Skip to main content

Coarse-Grained Modeling of the HIV–1 Protease Binding Mechanisms: II. Folding Inhibition

  • Conference paper
Book cover Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5488))

Abstract

Evolutionary and structurally conserved fragments 24–34 and 83–93 from each of the HIV–1 protease (HIV–1 PR) monomers constitute the critical components of the HIV–1 PR folding nucleus. It has been recently discovered that the peptide with the amino acid sequence NIIGRNLLTQI identical to the corresponding segment 83–93 of the HIV–1 PR monomer, can inhibit folding of HIV–1 PR. We have previously shown that this peptide can form stable complexes with the folded HIV–1 PR monomer by targeting the conserved segment 24–34 of the folding nucleus (folding inhibition) and by interacting with the antiparallel termini β–sheet region (dimerization inhibition). In this follow-up study, we propose a generalized, coarse–grained model of the folding inhibition based simulations with an ensemble of both folded and partially unfolded HIV–1 PR conformational states. Using a dynamic equilibrium between low–energy complexes formed with the folded and partially unfolded HIV–1 PR monomers, the NIIGRNLLTQI peptide may effectively intervene with the HIV–1 PR folding and dimerization. The performed microscopic analysis reconciles the experimental and computational results and rationalizes the molecular basis of folding inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohl, N.E., Emini, E.A., Schleif, W.A., Davis, L.J., Heimbach, J.C., Dixon, R.A., Scolnick, E.M., Sigal, I.S.: Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U. S. A. 85, 4686–4690 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wlodawer, A., Vondrasek, J.: Inhibitors of HIV–1 protease: A major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27, 249–284 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Vondrasek, J., Wlodawer, A.: HIVdb: a database of the structures of human immunodeficiency virus protease. Proteins 49, 429–431 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Martin, P., Vickrey, J.F., Proteasa, G., Jimenez, Y.L., Wawrzak, Z., Winters, M.A., Merigan, T.C., Kovari, L.C.: “Wide-open” 1.3 A structure of a multidrug-resistant HIV–1 protease as a drug target. Structure 13, 1887–1895 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Ishima, R., Freedberg, D.I., Wang, Y.X., Loui, J.M., Torchia, D.A.: Flap opening and dimer-interface flexibility in the free and inhibitor bound HIV protease and their implications for function. Structure 7, 1047–1055 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Freedberg, D.I., Ishima, R., Jacob, J., Wang, Y.X., Kustanovich, I., Louis, J.M., Torchia, D.A.: Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 11, 221–232 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Katoh, E., Louis, J.M., Yamazaki, T., Gronenborn, A.M., Torchia, D.A., Ishima, R.: A solution NMR study of the binding kinetics and the internal dynamics of an HIV–1 protease-substrate complex. Protein Sci. 12, 1376–1385 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott, W.R., Schiffer, C.A.: Curling of flap tips in HIV–1 protease as a mechanism for substrate entry and tolerance of drug resistance. Structure 8, 1259–1265 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Kurt, N., Scott, W.R., Schiffer, C.A., Haliloglu, T.: Cooperative fluctuations of unliganded and substrate-bound HIV–1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations. Proteins 51, 409–422 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Perryman, A.L., Lin, J.H., McCammon, J.A.: HIV–1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci. 13, 1108–1123 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perryman, A.L., Lin, J.H., McCammon, J.A.: Restrained molecular dynamics simulations of HIV–1 protease: the first step in validating a new target for drug design. Biopolymers 82, 272–284 (2007)

    Article  Google Scholar 

  12. Hornak, V., Okur, A., Rizzo, R.C., Simmerling, C.: HIV–1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. J. Am. Chem. Soc. 128, 2812–2813 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hornak, V., Okur, A., Rizzo, R.C., Simmerling, C.: HIV–1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc. Natl. Acad. Sci. U S A 103, 915–920 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wallqvist, A., Smythers, G., Covell, G.: A cooperative folding unit in HIV–1 protease. Implications for protein stability and occurrence of drug-induced mutations. Protein Eng. 11, 999–1005 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Bhavesh, N.S., Sinha, R., Mohan, P.M., Hosur, R.V.: NMR elucidation of early folding hierarchy in HIV–1 protease. J. Biol. Chem. 278, 19980–19985 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee, A., Hosur, R.V.: Following autolysis in proteases by NMR: insights into multiple unfolding pathways and mutational plasticities. Biophys. Chem. 123, 1–10 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Louis, J.M., Wondrak, E.M., Kimmel, A.R., Wingfield, P.T., Nashed, N.T.: Proteolytic processing of HIV–1 protease precursor, kinetics and mechanism. J. Biol. Chem. 274, 23437–23442 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Louis, J.M., Clore, G.M., Gronenborn, A.M.: Autoprocessing of HIV–1 protease is tightly coupled to protein folding. Nat. Struct. Biol. 6, 868–875 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Chatterjee, A., Mridula, P., Mishra, R.K., Mittal, R., Hosur: Folding regulates autoprocessing of HIV–1 protease precursor. J. Biol. Chem. 280, 11369–11378 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Ishima, R., Ghirlando, R., Tozser, J., Gronenborn, A.M., Torchia, D.A., Louis, J.M.: Folded monomer of HIV–1 protease. J. Biol. Chem. 276, 49110–49116 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Louis, J.M., Ishima, R., Nesheiwat, I., Pannell, L.K., Lynch, S.M., Torchia, D.A., Gronenborn, A.M.: Revisiting monomeric HIV–1 protease. Characterization and redesign for improved properties. J. Biol. Chem. 278, 6085–6092 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Ishima, R., Torchia, D.A., Lynch, S.M., Gronenborn, A.M., Louis, J.M.: Solution structure of the mature HIV–1 protease monomer: insight into the tertiary fold and stability of a precursor. J. Biol. Chem. 278, 43311–43319 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Ishima, R., Torchia, D.A., Louis, J.M.: Mutational and structural studies aimed at characterizing the monomer of HIV–1 protease and its precursor. J. Biol. Chem. 282, 17190–17199 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Bannwarth, L., Reboud-Ravaux, M.: An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface. Biochem. Soc. Trans. 35, 551–554 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Broglia, R.A., Provasi, D., Vasile, F., Ottolina, G., Longhi, R., Tiana, G.: A folding inhibitor of the HIV-1 protease. Proteins 62, 928–933 (2005)

    Article  Google Scholar 

  26. Broglia, R.A., Tiana, G., Sutto, L., Provasi, D., Simona, F.: Design of HIV-1-PR inhibitors that do not create resistance: blocking the folding of single monomers. Protein Sci. 14, 2668–2681 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonomi, M.F., Gervasio, L., Tiana, G., Provasi, D., Broglia, R.A., Parrinello, M.: Insight into the folding inhibition of the HIV-1 protease by a small peptide. Biophys. J. 93, 2813–2821 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verkhivker, G., Tiana, G., Camilloni, C., Provasi, D., Broglia, R.A.: Atomistic simulations of the HIV-1 protease folding inhibition. Biophys. J. 95, 550–562 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids R. 28, 235–242 (2000)

    Article  CAS  Google Scholar 

  30. Christen, M., Hunenberger, P.H., Bakowies, D., Baron, R., Burgi, R., Geerke, D.P., Heinz, T.N., Kastenholz, M.A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., van Gunsteren, W.F.: The GROMOS software for biomolecular simulation: GROMOS 2005. J. Comput. Chem. 26, 1719–1751 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Verkhivker, G.M.: Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity. Proteins 66, 912–929 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Verkhivker, G.M.: In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures. Biopolymers 85, 333–348 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. Cornell, W.D., Cieplak, P., Bayly, C.L., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for simulation of proteins, nucleic acids, and organic molecules. J. Amer. Chem. Soc. 117, 5179–5197 (1995)

    Article  CAS  Google Scholar 

  34. Stouten, P.F.W., Frömmel, C., Nakamura, H., Sander, C.: An effective solvation term based on atomic occupancies for use in protein simulations. Mol. Simul. 10, 97–120 (1993)

    Article  CAS  Google Scholar 

  35. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)

    Article  CAS  Google Scholar 

  36. Shoemaker, B.A., Portman, J.J., Wolynes, P.G.: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. U S A 97, 8868–8873 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verkhivker, G.M. (2009). Coarse-Grained Modeling of the HIV–1 Protease Binding Mechanisms: II. Folding Inhibition. In: Masulli, F., Tagliaferri, R., Verkhivker, G.M. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2008. Lecture Notes in Computer Science(), vol 5488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02504-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02504-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02503-7

  • Online ISBN: 978-3-642-02504-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics