
M.J. Smith and G. Salvendy (Eds.): Human Interface, Part I, HCII 2009, LNCS 5617, pp. 243–252, 2009.
© Springer-Verlag Berlin Heidelberg 2009

From Research to Product: Integrating Treemaps into
Enterprise Software

Joseph H. Goldberg, Jonathan I. Helfman, and John Beresniewicz

Oracle USA, 500 Oracle Parkway, MS 2op2, Redwood Shores, CA USA
{Joe.Goldberg,Jon.Helfman,John.Beresniewicz}@oracle.com

Abstract. The difficult journey of introducing a new treemap visualization into
enterprise software products is described, highlighting interactions among a re-
search team, product teams, and management. Successful product integration
ultimately required multiple iterations of prototyping, review, and redirection,
as products were cancelled and modified. Several lessons learned are provided,
including the need to build flexible and generic prototypes, cultivate champi-
ons, and be tenacious.

1 Introduction

Introducing new user interface (UI) ideas into products at large enterprise software
companies can be challenging. Development teams, product teams, executives, and
others often view innovation as risky and therefore sometimes resist proposed
changes to successful, money-making products. This resistance usually stems from a
lack of understanding about the trade-offs between the risks of innovation and the
benefits of increased customer satisfaction with associated sales revenues and profits.
However, communication between research and product teams may be poor, and
corporate methods or processes for introducing innovation may be undefined.

This paper highlights the journey of a treemap visualization concept into enterprise
software products at Oracle. The focus is on the interplay between a corporate UI
research group and product teams. Design decisions were made at each step, and
several rounds of prototype development were required. Lessons learned from this
experience are provided to facilitate streamlining the adoption of innovative visualiza-
tions and other technologies.

1.1 Treemap

A treemap is a graph that shows hierarchical datasets as nested rectangles, with areas
of rectangles conveying a quantitative (or numerical) dimension. The color of the
rectangles may also represent an additional data dimension [2]. Treemaps gained
significant popularity following Smart Money’s introduction of the Map of the Mar-
ket (Fig. 1, http://www.smartmoney.com/map-of-the-market/), which enables a user
to simultaneously monitor hundreds of stock prices [3].

Oracle has a UI research group that investigates new concepts and interaction tech-
niques. Several Oracle product teams expressed interest in treemaps following an

244 J.H. Goldberg, J.I. Helfman, and J. Beresniewicz

early-2004 UI research group proposal. The research group began collecting treemap
requirements for enterprise users and obtained demo treemaps from commercial ven-
dors, to determine which commercial version best satisfied these requirements. In
early 2005, the research group conducted a usability evaluation in which 10 network
administrators used treemaps and hierarchical tables to monitor transactional data.
The administrators completed their tasks more slowly when using a larger dataset
than when using a smaller dataset, and this difference was twice as great when the
administrators used tables than when they used treemaps. The network administrators
also missed more information when it was presented in tables rather than in treemaps.
Subjective impressions strongly favored treemaps over tables for completing network
administration tasks [1].

Fig. 1. Smart Money Map of the Market, with area indicating relative market capitalization and
color indicating stock price movement for the current day. A two-level hierarchy is shown, with
individual stocks grouped by sector. (Used with permission. To license Tree Map software
from SmartMoney, email licensinginfo@Smartmoney.com.)

1.2 Interactivity and Enterprise Technology Decisions

User interface innovation, such as a new treemap, carries many potential design trade-
offs in areas such as interaction capabilities and choice of technology platforms.
Product requirements and results from user performance testing should ultimately
determine these design decisions. Treemap technology decisions include issues such
as thick versus thin client, and client- versus server-based data aggregation and ren-
dering. In addition, enterprise software must support large and complex queries on
both relational and OLAP databases, providing challenges for applications with user
interfaces that include interactive data visualizations.

User experience can differ markedly among different treemap designs with differ-
ent levels of interactivity. At one extreme, a treemap may be a static image, with or
without (1) tooltip feedback, (2) user-defined configuration of data to color and area,

 From Research to Product: Integrating Treemaps into Enterprise Software 245

and (3) clickable master/detail drilling. Static treemaps are intended for more casual
or occasional users, who primarily consume information. At the other extreme, a
treemap may be a dynamic view with or without (1) in-place drilling, (2) hierarchical,
area and/or color filtering, and (3) automated updating. Dynamic treemaps are in-
tended for more advanced enterprise users such as analysts or administrators.

A visualization such as an enterprise treemap must be both vertically and horizon-
tally scalable. Vertical scalability refers to the ability to investigate deep data hierar-
chies that may pivot about multiple dimensions. Horizontal scalability refers to the
ability to see and compare many objects (e.g., databases) within a single view.
Treemaps can be used to navigate, filter, and show deep, multidimensional data.
Their space-filling property enables a user to simultaneously view, prioritize, and
interact with hundreds or even thousands of objects at typical screen sizes.

Enterprise applications are developed using a combination of standard components
and custom code. A standard visualization component is always a compromise that
attempts to implement a majority of the highest-priority requirements from the prod-
uct teams that will use it. Ultimately, the design of an enterprise visualization compo-
nent such as a treemap must address significant design trade-offs that are specific to
applications. Dynamic updates and interactive features may be sacrificed in support
of faster performance. The need for real-time filtering may supplant certain perform-
ance requirements in some applications. Two versions of a component may be re-
quired in some cases: one that implements basic functionality very efficiently and
another that implements sophisticated features but requires more memory. These
decisions can also be complicated by difficulties in obtaining useful and accurate
information from multiple product teams about how they would prioritize require-
ments for a visualization component with which they may have little experience.

The treemap discussed here is not yet a standard component in any of Oracle’s de-
velopment toolkits. The entry path into product was through custom-coded compo-
nents. While product integration is easier using standard components, product teams
may be willing to include nonstandard components because their end users can bene-
fit from customized functionality.

2 Oracle Business Intelligence: First Treemap Attempt

In early 2005, the Oracle team that developed a product to create ad hoc queries and
business intelligence reports was interested in providing treemaps as data visualiza-
tions to their business analyst end users. The team wanted the treemap in their next
release, which was to include both a thick-client product for creating and editing re-
ports, Workbook Builder, and a thin-client product for reading reports, Report Center.
Intended users of the thick-client product had different interaction requirements and
were more technically oriented than intended users of the thin-client product. Work-
book Builder users were expected to choose and configure graphs for reports, while
Report Center users were expected to mostly read reports that had been prepared for
them. Report Center requirements included minimal interactive capabilities, while
Workbook Builder had extensive and dynamic interaction, including in-place drilling
and interactive filtering.

246 J.H. Goldberg, J.I. Helfman, and J. Beresniewicz

Differences in data storage between the thick- and thin-client treemaps dictate im-
portant architectural differences in treemap layout and rendering. As an example,
layout and cell color assignments should logically run on the server because client-
side data storage is discouraged in thin-client treemaps. From a usability perspective,
this can cause a frustrating and slow visual refresh for interactive tasks such as filter-
ing data.

The UI research group worked with both product teams to design a flexible tree-
map component with Java classes to support a rich API that could be used to load
hierarchical data into treemaps, compute layouts, and associate treemap cells with
colors. The component was designed to render to Java (Workbook Builder) or
HTML/JavaScript (Report Center). The product teams and their management ap-
proved the design.

The research group subsequently helped to integrate the interactive Java applet
treemap and the HTML/JavaScript treemap into Workbook Builder (Fig. 2) and Re-
port Center, respectively. The Java applet implemented business intelligence re-
quirements to control the visibility, coloring, and text labeling of the treemap cells.

Fig. 2. Workbook Builder screen, merging a flexible hierarchical table with a treemap separated
by a vertical splitter bar. Selecting a cell on either component highlights the same data on the
other component. Dragging and dropping the table’s row and column headers pivots and reag-
gregates the data, causing the treemap to recalculate its layout and re-render.

It had deep interaction, enabling end users to select dimensions, filter dimensions
based upon color and area, customize graphical notifications, and trim the depth of the
visible hierarchy. The Report Center treemap cells were implemented as HTML ele-
ments with cell borders, background colors, and textual content specified by using
cascading stylesheets. JavaScript code was developed to provide a tooltip and to
handle selection events on cells.

In late 2005, Oracle purchased Siebel Systems, which had a competing ad hoc re-
porting product, and both Workbook Builder and Report Center were cancelled. In

 From Research to Product: Integrating Treemaps into Enterprise Software 247

response, the UI research group worked with both product teams to amend and repri-
oritize the treemap requirements. In the first half of 2006, the research group devel-
oped a JavaScript treemap that used animation while zooming and helped define
dialogs for configuring treemaps. The product teams were then reorganized and de-
velopment priorities changed. The thin-client code was to be integrated into a Siebel
product, but later fell out of scope.

Although the treemap was not successfully integrated into a product at this point,
the extensively featured thick-client prototype completed by the UI research group
provided a flexible testbed for other teams exploring the use of treemaps in their
products. One of these teams was Oracle Enterprise Manager.

3 Enterprise Manager: Second Attempt

Oracle’s Enterprise Manager (EM) is a software tool through which IT administrators
can monitor and manage the availability and performance of IT infrastructure, appli-
cations, and databases. EM is a complex, three-tier Java application comprising thou-
sands of pages and hundreds of use cases.

Fig. 3. Enterprise Manager 10g Database Top Activity page. The top chart graphs DB Time
over time as a set of stacked line charts by wait class, with preassigned colors for each class.
The bars below show the highest accumulators of DB Time by other dimensions within the
user-draggable highlighted area in the upper chart.

The end users are highly technical and frequently select and filter data dimensions
as they diagnose system issues. Release 10g of the Oracle database introduced the
concept and instrumentation for measuring Database Time (DB Time) as the primary
internal measure of database activity and performance. Stripchart visualizations of
DB Time were included in the user interface to support database tuning and perform-
ance diagnosis, where an end user identifies and reduces the largest sources of DB

248 J.H. Goldberg, J.I. Helfman, and J. Beresniewicz

Time accumulation. In these screens, larger amounts of DB Time display with a larger
visual footprint, attracting user attention for subsequent drill-down analysis. This
usage metaphor (“click on the big stuff”) is easily explained to and adopted by users.
Two important visualization properties of DB Time are its inherent multidimensional-
ity (some 30 dimensions of potential interest are instrumented and captured) and scal-
ability within dimension (dimensions could potentially include thousands of values).

The EM Top Activity page (Fig. 3) has been both commercially successful and
popular with users. The page facilitates interactive diagnosis, enabling the user to see
unusual accumulations of DB Time then isolate specific time periods for details. The
details show ranked contributors to DB Time during the selected time period as color-
coded stacked bars for correlation with the main chart. User-selectable dimensions
and navigation drill-down to dimension-specific tuning tools are also available.

3.1 Prototyping DB Time Treemaps

EM product architects started exploring treemaps for visualizing DB Time after read-
ing the 2004 UI Research group report. The Top Activity page displays two inde-
pendent dimensions as lists, but requires scrolling to see all elements. The ability of a
treemap to integrate different dimensions and quickly identify large DB Time accu-
mulations would combine these lists into a single nonscrolling view. The research
group’s Java treemap provided a testbed to conduct visualization experiments of pro-
duction DB Time data (Fig. 4).

The Java applet enabled users to explore different dimensional hierarchies, color-
ing schemes, and simulated real-time updates. Several diagnostically useful treemaps

Fig. 4. Java treemap experiment showing breakdown of DB Time spent in an Oracle database
using the INSTANCE_NAME>WAITCLASS>SQLID hierarchy. The visible depth level is set
to show the instance name and wait class but not SQLID. Sliders enable filtering by low/high
color values, large/small areas, and visible depth level.

 From Research to Product: Integrating Treemaps into Enterprise Software 249

using DB Time for cell size were generated and a presentation of results was circu-
lated, resulting in significant interest.

Extending from this initial enthusiasm, a prototype treemap viewer was developed
in early 2007. Preconfigured sets of DB Time dimensions were loaded into the tree-
map using predefined queries in order to demonstrate its usefulness for performance
analysis on production databases. After starting the prototype, further work would
require formal project staffing and resources. Despite substantial interest in the tree-
map, the existing EM Top Activity page was considered more than adequate for users.
In addition, the availability of resources to integrate and maintain the treemap was
unclear. The potential benefits of a new treemap view didn’t appear to outweigh its
potential costs. At this time, treemaps were considered an interesting research area,
but not cost-justified for production development within EM.

3.2 DBA Console: A New Opportunity

A decision was made in early 2008 to have administrator-specific login pages for the
next version of EM, including a homepage console for database administrators
(DBAs) that would summarize database performance across the enterprise. A pro-
posal was developed that showed each database as a treemap cell, sized by DB Time
accumulation. This treemap (“Enterprise Loadmap”) would be the centerpiece
of the DBA console page, which would also show a list of databases that are “down”
(not bearing load and thus not appearing in the treemap) as well as a list of recent
database incidents. The treemap would be implemented as an Adobe Flex component
to ease the integration process with the existing product, which already included other
Flex components.

Fig. 5. Enterprise Database Loadmap, a treemap showing DB Time accumulation across an
enterprise. Cell size is proportional to database load, and color indicates dominant time com-
ponent: CPU, I/O, or wait. Cell text shows recent diagnostic findings, and cell click-through
navigates to the Top Activity page (Fig. 3) for that cell.

250 J.H. Goldberg, J.I. Helfman, and J. Beresniewicz

Whereas the earlier treemap DB Time experiments focused on analyzing how time
accumulates within a single database, the console Enterprise DB Loadmap (Fig. 5)
shows where DB Time is accumulating across an entire enterprise of databases. Data-
bases accumulating more DB Time have visually larger cells and this real estate is
used to display database-specific diagnostic information. Busier databases are usually
more important to watch, so the visualization favors this natural prioritization. Cell
color indicates the dominant component of DB Time (CPU, I/O, or wait). The tree-
map’s efficient use of space scales well to the 10 to 500 (or more) databases charac-
teristic of larger data centers.

The treemap solved the problem of how to show many database targets in a single
view, organized so the most important are most accessible and information-rich. De-
cision makers clearly understood these advantages over list-and-search oriented solu-
tions, and approved the design for product inclusion. The DB Time treemap was once
again scheduled to be included in a product.

A final challenge for the treemap surfaced in mid-2008 when the scheduled EM re-
lease (including the DBA Console) was suspended in favor of developing the next
incremental version of the prior release, which did not include the console. The team
quickly developed a proposal for including the treemap into this incremental release
as a user-selectable alternative to an existing screen listing all databases in the enter-
prise. The proposal for inclusion was accepted, receiving very positive reception
from an audience of EM executives. The version of EM including the Enterprise
Loadmap is currently scheduled for release. Since then, other EM groups have also
expressed a desire to explore similar visualizations over other datasets.

4 Discussion

The preceding examples used a variety of approaches for showcasing treemaps in
enterprise products. Use cases include monitoring databases, responding to slow data-
base instances, querying sales data, and reporting sales data. Technologies include
Java, HTML/JavaScript, and Flex. Each of the treemaps had tooltip feedback and
selection capability to expose details about a cell. Otherwise, interaction levels
differed in the various prototypes. The business intelligence thick-client treemap sup-
ported interactive filtering, in-place drilling, and coordinated highlighting with a hier-
archical table. The Enterprise Loadmap enabled users to control depth level, but
didn’t support filtering to choose a subgroup of the results.

