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Abstract. This paper addresses a UML based toolkit for performing
e�cient system-level design space exploration of System-On-Chip. An
innovative simulation strategy to significantly reduce simulation time is
introduced. The basic idea is to take benefit from high level descriptions
of applications by processing transactions spanning potentially hundreds
of clock cycles as a whole. When a need for inter task synchronization
arises, transactions may be split into smaller chunks. The simulation en-
gine is therefore predictive and supports backward execution thanks to
transaction truncation. Thus, simulation granularity adapts automati-
cally to application requirements. This paper also highlights the benefits
of TTool, an open-source toolkit that fully integrates the aforementioned
simulation engine. Emphasis is more particularly put on procedures tak-
ing place under the hood after having pushed the simulation button of
the tool. Finally, the new simulation strategy is assessed and compared
to an earlier cycle-based version of the simulation engine.

Key words: System-On-Chip, Design Space Exploration, System Level
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1 Introduction

System-level design space exploration in a System-on-Chip (SoC) design cy-
cle is an issue of great concern in today’s rapidly growing and heavily con-
strained design processes. The increasing complexity of SoC requires a complete
re-examination of design and validation methods prior to final implementation.
We believe that the solution to this problem lies in developing an abstract model
of the system intended for design, on which fast simulations and static formal
analysis could be performed in order to test the satisfiability of both functional
and non functional requirements.

In this context, we have previously introduced a UML-based environment named
DIPLODOCUS. The strength of our approach relies on formal verification ca-
pabilities and fast simulation techniques ( [16] [4]).
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DIPLODOCUS design approach is based on the following fundamental princi-
ples:

– Use of a high level language (UML)
– Clear separation between application and architectural matters
– Data abstraction.
– Use of fast simulation and static formal analysis techniques, both at applica-

tion and mapping levels

The designer is supposed to model in an orthogonal fashion the application and
the architecture of the targeted system. Thereafter, a mapping stage associates
application and architectural components. As mentioned initially, simulation is
an integral part of the DIPLODOCUS methodology and enables the designer
to get first estimates of the performance of the final system. In that context,
an important issue to solve is the concurrency of operations performed on hard-
ware nodes and more particularly on CPUs and buses. The first version of our
simulation environment relied on the standard SystemC kernel and took advan-
tage of the integrated discrete event simulator. Further information about this
approach can be found in [10]. In that simulator, a SystemC process is assigned
to each active hardware node, and a global SystemC clock is used as a means of
synchronization. Abstract communication and computation transactions defined
in the application model are broken down to the corresponding number of wait
cycles. Thus, all active components are run in lockstep.
Unfortunately, the inherent latency of the SystemC scheduler due to frequent
task switches made the simulation su↵er from low performance. However, simula-
tion speed is an issue of concern as it represents one argument to justify accuracy
penalties as a result of abstractions applied to the model. In order to achieve a
better performance, a new simulation strategy is presented in the scope of this
paper. It leverages these abstractions by processing high-level instructions as a
whole whenever possible. Furthermore, its simulation kernel incorporates a slim
discrete event scheduler so that SystemC libraries are not necessary any more.

The paper is composed of seven sections. Section 2 gives an overview of our
methodology and points out the features of the integrated development environ-
ment TTool. Section 3 introduces the main concepts of the simulation strategy
and illustrates them with a concrete example. Section 4 provides an insight into
algorithmic issues and explains the significance of transactions and the time
stamp mechanism for fast simulation. Furthermore, the simulation procedure is
structured in terms of phases and synchronization issues are tackled which arise
when tasks exchange data and events. Section 5 benchmarks the new simulation
engine and compares its performance to the previous simulator version. Section 6
compares our approach with related works. Section 7 finally concludes the paper
and draws perspectives.
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2 The DIPLODOCUS Environment

DIPLODOCUS is a UML profile targeting the design of System-on-Chip at a
high level of abstraction. A UML profile customizes UML [9] for a given domain,
using UML extension capabilities. Also, a UML profile commonly provides a
methodology and is supported by a specific toolkit.

2.1 Methodology

DIPLODOCUS includes the following 3-step methodology (see Figure 1):

1. Applications are first described as a network of abstract communicating
tasks using a UML class diagram. Each task behavior is described with a
UML activity diagram.

2. Targeted architectures are modeled independently from applications as
a set of interconnected abstract hardware nodes. UML components have
been defined to model those nodes (e.g. CPUs, buses, memories, hardware
accelerators, bridges).

3. A mapping process defines how application tasks can be bound to execution
entities and also how abstract communications between tasks are assigned
to communication and storage devices.

Application Modeling

Simulations
Static Formal Analysis

Architecture Modeling
Requirements

...

Application Mapping
on Architecture

Mapping

Simulations

Static Formal Analysis Refinements

Fig. 1. Global view of our Design Space Exploration Approach

A task activity diagram is built upon the following operators: control flow and
variable manipulation operators (loops, tests, assignments, etc.), communication
operators (reading/writing abstract data samples in channels, sending/receiving
events and requests), and of computational cost operators.
One main DIPLODOCUS objective is to help designers to find a hardware archi-
tecture that satisfies functional and non-functional requirements. To achieve this,
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DIPLODOCUS relies on fast simulation and formal proof techniques. The appli-
cation models are designed independently of targeted underlying architectures.
Due to the high abstraction level of both application and architecture, simu-
lation speed can be increased significantly with regards to simulations usually
performed at lower abstraction level (e.g. TLM level, RTL level, etc.). Addition-
ally, e�cient static formal analysis techniques may be applied before and after
mapping.

Within a SoC design flow, Design Space Exploration is supposed to be carried
out at a very early stage, right after a specification document has been issued.
In the scope of hardware/software partitioning, several appropriate architectures
could be assessed by means of our methodology. Thus, it should be emphasized
that DIPLODOCUS designs are settled above more detailed but still abstract
models like TLM. Indeed, the main di↵erence between DIPLODOCUS and TLM
models relies in data (and not only signal) abstraction and the modeling of com-
putational complexity. Hence, with DIPLODOCUS, a designer can already get
a first estimate of the behavior of final applications even if some algorithmic
details have not yet been stipulated.

2.2 Application modeling in a nutshell

An application model is the description of functions to be performed by the
targeted SoC. As mentioned before, functions are modeled as a set of abstract
tasks described within UML class diagrams. One has to bear in mind that, at
application modeling level, there is no notion of time but only a partial ordering
between actions. This section briefly describes a subset of TML (Task Modeling
Language) instructions as well as their semantics and provides definitions for
Channels, Events and Requests:

– Channels are characterized by a point-to-point communication between two
tasks. The following Channel types exist:
– Blocking Read-Blocking Write (BR-BW)
– Blocking Read-Non Blocking Write (BR-NBW)
– Non Blocking Read-Non Blocking Write (NBR-NBW)

– Events are characterized by a point-to-point unidirectional asynchronous
communication between two tasks. Events are stored in an intermediate FIFO
between the sender and the receiver. This FIFO may be finite or infinite. In
case of an infinite FIFO, the incoming events will never be lost. In case of
a finite FIFO, adding a new event to a full FIFO removes the oldest. Thus,
a single element FIFO may be used to model hardware interrupts. In TML
tasks, events can be sent (NOTIFY), received (WAIT) and tested for their
presence (NOTIFIED).

– Requests are characterized by a multi-point to one point unidirectional asyn-
chronous communication between two tasks. A unique infinite FIFO between
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senders and the receiver is used to store all incoming requests. Consequently,
no request may be lost.

The behavior of abstract tasks it specified by means of TML which is based on
UML Activity diagrams. As some of the constituting operators are referred to
in later sections, a brief survey is provided which is not meant to be exhaustive:

Icon: Command: Semantics:

READ x Read x samples in a channel

WRITE x Write x samples in a channel

NOTIFY e Notify event e with 3 parameters

WAIT e Wait for event e carrying 3 parameters

REQUEST Ask the associated task to run

EXECI x Computational complexity of x execution units

Table 1. TML Commands

2.3 Toolkit

The DIPLODOCUS UML profile - including its methodology - has been im-
plemented in TTool [1]. TTool is an open-source toolkit that supports several
UML2 / SysML profiles, including TURTLE [3] and DIPLODOCUS [2]. The
main idea behind TTool is that all modeling may be formally verified or sim-
ulated. In practice, UML diagrams are first automatically translated into an
intermediate specification expressed in formal language, which serves as starting
point for deriving formal code and simulation code.
TTool has the following main modeling capabilities (see Figure 2):

– Modeling of applications using either a UML class diagram or a specific
language called TML. From both formats, it is possible to generate simulation
code or formal verification specifications from which formal proofs may be
performed.

– Modeling of architectures using UML deployment diagrams (or a textual
format named TARCHI).

– Modeling of mappings using UML deployment diagrams (or a textual for-
mat named TMAP). A mapping scheme associates applications and architec-
tures. Based on these three building blocks (mapping, application, architec-
ture), TTool automatically generates simulation code or formal specifications
at the push of a button.



6 Daniel Knorreck, Ludovic Apvrille, Renaud Pacalet

Fig. 2. Modeling and verification capabilities of TTool

From DIPLODOCUS application or mapping models, TTool may perform sim-
ulations or formal proofs:

– For simulation purpose, TTool generates SystemC or C++ code. Indeed,
TTool is currently equipped with two simulators: one based on the SystemC
simulation engine, and another and more recent one implemented in pure
C++. That generated code is linked with libraries - included in TTool - be-
fore being executed. Also, The C++-based simulator is the main contribution
described later on in the paper. This C++ simulator outperforms its SystemC
counterpart in terms of simulation speed, but it is yet not compatible with
third-parties SystemC-based components.

– For formal proof purpose, TTool generates LOTOS or UPPAAL code. Formal
verification of application or mapping models is out-of-scope of this paper.

Before being translated into either SystemC, UPPAAL or LOTOS, models are
first translated into intermediate languages. Figure 2 refers to this process.

In this paper, emphasis is put on post-mapping simulation of tasks mapped onto
a given hardware architecture. More precisely, we introduce our new simulation
scheme. It is indeed especially suited to exploit characteristics of our high level
task and architecture descriptions. The two next sections of the paper are more
particularly focused on the architecture of the simulation engine, and on its
performance.
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3 Introducing fast simulation techniques

3.1 Basic principles

The simulator detailed in this paper is transaction-based. A transaction refers
to a computation internal to a task, or a communication between tasks. Those
transactions may obviously last from one to hundreds of clock cycles. Transac-
tion durations are initially defined according to the application model, that is to
say their maximum duration is given by the length of corresponding operators
within tasks description. At simulation runtime, a transaction may have to be
broken down into several chunks of smaller size, just because for example, a bus
is not accessible and so the task is put on I/O wait on its CPU. Transaction
cutting is more likely to happen when the amount of inter task communication
is high and hence the need for synchronization arises.
Unlike a conventional simulation strategy where all tasks are running in lockstep,
a local simulation clock is assigned to each active hardware component. Thus,
simulation granularity automatically adapts to application requirements as ab-
stract measures for computational, and communicational costs of operations are
specified within the application model. The coarse granularity of the high level
description is exploited in order to increase simulation speed.

A problem at stake when considering transaction-based simulation is the schedul-
ing of transactions themselves. This procedure embraces mainly four elements
(see Figure 3): tasks, CPUs, buses and the main scheduler. The sequence of the
entities of the aforementioned list also reflects their hierarchy during the schedul-
ing process: tasks are settled at the top layer and the main scheduler constitutes
the lowermost layer. Based on the knowledge of their internal behavior, tasks
are able to determine the next operation which has to be executed within their
scope. This operation is encapsulated subsequently in a transaction data struc-
ture and forwarded consecutively to hardware components being in charge of its
execution.
The basic idea is that a transaction carries timing information taken into account
by hardware components to update their internal clock. Moreover, a hardware
component may delay transactions and modify their duration according to the
execution time needed by that specific component. By so doing, the simulation
algorithm accounts for the speed of CPUs, the data rate of buses, bus contention
and other parameters characterizing the hardware configuration.

More precisely, on time management, tasks tag each transaction with its earliest
start time (which is equal to the finish time of their previously executed transac-
tion) and an abstract measure of the computational complexity or of the amount
of data to transfer respectively. CPUs in turn have to recalculate the start time
based on their internal schedule and are able to convert the abstract length to
time units. Buses are in charge of handling communication transactions which
are treated in a similar way. If several devices are involved in the execution
process, transactions are simply passed from one device to another device and
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Task Task Task

CPU

Bus

TaskTask TaskTask

CPUCPU

Main 
scheduler

nextTransaction proposal

Scheduling
Trans . length calculation

Scheduling
Add bus delay to trans . length

Transaction to 
schedule

Selects the 
transaction which 
Terminates first

Fig. 3. Object collaboration during scheduling process

modified accordingly. Correct values for start time and duration are hence de-
termined incrementally by forwarding transactions to dedicated hardware nodes.

Finally, the main scheduler acts as a discrete event simulator and assures the
causality of the simulation.

3.2 Example illustrating the Main Scheduler

To illustrate the cooperation of entities discussed previously and the main sched-
uler, we consider the following example:
The notion of transaction refers to a portion of a command. A READ command
for instance allows for an inter task communication by reading a given number
of samples from an abstract channel. For example let us consider the expression
READ 3. This command could be broken down into two transactions, the first
one reading one sample and the second one reading the two remaining samples.
The basic idea is to try at first to schedule a transaction having the same length
as the command (3 in our example). If the attempt fails, the transaction is sub-
sequently split into smaller parts which can be scheduled. We first suppose that
the command can be executed as a whole. The command is subdivided into sev-
eral transactions if another transaction interferes with the first one.
That way the simulation overhead decreases if the amount of inter task depen-
dency is low. The worst case of that approach is when scheduling policies of
CPUs and buses are based on a strict alternation between tasks: in that case,
the simulation environment gets back to a cycle based simulation because every
transaction is automatically reduced to the length of 1. This scenario could be
avoided with the aid of bus scheduling policies relying on atomic burst transfers
which cannot be interrupted.
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As an more complex example, let us consider the scenario depicted on Figure 4:
there are two CPUs, referred to as CPU1 and CPU2. A CPU model merges both
an abstract hardware component and an abstract real time operating system.
Both CPUs (CPU1 and CPU2) have already executed a transaction of a task
T11 and T21 respectively. The transaction on CPU1 finished at tSI , the one on
CPU2 finished at tSII . The schedulers of both CPUs subsequently propose the
next transaction to execute. The simulation algorithm selects the transaction
which will terminate first because its execution could have an impact on other
tasks (making them runnable for instance). This decision is in line with tradi-
tional mechanisms used for discrete event simulation. As we have to be sure that
during the execution of the selected transaction no events will occur, special
care has to be taken when considering communication-related commands (read
to channel, write to channel, wait on event, notify event, ...). The length of these
transactions are therefore calculated based on the number of samples to read,
the number of samples to write, the content and the size of the channel as well
as the size of atomic burst transfers on the bus.
After T12 has been scheduled, tSI is set to the end time of T12, referred to as
tSInew. If the completed transaction T12 causes a task to become runnable on
CPU2, T22 is truncated at tSInew and the remaining transaction is scheduled on
CPU2. As a channel always links only two tasks, revealing dependencies becomes
trivial. If a portion of T22 has been added to the schedule, tSII is changed accord-
ingly (tSII = tSInew). After this, all schedulers of CPUs which have executed a
transaction are invoked. The algorithm has now reached its initial state where
all schedulers have selected a potential next transaction. Again, the transaction
which finishes first is scheduled...

Fig. 4. Scheduling scenario
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4 Algorithmic details

4.1 Transactions and the timestamp policy

This chapter elaborates on the attributes which characterize transactions. One
has to discern two time scales within a transaction: a virtual one and an absolute
one. The virtual time scale bases on the number of execution units (for com-
mands modeling computational complexity) and the amount of data to transfer
(READ/WRITE commands for abstract channels) respectively. Thus, the vir-
tual time scale does not depend on architecture specific parameters (such as the
speed/data rate of devices). The absolute time is calculated as a function of the
virtual time and device parameters.
The performance of a real application may su↵er from penalties caused by hard-
ware components and the operating system. Since those delays strongly impact
the runtime behavior of applications, transactions also account for lost cycles. In
line with the granularity of our simulation, penalties are randomly determined
on a per-transaction base. That means that the exact point in time when a
penalty occurs within a transaction is not resolved. All lost cycles are added
to the payload of a transaction and they are displayed at the beginning of a
transaction in simulation traces. This display format has been chosen arbitrarily
and any other format would be just as appropriate.

The main attributes of a transaction are tabulated below:

– startTime: Stands for the absolute point in time when the transaction starts
– length: Indicates the number of time units needed to execute the transaction
– virtualLength: Specifies the amount of data to read/write or the amount of

processing units to carry out (example: for a READ 3 and a channel having a
width of 2, the corresponding transaction spanning the whole operation would
have a virtualLength of 6)

– runnableTime: Indicates the point in time when the transaction gets runnable,
it is determined by the dedicated task

– idlePenalty: If a CPU has no more instructions to execute, it enters idle
mode after a given delay. Tasks requesting CPU processing time may su↵er
from the wake-up delay of the CPU. This behavior is modeled with the aid of
the idle penalty. The delay is not neglectable for embedded systems attempting
to achieve a moderate power consumption.

– taskSwitchingPenalty: The scheduling service of an OS also accounts for
a cost in terms of processing time. Furthermore, the context of tasks (regis-
ters,...) has to be saved in the memory.

– branchingPenalty: Pipelined CPU architectures entail lost cycles due to
so called pipeline-flushes. If a branch has not been predicted correctly, some
partially executed commands have to be discarded. This delay is referred to
as branching penalty.

As stated in the introductory part of this paper, timestamps contained in trans-
actions are exploited by hardware components as well as by the main scheduler.
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This paragraph elaborates on the contribution of each entity which modifies
transactions - including commands and channels which have not been intro-
duced yet. Transactions are initiated by commands as the latter keep track of
their internal progress. Our modeling methodology provides abstract channels
which have their representation within the simulation environment. Di↵erent se-
mantics like Blocking Read-Blocking Write, Non Blocking Read-Non Blocking
Write and Blocking Read-Non Blocking Write have to be respected. Each object
depicted in Figure 5 is thus able to (re)calculate one or more transaction at-
tribute(s) based on its internal state. Arrows denote the data flow of transaction
pointers.

1. TMLCommand initially instantiates a transaction. The amount of remaining
processing units (the di↵erence between the virtualLength of the command
and its progress) is assigned to virtualLength. Furthermore, a first estimate
of the runnableTime is stored in the dedicated variable. The value simply
amounts to the time when the last transaction of the command terminated.

2. Due to its inner state (i.e. filling level, references to transaction attempting
to read/write,...), a channel is able to deduce the definite value of runnable-

Time. The time determined by the command is delayed if the channel is
blocked due to an overflow or an underflow of data. TMLChannel recalcu-
lates virtualLength depending on the value proposed by TMLCommand and
the content and the size of the channel (a detailed description of this pro-
cedure given later in this paper). In other words: a channel may truncate a
transaction if its inner state does not allow for executing the transaction as
a whole.

3. The CPU class finally computes the start time of the transaction and its real
duration. To determine the startTime, runnableTime has to be deferred to
the end of the schedule (EndLastScheduledTransaction). The absolute length

of a transaction depends on the product of the processor frequency and
virtualLength as well as on possible task penalties. If the objective of the
transaction is a bus transfer, length is calculated within the bus class.

4. This last step is only carried out for transactions necessitating bus access.
Possibly startTime is delayed once again due to bus contention and the real
length of a transaction is calculated based on the bus frequency.

4.2 Simulation phases

The simulation algorithm is structured such that each command has to be pre-
pared before it is able to execute. Thus, simulation enters alternately prepare
and execution phases of commands. When the simulator is launched initially,
the first command of each task is prepared. During simulation, it is su�cient to
prepare only those commands which have executed a transaction.
At the end of the prepare phase, transactions which might be processed by CPUs
are known, only bus scheduling decisions are pending. That way, the prepare
phase is crucial for the causality of the simulation.
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Fig. 5. Data flow of a transaction

Following tasks are accomplished during the prepare phase:

1. It has to be checked if the current command has been processed entirely. In
this case, the progress of the command is equal to its virtual length and the
following command is activated.

2. The number of remaining virtual execution units is calculated.
3. A new transaction object is instantiated.
4. If the concerned command tends to read/write samples from/in channels, it

has to be checked if the current state of the channel permits this operation.
Therefore, read and write transactions are registered at the channel.

5. Task variables may be evaluated or modified.

The objective of the execution phase is to update state variables of the simulation
after a transaction has been carried out. To achieve this, the following actions
have to be taken:

1. Issue read/write operations on channels definitely so that state variables of
channels are updated.

2. Update the progress of a command achieved by a completed transaction.
3. Add transactions to the schedule of CPUs and buses.

Now, the basic phases have been introduced and attention should be drawn to
the way they are arranged to conduct the simulation procedure:

1. At first, the prepare phase of the the first command of all tasks is entered.
2. Schedulers of all CPUs are invoked to determine the next transaction. Each

CPU may have its own scheduling algorithm.
3. CPU schedulers register their current transaction at the appropriate bus in

case the transaction needs bus access.
4. The main scheduler is in charge of identifying the runnable transaction t1

having the least end time. Therefore, the main scheduler queries all CPUs
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which may check in turn if bus access was granted for their communication
transaction. Bus scheduling is triggered in a lazy manner when the scheduling
decision is required by CPUs.

5. The execution phase for transaction t1 is entered.
6. If transaction t1 makes another task T runnable which is in turn able to

execute a new transaction t3, transaction t2 currently running on the CPU
on which T is mapped is truncated at the end time of transaction t1. The
execution phase t2 is entered. During the next scheduling round, the sched-
uler of the aforementioned CPU is able to decide whether to switch to t3 or
to resume t2.

7. Commands which have been executing are prepared.
8. CPUs which have carried out a transaction are rescheduled.
9. Return to step 3

4.3 Synchronization issues

The virtualLength of a transaction has to be calculated carefully: the result
strongly impacts the scheduling process. When a transaction has been sched-
uled definitely, it is impossible to return to the past to add preemption points.
This design decision has been taken in favor of simulation performance. Un-
fortunately, this convention imposes that the next preemption point has to be
anticipated at the time when transaction parameters are determined. Commands
which tend to synchronize tasks by transferring data via channels are especially
critical. To address this issue, let us examine the algorithm which determines
the virtualLength of WRITE and READ transactions.
A blocking channel is meant to establish a synchronization between a READ and
a WRITE transaction (and vice versa). Thus virtualLength of READ/WRITE
transactions has to be updated when the transaction is registered at the chan-
nel(preparation phase) and when a transaction is executed (execution phase).
The example given hereafter illustrates the situation:

1. Transaction 1 is registered during a preparation phase, its virtualLength is
computed.

2. Transaction 2 is registered in a subsequent preparation phase, its virtual-

Length is determined, virtualLength of transaction 1 is updated.
3. When either of these two transactions is executed, virtualLength of the re-

maining transaction is updated.
4. The last transaction is executed.

The reader might wonder why four calculations are carried instead of two (one
for each transaction). The reason for this is that the channel has no knowledge
about the order in which the two transactions will be executed. Furthermore, as
we will see in following, the number of samples to read (if any) depends on the
number of samples to write (if any) and vice versa. This fact implies that the
attributes of transaction 1 must be recalculated upon registration of transaction
2 as well as upon its execution.
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In accordance with previous observations, one can infer an adequate algorithm
for calculating the length of a WRITE transaction:

1. If there is no read request, the length of a WRITE transaction is limited by
the minimum of the number of samples to write and the free space in the
channel.

2. If there exists a read request and the channel holds enough samples to satisfy
the demand right away, the limiting factors are the same as above.

3. If there exists a read request and the channel does not hold enough data to
satisfy the demand, there is an additional limiting factor as compared to the
cases above: the number of samples which have to be written so that the
READ command can be executed. In other words: the task attempting to
read could wake up due to a WRITE executed previously.

The algorithm for READ transactions is derived in an analogous manner:

1. If there is no write request, the length of a READ transaction is limited
by the minimum of the number of samples to read and the content of the
channel.

2. If there exists a write request and the channel has enough free space to
satisfy the demand right away, the limiting factors are the same as above.

3. If there exists a write request and the channel does not have enough free space
to satisfy the demand, there is an additional limiting factor as compared to
the cases above: the number of samples which have to be read so that the
WRITE command can be executed. In other words: the task attempting to
write could wake up due to a READ executed previously.

A limiting factor has been introduced which is intended to establish additional
preemption points after a given amount of data has been transferred. It is re-
ferred to as burst size and is considered as the size of a non-preemptive bus
transaction. In an extreme case where burst size=1, two tasks alternately write
and read one sample.
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5 Experimental results

Two important cases are considered to evaluate the performance of our simula-
tion engine: event notification/reception on the one hand and communication via
a data channel on the other hand. Therefore, task sets depicted in table 2 have
been executed on both simulators - the SystemC one, and the C++ one - and
the execution time has been captured. The measurements have been performed
under the following conditions:

1. Output capabilities of both simulators are disabled in order to measure the
pure simulation time. No trace files are created.

2. The time consumed by the initialization procedure of both simulation envi-
ronments is not taken into account for the same reason.

3. All measurements are subject to noise caused by the multi tasking operation
system and interfering tasks running on the same CPU. Therefore, the aver-
age of several measured values has been taken into account for all di↵erent
tests. Thus the noise should distort similarly the results for both simulators.

4. As the analysis has been carried out on a less powerful machine, only the
comparison of both simulators is meaningful in Figures 6 and 7, and not
the absolute execution times. According to this, Figure 8 merely reflects the
qualitative behavior of the new simulator; it performs much faster on recent
machines.

The first task set is composed of two tasks communicating by means of a Block-
ing Read-Blocking Write channel with the width parameter set to 1 and the
length parameter set to 100. All commands are nested in a 1 million-loop struc-
ture. This way, the ratio of execution time of the simulator and noise due to the
multitasking operating system (task switches,...) is increased.
Let us now have a closer look at the example tasks. Task 1 writes x samples
into channel ch1, performs x integer operations and finally reads x samples from
channel ch2. Task 2 carries out the complementary operations, it reads x samples
from channel ch1, performs x integer operations and writes x samples to chan-
nel ch2. The second task set is configured similarly: the only di↵erence is that
channels are replaced by events based on infinite FIFOs. Figure 6 and Figure 7
depict the execution time as a function of x which varies from 1 to 10.
It can be deduced that the execution time of the old simulator grows more or less
linearly with the command length. For the new simulator however, the execution
time does not depend on the command length as one command corresponds to
one transaction in this simulation. The execution time of the new simulator is
only impacted by the number of transactions (linear growth, see Figure 8). But
even in the worst case, when all transactions have a length of 1, the new sim-
ulator outperforms the old version by approximately a factor of 10. Depending
on the respective model, the gain can be much higher given that a transaction
comprises several cycles. Thus, the new simulator automatically adapts to the
granularity of the application model: if a task issues commands having a length of
one cycle, the simulator falls back on a cycle based consideration. If transactions
are long, simulation e�ciency increases accordingly.
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Fig. 6. Data channel performance for old and new simulator
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6 Related work

There are many approaches in practice today which tackle the Design Space Ex-
ploration issue. In the following, a few of the most relevant and widely practiced
approaches are discussed very briefly. Some of the key features and limitations
are highlighted and a comparison with our approach is provided:
The Ptolemy environment [8] is based on a simulator that o↵ers di↵erent lev-
els of abstraction for jointly simulating - or verifying - hardware and software
components. Ptolemy is rather focused on embedded systems than specifically
on design space exploration.
In POLIS environment, applications are described as a network of Codesign Fi-
nite State Machines (CFSMs) [6]. Each element in the network can be mapped
onto either a hardware or a software entity. This approach di↵ers from our work
because it deals with application models mainly and there is no separation of
architecture and application models. However, it is also intended for formal anal-
ysis.
Metropolis is a design environment for heterogeneous systems [5]. It o↵ers var-
ious models of computation (MoCs). However, both application and architecture
are modeled in the same environment. It uses an Instruction Set Simulator (ISS)
to generate execution traces which relies on executable application code. Hence,
there is no abstraction at application level.
In SPADE/SESAME, applications are modeled as Kahn Process Networks
(KPN) which are mapped onto the architecture models and the performance is
analyzed through simulation [11] [12] . There is separation of application and
architecture. This approach utilizes symbolic instructions (abstractions of RISC
instructions) and the models are not generic.
In ArchAn (Architecture Simulation Environment), the architecture is modeled
at the cycle-accurate level using a mixture of synchronous language Esterel and
C. ArchAn focuses on the optimization of hardware architecture by early per-
formance analysis [14] [7]. However the approach in ArchAn does not describe
the application and architecture in an orthogonal fashion. It is not intended for
formal analysis as well.
[15] proposes a methodology to speed up simulations of multi-processor SoCs
at TLM level with additional timing information. The idea of time propagation
through transaction passing bears some resemblance with our new simulation
approach. However, our environment is settled at a higher abstraction level so
that the procedure of transaction passing has been extended to optimally sup-
port high level models. As our aim is fast simulation, our simulation engine is
not based on the SystemC kernel any more.
[13] also follows the Y-Chart approach. Mapping of applications to architec-
tures is performed on graph-based descriptions and based on side-information
provided by the system designer. The mapping methodology uses abstract in-
formation such as cycle counts, and as opposed to our approach the control flow
of algorithms cannot be refined. The aforementioned framework is not intended
for formal analysis.
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7 Conclusions and future work

The main contribution introduced in the paper is the description of a lightweight
discrete event simulation engine which is especially optimized for DIPLODOCUS
high level application models. Simulation granularity is automatically adapted
to the requirements of the application thanks to our transaction-based approach.
When experimenting with models such the one of an MPEG2 decoder, we experi-
enced performance gains in terms of execution time up to factor 30 as compared
to a cycle-based SystemC simulator. It should be reemphasized that the gain
depends on the application model, it could potentially be much higher.
Several improvements are currently under development.
At first, hardware components model could be enhanced. For example, the bus
model shall reflect modern communication architectures comprising several pos-
sible communication paths (e.g. Network-on-Chip). The memory model is cur-
rently merely based on a fixed latency. Furthermore, latency due to bu↵ers in
buses and bridges has been omitted. Thus, model realism versus simulation com-
plexity is still under study for hardware components. Second, we expect to per-
form profiling of our simulation engine so as to identify time-consuming sections
of code and recode them (e.g. in assembly language). Also, multiprocessor / core
architectures could improve simulation performance significantly.
At last, more advanced simulation capabilities shall be introduced. Indeed, we
expect the simulation engine to be able, at run-time, to check for functional
requirements (e.g. if a client requests the bus, access is granted within 10ms).
Also, it would also be very interesting to automatically explore several branches
of control flow in order to enhance the coverage of simulations.
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