Skip to main content

Discovering Sparse Functional Brain Networks Using Group Replicator Dynamics (GRD)

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

Functional magnetic resonance imaging (fMRI) has become increasingly used for studying functional integration of the brain. However, the large inter-subject variability in functional connectivity renders detection of representative group networks very difficult. In this paper, we propose a new iterative method that we refer to as “group replicator dynamics,” for detecting sparse functional networks that are common across subjects within a group. The proposed method uses replicator dynamics, which we show to be equivalent to non-negative sparse PCA, and incorporates group information for identifying common networks across subjects with subject-specific weightings of the identified brain regions reflecting individual differences. Finding a separate network for each subject, as opposed to employing traditional averaging approaches, permits statistical testing of group significance. We validated our method on synthetic data, and applying it to real fMRI data detected task-specific group networks that conform well with prior neuroscience knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlosser, R.G., Wagner, G., Sauer, H.: Assessing the Working Memory Network: Studies with Functional Magnetic Resonance Imaging and Structural Equation Modeling. Neurosci. 139, 91–103 (2006)

    Article  Google Scholar 

  2. Au Duong, M.V., et al.: Modulation of Effective Connectivity inside the Working Memory Network in Patients at the Earliest Stage of Multiple Sclerosis. NeuroImage 24, 533–538 (2005)

    Article  Google Scholar 

  3. Addis, D.R., Moscovitch, M., McAndrews, M.P.: Consequences of Hippocampal Damage across the Autobiographical Memory Network in Left Temporal Lobe Epilepsy. Brain 130(9), 2327–2342 (2007)

    Article  Google Scholar 

  4. He, B.J., et al.: The Role of Impaired Neuronal Communication in Neurological Disorders. Curr. Opin. Neurol. 20, 655–660 (2007)

    Article  Google Scholar 

  5. Waites, A.B., et al.: Functional Connectivity Networks are Disrupted in Left Temporal Lobe Epilepsy. Ann. Neurol. 59, 335–343 (2006)

    Article  Google Scholar 

  6. Au Duong, M.V., et al.: Altered Functional Connectivity Related to White Matter Changes inside the Working Memory Network at the very Early Stage of MS. J. Cereb. Blood Flow Metab. 25, 1245–1253 (2005)

    Article  Google Scholar 

  7. Cader, S., et al.: Reduced Brain Functional Reserve and Altered Functional Connectivity in Patients with Multiple Sclerosis. Brain 129(2), 527–537 (2006)

    Article  Google Scholar 

  8. Friston, K.J., et al.: Functional Connectivity: The Principal Component Analysis of Large (PET) Data Sets. J. Cereb. Blood Flow Metab. 13, 5–14 (1993)

    Article  Google Scholar 

  9. Friston, K.J., Frith, C.D., Frackowiak, R.S.J.: Time-dependent Changes in Effective Connectivity Measured with PET. Hum. Brain Mapp. 1, 69–80 (1993)

    Article  Google Scholar 

  10. Biswal, B., et al.: Functional Connectivity in the Motor Cortex of Resting Human Brain using Echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)

    Article  Google Scholar 

  11. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100, 253–258 (2003)

    Article  Google Scholar 

  12. van de Ven, V.G., et al.: Functional Connectivity as Revealed by Spatial Independent Component Analysis of fMRI Measurements during Rest. Hum. Brain. Mapp. 22, 165–178 (2004)

    Article  Google Scholar 

  13. Goutte, C., et al.: On Clustering fMRI Time Series. NeuroImage 9(3), 298–310 (2002)

    Article  Google Scholar 

  14. Cordes, D., et al.: Hierarchical Clustering to Measure Connectivity in fMRI Resting State Data. Magn. Reson. Imaging. 20, 305–317 (2002)

    Article  Google Scholar 

  15. van den Heuvel, M., Mandl, R., Hulshoff Pol, H.: Normalized Cut Group Clustering of Resting-state fMRI Data. PLoS ONE 3(4), e2001 (2008)

    Google Scholar 

  16. McKeown, M.J., et al.: Analysis of fMRI Data by Blind Separation into Independent Spatial Components. Hum. Brain. Mapp. 6, 160–188 (1998)

    Article  Google Scholar 

  17. Bassett, B.S.: Small-World Brain Networks. The Neuroscientist 12(6), 512–523 (2006)

    Article  Google Scholar 

  18. Lohmann, G., Bohn, S.: Using Replicator Dynamics for Analyzing fMRI Data of the Human Brain. Trans. Med. Imaging. 21, 485–492 (2002)

    Article  Google Scholar 

  19. Neumann, J., et al.: Meta-analysis of Functional Imaging Data Using Replicator Dynamics. Hum. Brain Mapp. 25, 165–173 (2005)

    Article  Google Scholar 

  20. Neumann, J., et al.: The Parcellation of Cortical Areas Using Replicator Dynamics in fMRI. NeuroImage 32, 208–219 (2006)

    Article  Google Scholar 

  21. Ng, B., Abugharbieh, R., McKeown, M.J.: Inferring Functional Connectivity using Spatial Modulation Measures of fMRI Signals within Brain Regions of Interest. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Marco., pp. 275–572 (2008)

    Google Scholar 

  22. Zass, R., Shashua, A.: Nonnegative Sparse PCA. In: Advances in Neural Information Processing Systems, pp. 1561–1568 (2006)

    Google Scholar 

  23. Sigg, C.D., Buhmann, J.M.: Expectation Maximization for Sparse and Non-Negative PCA. In: 25th International Conference on Machine Learning, Helsinki, Finland (2008)

    Google Scholar 

  24. Zou, H., Hastie, T., Tibshirani, R.: Sparse Principal Component Analysis. J. Computational and Graphical Statistics 15(2), 265–286 (2004)

    Article  MathSciNet  Google Scholar 

  25. d’Aspremont, A., Bach, F., El Ghaoui, L.: Full Regularization Path for Sparse Principal Component Analysis. In: 24th International Conference on Machine Learning, vol. 227, pp. 177–184. ACM, New York (2007)

    Google Scholar 

  26. Calhoun, V.D., et al.: A Method for Making Group Inferences from Functional MRI Data using Independent Component Analysis. Hum. Brain. Mapp. 14, 140–151 (2001)

    Article  Google Scholar 

  27. Schmithorst, V.J., Holland, S.K.: Comparison of Three Methods for Generating Group Statistical Inferences from Independent Component Analysis of Functional Magnetic Resonance Imaging Data. J. Magn. Reson. Imaging. 19(3), 365–368 (2004)

    Article  Google Scholar 

  28. Bokde, A.L., et al.: Functional Interactions of the Inferior Frontal Cortex during the Processing of Words and Word-like Stimuli. Neuron 30, 609–617 (2001)

    Article  Google Scholar 

  29. Goncalves, M.S., et al.: Can Meaningful Effective Connectivities be Obtained between Auditory Cortical Regions. NeuroImage 14, 1353–1360 (2001)

    Article  Google Scholar 

  30. Uylings, H.B.M., et al.: Consequences of Large Interindividual Variability for Human Brain Atlases: Converging Macroscopical Imaging and Microscopical Neuroanatomy. Anat. Embryol. 210, 423–431 (2005)

    Article  Google Scholar 

  31. Samanez-Larkin, G.R., D’Esposito, M.: Group Comparisons: Imaging the Aging Brain. Soc. Cogn. Affect. Neurosci. 3(3), 290–297 (2008)

    Article  Google Scholar 

  32. Wilke, M., Schmithorst, V.J., Holland, S.K.: Assessment of Spatial Normalization of Whole-Brain Magnetic Resonance Images in Children. Hum. Brain Mapp. 17(1), 48–60 (2002)

    Article  Google Scholar 

  33. Ng, B., Abugharbieh, R., McKeown, M.J.: Adverse Effects of Template-based Warping on Spatial fMRI Analysis. In: SPIE Conference on Medical Imaging, Orlando, Florida (2009)

    Google Scholar 

  34. Marrelece, G., et al.: Partial Correlation for Functional Brain Interactivity Investigation in Functional MRI. NeuroImage 32, 228–237 (2006)

    Article  Google Scholar 

  35. Liao, R., Krolik, J.L., McKeown, M.J.: An Information-theoretic Criterion for Intrasubject Alignment of fMRI Time Series: Motion Corrected Independent Component Analysis. Trans. Med. Imaging. 24(1), 29–44 (2005)

    Article  Google Scholar 

  36. Talairach, J., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System - an Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988)

    Google Scholar 

  37. Schuster, P., Sigmund, K.: Replicator dynamics. J. Theor. Biol. 100, 533–538 (1983)

    Article  MathSciNet  Google Scholar 

  38. Tibshirani, R.: Regression Shrinkage and Selection via the LASSO. J. Royal Stat. Soc. series B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  39. Cates, J., et al.: Shape Modeling and Analysis with Entropy-Based Particle Systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  40. Oguz, I., et al.: Cortical Correspondence Using Entropy-based Particle Systems and Local Features. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Marco, pp. 1637–1640 (2008)

    Google Scholar 

  41. Verstynen, T., et al.: Ipsilateral Motor Cortex Activity during Unimanual Hand Movements Relates to Task Complexity. J. Neurophysiol. 93, 1209–1222 (2005)

    Article  Google Scholar 

  42. Haslinger, B., et al.: Event-related Functional Magnetic Resonance Imaging in Parkinson’s Disease before and after Levodopa. Brain 124(3), 558–570 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ng, B., Abugharbieh, R., McKeown, M.J. (2009). Discovering Sparse Functional Brain Networks Using Group Replicator Dynamics (GRD). In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics