Skip to main content

Timbre Perception of Sounds from Impacted Materials: Behavioral, Electrophysiological and Acoustic Approaches

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5493))

Abstract

In this paper, timbre perception of sounds from 3 different impacted materials (Wood, Metal and Glass) was examined using a categorization task. Natural sounds were recorded, analyzed and resynthesized and a sound morphing process was applied to construct sound continua between different materials. Participants were asked to categorize the sounds as Wood, Metal or Glass. Typical sounds for each category were defined on the basis of the behavioral data. The temporal dynamics of the neural processes involved in the categorization task were then examined for typical sounds by measuring the changes in brain electrical activity (Event-Related brain Potentials, ERPs). Analysis of the ERP data revealed that the processing of Metal sounds differed significantly from Glass and Wood sounds as early as 150 ms and up to 700 ms. The association of behavioral, electrophysiological and acoustic data allowed us to investigate material categorization: the importance of damping was confirmed and additionally, the relevancy of spectral content of sounds was discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michaels, C.F., Carello, C.: Direct perception. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

  2. Grey, J.M.: Multidimensional perceptual scaling of musical timbres. Journal of the Acoustical Society of America 61(5), 1270–1277 (1977)

    Article  Google Scholar 

  3. Krumhansl, C.L.: Why is musical timbre so hard to understand. In: Structure and perception of electroacoustic sound and music. Elsevier, Amsterdam (1989)

    Google Scholar 

  4. Krimphoff, J., McAdams, S., Winsberg, S.: Caractérisation du timbre des sons complexes. ii: Analyses acoustiques et quantification psychophysique. Journal de Physique 4(C5), 625–628 (1994)

    Google Scholar 

  5. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychological Research 58, 177–192 (1995)

    Article  Google Scholar 

  6. von Helmholtz, H.L.F.: On the sensations of tone as the physiological basis for the theory of music, 2nd edn (1877)

    Google Scholar 

  7. Sethares, W.A.: Local consonance and the relationship between timbre and scale. Journal of the Acoustical Society of America 94(3), 1218–1228 (1993)

    Article  Google Scholar 

  8. Vassilakis, P.N.: Selected Reports in Ethnomusicology (Perspectives in Systematic Musicology). In: Auditory roughness as a means of musical expression, Department of Ethnomusicology, University of California, vol. 12, pp. 119–144 (2005)

    Google Scholar 

  9. Freed, D.J.: Auditory correlates of perceived mallet hardness for a set of recorded percussive events. Journal of the Acoustical Society America 87(1), 311–322 (1990)

    Article  Google Scholar 

  10. Tucker, S., Brown, G.J.: Investigating the perception of the size, shape and material of damped and free vibrating plates. Technical Report CS-02-10, Université de Sheffield, Department of Computer Science (2002)

    Google Scholar 

  11. van den Doel, K., Pai, D.K.: The sounds of physical shapes. Presence 7(4), 382–395 (1998)

    Article  Google Scholar 

  12. Kunkler-Peck, A.J., Turvey, M.T.: Hearing shape. J. of Experimental Psychology: Human Perception and Performance 26(1), 279–294 (2000)

    Google Scholar 

  13. Carello, C., Anderson, K.L., Kunkler-Peck, A.J.: Perception of object length by sound. Psychological Science 9(3), 211–214 (1998)

    Article  Google Scholar 

  14. Lutfi, R.A., Oh, E.L.: Auditory discrimination of material changes in a struck-clamped bar. Journal of the Acoustical Society of America 102(6), 3647–3656 (1997)

    Article  Google Scholar 

  15. Rocchesso, D., Fontana, F.: The sounding object (2003)

    Google Scholar 

  16. Lakatos, S., McAdams, S., Caussé, R.: The representation of auditory source characteristics: simple geometric form. Perception & Psychophysics 59, 1180–1190 (1997)

    Article  Google Scholar 

  17. Wildes, R.P., Richards, W.A.: Recovering material properties from sound. In: Richards, W.A. (ed.), ch. 25, pp. 356–363. MIT Press, Cambridge (1988)

    Google Scholar 

  18. Gaver, W.W.: How do we hear in the world? explorations of ecological acoustics. Ecological Psychology 5(4), 285–313 (1993)

    Article  MathSciNet  Google Scholar 

  19. Klatzky, R.L., Pai, D.K., Krotkov, E.P.: Perception of material from contact sounds. Presence: Teleoperators and Virtual Environments 9(4), 399–410 (2000)

    Article  Google Scholar 

  20. Giordano, B.L., McAdams, S.: Material identification of real impact sounds: Effects of size variation in steel, wood, and plexiglass plates. Journal of the Acoustical Society of America 119(2), 1171–1181 (2006)

    Article  Google Scholar 

  21. Chaigne, A., Lambourg, C.: Time-domain simulation of damped impacted plates: I. theory and experiments. Journal of the Acoustical Society of America 109(4), 1422–1432 (2001)

    Article  Google Scholar 

  22. Valette, C., Cuesta, C.: Mécanique de la corde vibrante (Mechanics of vibrating string). Traité des Nouvelles Technologies, série Mécanique. Hermès (1993)

    Google Scholar 

  23. Risset, J.-C., Wessel, D.L.: Exploration of timbre by analysis and synthesis. In: The psychology of music, 2nd edn. Cognition and Perception, pp. 113–169. Academic Press, London (1999)

    Chapter  Google Scholar 

  24. Donders, F.C.: On the speed of mental processes. Acta Psychol. 30, 412–431 (1969)

    Article  Google Scholar 

  25. Sternberg, S.: Memory-scanning: mental processes revealed by reaction-time experiments. American Scientist 57(4), 421–457 (1969)

    Google Scholar 

  26. Rugg, M.D., Coles, M.G.H.: The ERP and Cognitive Psychology: Conceptual issues. In: Electrophysiology of mind. Event-related brain potentials and cognition. Oxford Psychology, vol. 25, pp. 27–39. Oxford University Press, Oxford (1995)

    Google Scholar 

  27. Eggermont, J.J., Ponton, C.W.: The neurophysiology of auditory perception: from single-units to evoked potentials. Audiology & Neuro-Otology 7, 71–99 (2002)

    Article  Google Scholar 

  28. Näätänen, R.: Attention and brain function. Erlbaum, Hillsdale, NJ (1992)

    Google Scholar 

  29. Goydke, K.N., Altenmuller, E., Moller, J., Munte, J.: Changes in emotional tones and instrumental timbre are reflected by the mismatch negativity. Cognitive Brain Research 21, 351–359 (2004)

    Article  Google Scholar 

  30. Tervaniemi, M.: Musical sound processing in the human brain: evidence from electric and magnetic recordings. Annals of the New York Academy of Sciences 930, 259–272 (2001)

    Article  Google Scholar 

  31. Tervaniemi, M., Winkler, I., Näätänen, R.: Pre-attentive categorization of sounds by timbre as revealed by event-related potentials. NeuroReport 8, 2571–2574 (1997)

    Article  Google Scholar 

  32. Toiviainen, P., Tervaniemi, M., Louhivuori, J., Saher, M., Huotilainen, M., Näätänen, R.: Timbre similarity: convergence of neural, behavioral, and computational approaches. Music Perception 16, 223–241 (1998)

    Article  Google Scholar 

  33. Caclin, A., Brattico, E., Tervaniemi, M., Näätänen, R., Morlet, D., Giard, M.-H., McAdams, S.: Separate neural processing of timbre dimensions in auditory sensory memory. Journal of Cognitive Neuroscience 18(12), 1959–1972 (2006)

    Article  Google Scholar 

  34. De Baene, W., Vandierendonck, A., Leman, M., Widmann, A., Tervaniemi, M.: Roughness perception in sounds: behavioral and erp evidence. Biological Psychology 67, 319–330 (2004)

    Article  Google Scholar 

  35. Meyer, M., Baumann, S., Jancke, L.: Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. NeuroImage 32, 1510–1523 (2006)

    Article  Google Scholar 

  36. Shahin, A., Bosnyak, D.J., Trainor, L.J., Roberts, L.E.: Enhancement of neuroplastic p2 and n1c auditory evoked potentials in musicians. The Journal of Neuroscience 23(12), 5545–5552 (2003)

    Google Scholar 

  37. Shahin, A., Roberts, L.E., Pantev, C., Trainor, L.J., Ross, B.: Modulation of p2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport 16(16), 1781–1785 (2005)

    Article  Google Scholar 

  38. Pascual-Marqui, R.D., Michel, C.M., Lehmann, D.: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology 18, 49–65 (1994)

    Article  Google Scholar 

  39. Sutton, S., Braren, M., Zubin, J., John, E.R.: Evoked potential correlates of stimulus uncertainty. Science 150, 1187–1188 (1965)

    Article  Google Scholar 

  40. Donchin, E., Coles, M.G.H.: Is the p300 component a manifestation of context updating? Behavioral and Brain Sciences 11, 357–374 (1988)