While the level of interaction needs to be matched to the expected user tasks, this
matching becomes quite a challenge for a general component that is to be used across
multiple applications with multiple user roles and different tasks. We found that
having at least one prototype that implements a very large and representative set of
the requirements is invaluable for allowing product teams to experiment with the
features. Product teams need to be able to configure the prototype with representative
customer datasets to see how the features apply to actual customer tasks. The more
product teams that prioritize the requirements, the more likely the design of a reusable
component will meet the interaction requirements for most of the products.

 From Research to Product: Integrating Treemaps into Enterprise Software 251

Why did the Enterprise Loadmap get into product, but not the earlier DB Time
treemap prototype? The difference was that the Enterprise Loadmap addressed an
unresolved issue: it provides the DBA with a comprehensive overview of the enter-
prise, with easy access to details or drill-down into specific databases. It is intuitive
and easily readable by anyone familiar with the problem domain because databases
are what matters most to a DBA, and each database can be seen as a treemap cell, the
most important databases having the largest cells.

Product innovation is essential for companies to compete and grow; yet the path
for incorporating new ideas into products is not always clear or efficient. The present
treemap case studies illustrate how an established concept can be included in different
enterprise products, while adapting and morphing to suit individual product and user
requirements. Successfully growing organizations should strive toward eliminating
the technical and social barriers to include new ideas.

The present exercise showed that both great ideas and attention to interpersonal re-
lationships are needed to integrate a new, innovative concept into an enterprise prod-
uct. While great ideas are timeless, significant effort must also be spent convincing
decision makers that there is an added value from the concept. Though several ups
and downs were encountered in the present case, a product team eventually adopted
the ideas.

Lessons learned from this project can be divided into those related to developing
realistic concepts that provide solutions to real problems, and those related to gaining
uptake from product teams.

Concept and Prototype Development
• Ensure that the new concept provides a solution to a well-articulated problem.
• Remain flexible on technology details, as the version that makes it into product

will likely require a different implementation.
• Separate ideas from underlying technology. Changing technology may make pre-

viously impractical ideas feasible.
• Create a prototype implementing as many requirements as possible so different

teams can use it to understand which capabilities they find most useful.

Gaining Product Uptake
• Large companies may move slowly when implementing new solutions, due in part

to the complexity of integrating and communicating across many diverse teams.
• Even though potential benefits of new ideas can outweigh their cost of develop-

ment, constant juggling of project leadership and release schedule priorities may
prematurely terminate an innovative project.

• If one implementation avenue fails, try another. Once one team uptakes an idea,
other teams may follow.

• Integration of great ideas into existing products requires great timing, in addition to
good usability and marketability. This requires management of relationships, not
just management of ideas.

• Find and cultivate champions that can shepherd the new concept through the ups
and downs of product adoption.

252 J.H. Goldberg, J.I. Helfman, and J. Beresniewicz

• Product and development teams are most likely to understand a complex visualiza-
tion if it shows their own data, with demonstrations that solve their problems.
Many need to be able to see meaning in their own data to recognize the value of an
unfamiliar visualization technique.

References

1. Goldberg, J., Helfman, J.I.: Enterprise Network Monitoring Using Treemaps. In: Proc. 49th
Ann. Hum. Factors & Ergo. Soc., pp. 671–675. Santa Monica, HFES (2005)

2. Shneiderman, B.: Tree Visualization with Tree-Maps: 2-d Space-Filling Approach. ACM
Trans. on Graphics 11(1), 92–99 (1992)

3. Wattenberg, M.: Visualizing the Stock Market. In: Proc. CHI 1999, ACM/CHI, pp. 188–
189 (1999)

	From Research to Product: Integrating Treemaps into Enterprise Software
	Introduction
	Treemap
	Interactivity and Enterprise Technology Decisions

	Oracle Business Intelligence: First Treemap Attempt
	Enterprise Manager: Second Attempt
	Prototyping DB Time Treemaps
	DBA Console: A New Opportunity

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

