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Abstract. Due to its convenient, low physical restraint, and electric noise 
tolerant features, functional near-infrared spectroscopy (fNIRS) is expected to 
be a useful tool in monitoring users’ brain activity in HCI. However, fNIRS 
measurement suffers from various kinds of artifacts, and no standardized 
method for artifact reduction has been established so far. In this study, we 
compared high-pass/band-pass filtering, global and local average references, 
independent component analysis (ICA) based method, and their combinations. 
Their effectiveness for artifact reduction was evaluated by a cognitive task 
recognition experiment. The results showed all the methods have artifact 
reduction capability, but their effectiveness depends on subjects and tasks. This 
suggests that it can be more practical to try various artifact reduction methods 
and chose the best one for each task and subject, instead of pursuing a single 
standardized method. 

1   Introduction 

Human computer interactions, including mobile interactions, are beginning to 
incorporate wide range of sensors for detection of user intention and context, from 
GPS and accelerometer to the sensors of various biomedical signals. Among them, 
sensing users’ brain activity is expected to provide rich information for HCI, and being 
studied extensively in the field of brain-computer interface (BCI) or brain-machine 
interface (BMI). There, brain activity data are analyzed and classified in real-time, and 
the result is used for identification and monitoring of the user’s cognitive states or for 
control of devices, etc. While electroencephalography (EEG) is most widely utilized in 
non-invasive BCI, usefulness of functional near-infrared spectroscopy (fNIRS) as a 
convenient, low physical restraint, and electric noise tolerant method, is worth to be 
studied more intensely for HCI and mobile interactions. (For example, HITACHI Inc. 
has developed a “wearable optical topography” system that facilitates study of brain 
activity in daily life [1].) 

Like the functional magnetic resonance imaging (fMRI), fNIRS evaluates neural 
activity indirectly from blood-flow change in cortical microvasculature. This brings 
some difficulty in real-time analysis and utilization of fNIRS data for BCI. For one 
thing, the temporal resolution is said to be not very high (several seconds in time 
scale), due to relatively large time constant in neurovascular coupling. However, it 



414 T. Nozawa and T. Kondo 

has recently been reported that quicker ( 100≤  milliseconds in time scale) component 
may also reflect changes in cognitive tasks [2]. 

Another difficulty from the measurement mechanism of fNIRS is the existence of 
blood flow artifacts that do not originate in cognitive activity of the brain. Periodic 
components corresponding to cardiac, respiratory and other blood-flow regulation 
dynamics are frequently observed [3, 4]. Changes in posture, such as tilting the head, 
often induce relatively large artifacts on the fNIRS data (given that the measurement 
optodes are well settled, this is likely to be due to skin blood concentration or 
dispersion by gravity). Hence naive analysis of fNIRS data from an experiment 
without any posture regulation can result in a spurious correlation, which is in fact 
caused by body movement accompanied by task execution. However, neither posture 
regulation nor systematic artifact reduction has been mentioned in some literature on 
fNIRS studies.  Continued pressure and heating by optodes occasionally induce a drift 
component. In some HCI applications, slow components derived from change in 
arousal level or mental fatigue should be distinguished as artifacts, even though they 
are associated with brain activity. 

These types of artifacts are commonly expected in the application for HCI, and 
besides, even in the same measurement setting, the existence and magnitude of these 
artifacts are considerably different among subjects.  In the current study, we focus on 
this problem, and study the effectiveness of several artifact reduction methods which 
are available for real-time analysis. 

2   Method 

In this section, we briefly review the basis of fNIRS measurement mechanism, and 
then describe the artifact reduction methods that we tested. 

2.1   fNIRS 

Transmission of near-infrared light in living tissue is sensitive to hemoglobin 
concentration and oxygenation state, with different absorption characteristics for 
different wavelengths. Using this physical property, fNIRS estimates changes in 
hemoglobin concentration associated with changes in regional cerebral blood flow 
(rCBF), which are coupled to those in neuronal activity [5]. 

We use an fNIRS imaging system (FOIRE-3000, Shimadzu Co., Japan), which 
adopts near-infrared lasers of thee wavelengths, 780, 805, and 830 nm. For each 
channel j  (that corresponds to a neighboring pair of source and detector optodes, as 
shown in Fig. 1), optical densities λ,jA  in wavelengths λ  are measured. Then, from 
the changes in the optical density λ,jAΔ , relative concentration changes of oxygenated 
hemoglobin joxyΔ  and of deoxygenated hemoglobin jdeoxyΔ  are estimated by 
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which is derived from the modified Beer-Lambert law and the extinction coefficients 
of the tissue reported by Matcher et al. [6, 7]. 
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2.2   Artifact Reduction Methods 

As artifact reduction methods, we picked up high-pass/band-pass filtering, global and 
local average references, independent component analysis (ICA), and their 
combinations. 

High-pass/Band-pass Filtering. High-pass filter and band-pass filter have been 
frequently used in offline analysis of fNIRS data, to eliminate drift component and 
flatten the baseline (in the case of band-pass filter, also to eliminate quick components 
and smooth the data) [8-10]. In these cases, the filtering has been applied in the 
frequency domain, attaining virtually ideal brick-wall filter. For real-time analysis, 
however, a causal filter must be used, though it entails the risk of phase shift and 
distortion. 

One should note that the cutoff frequency must be chosen according to the setting 
of HCI tasks. In our experimental setting, as explained in Section 3, fNIRS recording 
lasted about 10 minutes and high-frequency components were averaged out for the 
performance evaluation of artifact reduction. Therefore, aiming at reducing only slow 
artifact components (especially the drift which can be induced by change of arousal 
level, fatigue, continued warming, etc.), we used 4th order Butterworth high-pass filter 
[11], with cutoff frequency 31067.1 −× Hz. 

Global Reference. If an artifact component is assumed to be added uniformly on 
wide range of channels, it can be reduced by subtracting the global average across all 
the channels from the raw data of each channel in every time. This global reference 
method can be also effective in extracting localized brain response, and has often 
been used for EEG data (e.g. [12]).  

As the concentration changes joxyΔ  and jdeoxyΔ  are relative quantities, direct 
comparison or averaging of those values among channels can cause false results. One 
way to avoid this problem is to convert the raw data from each channel into the  
z-score in advance [13]: First, mean and standard deviation (SD) of ),( jj deoxyoxy ΔΔ  
in “preparation phase” of a measurement are calculated for each channel j , as 
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“analysis (testing) phase”, as well as data in the preparation phase, are converted by 

oxy
j

oxy
jj

j

toxy
toxy Δ

Δ−Δ
=Δ

σ
μ)(

:)( , 
deoxy

j

deoxy
jj

j

tdeoxy
tdeoxy Δ

Δ−Δ
=Δ

σ
μ)(

:)( . (2) 

Then the global reference is applied as 
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where n  is the number of channels. 
To justify the use of the mean and SD in the preparation phase for the z-score 

conversion in the analysis phase, it is supposed that the preparation phase is 
sufficiently long and the tasks in the two phases are qualitatively the same. 
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Local Reference. Local reference method is similar to the global reference method, 
but instead of the average over all channels, it uses average of neighboring channels 
for the reference: 

∑
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where jN  denotes the neighboring channels of j . This method is expected to 

emphasize localized activity, like the Gabor convolution kernel. 
Although there are no objective criteria to define the range of the “local” 

neighbors, we used the nearest neighboring channels (that means }6,5{1 =N  and 
}17,16,8,7{12 =N , etc. in the configuration of Fig. 1). 

Independent Component Analysis. Independent component Analysis (ICA) assumes 
that the observed data [ ])(),()( 1 txtxtx n…=  ( pt ,,2,1 …= ) is a linear combination of 

unknown and statistically independent sources [ ])(,),()( 1 tststs m…=  ( nm ≤ ), that is 

Atstx )()( = , (5) 

where the nm ×  matrix A  is called mixing matrix. The problem for ICA algorithms 
is to find a demixing matrix W , such that the source signals )(ts  are recovered from 
the observed data )(tx  by 

Wtxts )()( = , (6) 

with maximal statistical independence among the source components. 
If it is reasonable to suppose that artifact components are statistically independent 

from the components originating from cortical activity, the artifacts are eliminated by 
(i) demixing the observed data into the independent sources, (ii) eliminating source 
components with characteristic feature for expected artifacts, and (iii) re-mixing the 
remaining source components (this step is optional for some BCI applications). This 
procedure is expressed as 

')(:)( WAtxtx = , (7) 

where 'A  is the modified mixing matrix of A , which is obtained by substituting 
zeros for the rows corresponding to the artifact components. 

ICA has also been widely used for the artifact reduction in various brain recording 
methods, where physiological/technical artifact components were identified by 
checking the components’ inconsistency with experimental design [14], correlation 
with external references like electrocardiogram (ECG), or frequency/spatial 
distribution [15]. For fNIRS [7], Kohno et al. speculated that the skin blood flow 
artifact tends to be distributed uniformly in wide spatial range, as it is controlled by 
the autonomic nervous system. Based on this hypothesis, they defined a statistical 
value named coefficient of spatial uniformity (CSU) for each independent component 
i , as 

)()( ** iii AAcsu σμ= , (8) 
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where )( *iAμ  and )( *iAσ  are the mean and SD of the mixing matrix A ’s row i , 
respectively. Components with high CSU show spatially uniform changes and thus 
are considered as artifacts. 

For real-time analysis, artifact components must be automatically identified based 
on some predefined criteria. In this study, we adopted the CSU and cardiac pulsation 
frequency ratio (CPFR), which we calculated as integration of the spectral density in 
frequency region [0.75, 1.5] Hz divided by the total spectral power. ICA was applied 
separately for )( joxyΔ  and )( jdeoxyΔ , and components with highest CSU and CPFR 
are eliminated respectively by the above procedure (7). We supposed that the source 
contains as many dimensions as the observation ( nm = ), and adopted joint 
approximate diagonalization of eigen-matrices (JADE) for ICA algorithm, which is 
based on the fourth-order cumulant [16]. 

Combined Methods. The high-pass filter is applied independently for each channel. 
On the other hand, the latter three methods employ inter-channel comparison, based 
on the shared hypothesis that the artifacts in fNIRS signals, mainly from skin blood 
flow, are not restricted in a specific channel but distributed throughout the channels. 
Therefore, it can be expected that these two types of methods can complement each 
other. Based on this idea, we tried three combined methods, which are obtained by 
first passing the data through the high-pass filter and then applying one of the other 
three methods. 

3   Experiment 

We conducted a preliminary experiment to compare the effectiveness of the above 
methods. In this experiment, each method’s effectiveness for artifact reduction was 
evaluated by improvement in task recognition performance by a classification 
algorithm. 
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Fig. 1. Configuration of source and detector optodes used in the experiment. For each neighboring 
pair of source and detector optodes, a recording channel is assigned. 
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Fig. 2. Construction of feature vectors from fNIRS data, and determination of their classes. For 
each feature vector, corresponding class is given by the most dominant cognitive task in the 
lagged time window. 

3.1   Settings 

Four subjects conducted three types of cognitive tasks which were switched 
repeatedly in an order defined by the experimenter. The tasks assigned to each subject 
are shown in Table 1. Every task continued for 15-25 s (the duration was varied to 
avoid inducing a specific frequency component), and was repeated 10 times each. 
Subjects were asked to suppress task-dependent postural changes. 

Table 1. Assignment of cognitive tasks to the subjects 

Subject Tasks 

Subject A 
Listening quiet instrumental music, silent text reading, number puzzle 
(Sudoku). 

Subject B Listening quiet instrumental music, silent text reading, 3D block puzzle. 
Subject C Listening quiet instrumental music, silent text reading, 3D block puzzle. 
Subject D Rest with eyes open, metal arithmetic, typing text using keypad. 

 
We placed 8 source and 7 detector optodes, covering prefrontal regions (including 

Fp1, Fp2 and Fz positions of the international 10-20 system of EEG electrode 
placement [17]), by 22 channels. The configuration of optodes is shown in Fig. 1. 

For the training and testing of task classifier, 44 dimensional feature vectors were 
constructed by averaging joxyΔ  and jdeoxyΔ  signals within shifting time windows. 
Different time window widths ranging from 1 to 10 s (interval 0.5 s) were tried. 
Considering relatively slow nature of fNIRS response, we also tried various lengths of 
time lag, ranging from 0 to 10 s (interval 0.5 s), in linking each feature vector to one 
of the cognitive tasks. Feature vector at the current time was linked to a task which 
was most dominant in the window shifted to the past by the time lag, as shown in 
Fig.2. Data in the former half of the experimental period were used for training of the 
classifier, calculation of mean and SD which were used in z-score conversion for the 
global/local references, and estimation of the demixing/mixing matrices for the ICA 
based method. Data in the latter half were used for classification performance test. 
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Table 2. Task classification precision with no artifact reduction (none), reduction methods 
based on high-pass filter (HPF), global reference (GR), local reference (LR), independent 
component analysis (ICA), and their combinations. For each subject and artifact reduction 
method, the best precision with the time window width (w.w.) and lag values yielding it, 
average precision (Avg.) ±  SD over all the time window widths from 1 to 10 s and lags from 0 
to 10 s, and precision at 1 s window width and 0 s lag (At (1, 0)), are shown. 

 Method Best (w.w., lag) Avg. ±  SD At (1, 0)  

Subject A None 0.525 (5.0, 5.0) 0.434 ±  0.041 0.428  
 HPF 0.651 (4.5, 7.5) 0.519 ±  0.057 0.424  
 GR 0.595 (7.0, 0.5) 0.446 ±  0.047 0.444  
 LR 0.579 (3.0, 8.0) 0.468 ±  0.052 0.444  
 ICA 0.524 (7.0, 0.5) 0.421 ±  0.037 0.385  
 HPF+GR 0.794 (8.5, 4.0) 0.575 ±  0.060 0.572  
 HPF+LR 0.689 (6.5, 6.0) 0.554 ±  0.050 0.556  
 HPF+ICA 0.630 (5.5, 2.0) 0.504 ±  0.059 0.576  

Subject B None 0.613 (9.5, 2.5) 0.447 ±  0.086 0.469  
 HPF 0.800 (8.5, 1.5) 0.583 ±  0.077 0.601  
 GR 0.646 (3.5, 2.5) 0.391 ±  0.092 0.360  
 LR 0.718 (7.5, 8.0) 0.475 ±  0.097 0.465  
 ICA 0.581 (9.5, 0.0) 0.411 ±  0.077 0.349  
 HPF+GR 0.857 (8.5, 2.5) 0.638 ±  0.081 0.640  

 HPF+LR 0.844 
(6.5, 6.0), 
(6.5, 6.5) 

0.662 ±  0.073 0.636  

 HPF+ICA 0.800 
(8.5, 0.5), 
(8.5, 1.5) 

0.599 ±  0.079 0.628  

Subject C None 0.730 (8.0, 7.5) 0.587 ±  0.049 0.615  
 HPF 0.719 (9.5, 5.0) 0.558 ±  0.056 0.576  
 GR 0.781 (9.5, 0.0) 0.605 ±  0.056 0.599  
 LR 0.757 (8.0, 9.0) 0.574 ±  0.065 0.469  
 ICA 0.714 (8.5, 6.5) 0.594 ±  0.049 0.637  
 HPF+GR 0.714 (8.5, 6.5) 0.563 ±  0.059 0.561  

 HPF+LR 0.750 
(9.5, 4.0), 
(9.5, 4.5) 

0.622 ±  0.046 0.599  

 HPF+ICA 0.676 (9.0, 0.0) 0.561 ±  0.046 0.588  

Subject D None 0.606 (9.0, 2.5) 0.436 ±  0.048 0.508  
 HPF 0.533 (10.0, 2.5) 0.369 ±  0.056 0.373  
 GR 0.697 (9.0, 5.0) 0.523 ±  0.056 0.538  

 LR 0.650 
(7.5, 0.0), 
(7.5, 1.0) 

0.502 ±  0.058 0.515  

 ICA 0.600 (7.5, 0.0) 0.437 ±  0.046 0.562  
 HPF+GR 0.571 (7.0, 6.0) 0.415 ±  0.047 0.381  
 HPF+LR 0.609 (6.5, 1.0) 0.440 ±  0.065 0.423  
 HPF+ICA 0.514 (8.5, 4.0) 0.391 ±  0.044 0.385  
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For the classification, we adopted nonlinear support vector machine (SVM) 
algorithm with Gaussian radial basis kernel and the one-against-one method for 
multiclass-classification [18]. The kernel width parameter was determined heuristically 
from the training data [19]. 

3.2   Results 

Table 2 shows task classification precision with and without the artifact reduction 
methods. For each subject and artifact reduction method, the best precision value with 
the time window width and lag values yielding it, average precision ±  SD over all 
the time window width and lag parameter values, and precision at 1 s window width 
and 0 s lag, are given. Fig. 3 shows difference of the classification precision by the 
artifact reduction methods for a subject (subject B), with detailed dependence on the 
time window width and lag. 

For subject A and B, most of the methods were effective in improving task 
classification precision. Especially the high-pass filter and its combinations with other 
methods brought significant improvements. Although the ICA based method was not 
much effective by itself, it achieved fair improvement combined with the high-pass 
filter. On the other hand, for subject C and D, the high-pass filter and combined  
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Fig. 3. Detailed dependence of the task classification precision for a subject (subject B) on the 
time window width and lag, with no artifact reduction (none), reduction methods based on 
high-pass filter (HPF), global reference (GR), local reference (LR), independent component 
analysis (ICA), and their combinations. 
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methods were not very effective and in some cases even diminished the precision. 
The global reference was comparatively effective for these two subjects. 

These results suggest the possibility that for each task (application) and subject 
(user) we should try out all the methods in some “general artifact reduction package” 
and chose the best one, rather than pursuing a single standardized method. Such a 
package can be also utilized for adaptive boosting algorithm [20], to prepare a 
collection of “weak” classifiers. Our study provides a starting point to assemble such 
a package. 

4   Conclusions 

As artifact reduction methods for real-time analysis of fNIRS data, we compared 
high-pass filtering, global and local average references, independent component 
analysis based method, and their combinations. Their effectiveness was evaluated by 
a cognitive task recognition experiment. The results showed all the methods have 
artifact reduction capability, but their effectiveness depends on subjects and tasks. 
This suggests that it can be more practical to try various artifact reduction methods 
and chose the best one for each task and subject, instead of pursuing a single 
standardized method. 

We studied the effectiveness of the methods in an experiment where the tasks were 
switched in a block-design fashion and thus each cognitive state is expected to 
continue for relatively long time. For future work, we are planning to compare the 
artifact reduction methods for quicker responses in the event-related BCI scheme, 
with real-time biofeedback of the analysis results to the subjects. 
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