    Article  Google Scholar 

  41. Ritter, W., Simson, R., Vaughan, H.G.: Event-related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology 20, 168–179 (1983)

    Article  Google Scholar 

  42. Aramaki, M., Kronland-Martinet, R.: Analysis-synthesis of impact sounds by real-time dynamic filtering. IEEE Transactions on Audio, Speech, and Language Processing 14(2), 695–705 (2006)

    Article  Google Scholar 

  43. Parncutt, R.: Harmony - A Psychoacoustical Approach. Springer, Heidelberg (1989)

    Book  Google Scholar 

  44. Aramaki, M., Baillères, H., Brancheriau, L., Kronland-Martinet, R., Ystad, S.: Sound quality assessment of wood for xylophone bars. Journal of the Acoustical Society of America 121(4), 2407–2420 (2007)

    Article  Google Scholar 

  45. Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology 10, 371–375 (1958)

    Google Scholar 

  46. Delorme, A., Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial eeg dynamics. Journal of Neuroscience Methods 134, 9–21 (2004)

    Article  Google Scholar 

  47. Beauchamp, J.W.: Synthesis by spectral amplitude and “brightness” matching of analyzed musical instrument tones. Journal of the Audio Engineering Society 30(6), 396–406 (1982)

    Google Scholar 

  48. Marozeau, J., de Cheveigné, A., McAdams, S., Winsberg, S.: The dependency of timbre on fundamental frequency. Journal of the Acoustical Society of America 114, 2946–2957 (2003)

    Article  Google Scholar 

  49. McAdams, S.: Perspectives on the contribution of timbre to musical structure. Computer Music Journal 23(3), 85–102 (1999)

    Article  Google Scholar 

  50. Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America 38, 548–560 (1965)

    Article  Google Scholar 

  51. Terhardt, E.: On the perception of periodic sound fluctuations (roughness). Acustica 30(4), 201–213 (1974)

    Google Scholar 

  52. Vassilakis, P.N.: Sra: A web-based research tool for spectral and roughness analysis of sound signals. In: Proceedings of the 4th Sound and Music Computing (SMC) Conference, pp. 319–325 (2007)

    Google Scholar 

  53. Aramaki, M., Brancheriau, L., Kronland-Martinet, R., Ystad, S.: Computer Music Modeling and Retrieval - Genesis of Meaning of Sound and Music. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds.) Perception of impacted materials: sound retrieval and synthesis control perspectives. LNCS, vol. 5493, pp. 134–146. Springer, Heidelberg (2009)

    Google Scholar 

  54. Hyde, M.: The n1 response and its applications. Audiology & Neuro-Otology 2, 281–307 (1997)

    Article  Google Scholar 

  55. Gordon, J.W.: The perceptual attack time of musical tones. Journal of Acoustical Society of America 82(1), 88–105 (1987)

    Article  Google Scholar 

  56. Kuriki, S., Kanda, S., Hirata, Y.: Effects of musical experience on different components of meg responses elicited by sequential piano-tones and chords. The Journal of Neuroscience 26(15), 4046–4053 (2006)

    Article  Google Scholar 

  57. Kushnerenko, E., Ceponiene, R., Fellman, V., Huotilainen, M., Winkler, I.: Event-related potential correlates of sound duration: similar pattern from birth to adulthood. NeuroReport 12(17), 3777–3781 (2001)

    Article  Google Scholar 

  58. Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., Winter, A.L.: Contingent negative variation: an electrical sign of sensorimotor association and expectancy in the human brain. Nature 230, 380–384 (1964)

    Article  Google Scholar 

  59. King, J., Kutas, M.: Who did what and when? using word- and clause-level erps to monitor working memory usage in reading. Journal of Cognitive Neuroscience 7(3), 376–395 (1995)

    Article  Google Scholar 

  60. Alain, C., Schuler, B.M., McDonald, K.L.: Neural activity associated with distinguishing concurrent auditory objects. Journal of Acoustical Society of America 111(2), 990–995 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aramaki, M., Besson, M., Kronland-Martinet, R., Ystad, S. (2009). Timbre Perception of Sounds from Impacted Materials: Behavioral, Electrophysiological and Acoustic Approaches. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds) Computer Music Modeling and Retrieval. Genesis of Meaning in Sound and Music. CMMR 2008. Lecture Notes in Computer Science, vol 5493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02518-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02518-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02517-4

  • Online ISBN: 978-3-642-02518-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics