy for that image. The results that correspond to the
images shown in Fig. 1 are presented in Fig. 3 (b) and (d). Overall, we achieved
a 97.9% accuracy for segmenting CNS stem cells, and 93.4% for red blood cells.

6 Discussions and Conclusion

Alternative Noise Models The long-tailed Laplacian distribution is often
used for modeling impulsive noise. This model can be imposed by replacing
the relevant Lo norms in the objective functions by L; norms. Another impor-
tant noise model is the Poisson model, which is non-additive, and is well-suited
for describing quantum-limited noise. The Poisson noise model can be imposed
by using Csiszar’s I-divergence [12] as the data fidelity measure. A well-known
minimizer for the I-divergence is the Richardson-Lucy (RL) algorithm [13]. The
algorithm is nonnegativity-preserving under the assumption that all elements
of the transfer matrix and input images are nonnegative, which does not hold
for DIC microscopy. In contrast, the SEMU and TV-SOCP algorithms preserve
nonnegativity for arbitrary matrices and inputs.

Conclusion We proposed a general framework for preconditioning microscopy
images for facilitating segmentation. The approach reconstructs the intensities
of an image utilizing principles of microscopy image formation under realistic
assumptions. The reconstruction is performed by minimizing convex objective
functions with nonnegativity constraints. Two specific objective functions were
proposed and corresponding efficient algorithms, namely SEMU and TV-SOCP,
were presented. SEMU is well suited for images of small, smooth objects, while
TV-SOCP is better for relatively large, flat, and blocky objects. The precondi-
tioned images can be effortlessly segmented using thresholding. The algorithm
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achieved excellent performance on both simulated and real DIC images. It can
be straightforwardly extended to other imaging modalities or higher dimensions.
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