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Abstract. In the definition of domain-specific languages a MOF metamodel
is used to define the main types of its abstract syntax, and OCL invariants are
used to add semantic constraints. The semantics of a metamodel definition
can be given as a model type whose values are well-formed models. A model
is said to conform to its metamodel when it is a value of the correspond-
ing model type. However, when OCL invariants are involved, the concept
of model conformance has not yet been formally defined in the MOF stan-
dard. In this work, the concept of OCL-constrained metamodel conformance
is formally defined and used for defining style-preserving software architec-
ture configurations. This concept is supported in MOMENT2, an algebraic
framework for MOF metamodeling, where OCL constraints can be used for
both static and dynamic analysis.

Key words: Membership equational logic, OCL invariants, MOF meta-
model, Static and dynamic analysis of models.

1 Introduction

Model-driven development (MDD) constitutes a paradigm for representing software
artifacts with models, for manipulating them and for generating code from them in
an automated way. A model can be defined with a so-called domain-specific language
(DSL), which provides high-level modeling primitives to capture the semantics of a
specific application domain, such as business processes, configuration files or web-
based languages (see [1] for an annotated bibliography), or it can be defined with
a general-purpose modeling language such as the UML. In both cases, the corre-
sponding modeling language is constituted by an abstract syntax and a concrete
syntax, which can be either graphical or textual. In this paper, we focus on the for-
mal semantics of a modeling language, by considering its abstract syntax, when it is
enriched with additional semantic requirements specified by OCL constraints.

The Meta-Object Facility (MOF) [2] standard provides a UML-based modeling
language for defining the abstract syntax of a modeling language as a metamodel M ,
where types are metarepresented in a UML-like class diagram. A MOF metamodel
M provides the abstract syntax of a modeling language, but not the semantics of
the model conformance relation. In [3,4], we identified this problem and provided a
formal framework where the notions of metamodel realization, of model type JM K
and of model conformance are formally specified. These notions are implemented
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in MOMENT2 [5], where a metamodel realization is algebraically characterized by
a theory in membership equational logic (mel) [6] that is automatically generated
from a MOF metamodel M . Within this theory, the carrier of a specific sort in the
initial algebra of the metamodel realization constitutes a model type JM K, which
defines the set of well-formed models M that conform to the metamodel M . We call
such a relation the structural conformance relation, denoted M : M .

The static semantics of a metamodel M can be enriched by adding constraints
such as invariants, where the concepts that are defined in M can be used. These
invariants can be defined with the standard Object Contraint Language (OCL) [7],
enhancing the expressiveness of MOF. However, in the MOF and OCL standards, it
is not clear how OCL constraints affect the semantics of a model type JM K defined
in a metamodel M , and only implementation-oriented solutions are provided. In this
paper, we extend the algebraic semantics of MOF metamodels, presented in [4], by
considering OCL constraints.

We build on previous experience on encoding OCL expressions as equationally-
defined functions [8]. The main new contributions of this work are: (i) the notion
of metamodel specification as a pair (M ,C ), where M is a MOF metamodel and
C is a set of OCL constraints that are meaningful for M ; (ii) algebraic semantics
for metamodel specifications, so that the structural conformance relation is enriched
with the satisfaction of OCL constraints and characterized by equational axioms;
(iii) the use of OCL expressions for dynamic analysis using Maude-based verification
techniques [9]; and (iv) the implementation of these new concepts in the MOMENT2
framework by enabling the validation of OCL constraints over models in the Eclipse
Modeling Framework (EMF) [10].

In the following subsection, we describe the application of OCL constraints to
definitions of style-preserving software architecture configurations. We use this as a
running example throughout the paper.

1.1 An Example: architectural style preservation

To illustrate our approach we use a basic specification of a software architecture
component type, shown in Fig. 1.(a), where a component can be defined as client or
server (type attribute) and can be connected to other components. This component
type is given then as a MOF metamodel M . As explained above, such a metamodel
metarepresents a model type JM K, whose terms constitute well-formed software ar-
chitecture configurations. By using such a model type JM K, we can define a specific
software architecture configuration where client component instances can connect to
other clients or servers, as shown in Fig. 1.(b). A software architecture configuration
is a model M that conforms to the model type JM K, denoted M : M .

While a given configuration of component instances can be changed to improve
communication among components, there may still be some structural constraints
that must be preserved. Constraints of this kind are know as architectural styles,
which are specified by sets of rules indicating which components can be part of
the architecture and how they can be legally interconnected [11]. In this paper, we
use as an example the client/server architectural style, in which client component
instances can only connect to server component instances. The OCL invariant in Fig.
1.(a) represents such an architectural style in the software architecture definition of
the example.
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Fig. 1. (a) Metamodel M . (b) Valid configuration. (c) Non style-preserving config-
uration.

We can therefore view the client/server architecture as a metamodel specification
(M ,C ), where M is the above-defined metamodel for connected components, and
where C consists of the single OCL constraint just mentioned. A style-conformant
configuration for the client/server architecture is then a well-formed architectural
model M that satisfies the previous OCL invariant. The configuration provided in
Fig. 1.(c) is not client/server-conformant due to the marked link between the objects
c1 and c2.

In this paper we provide an algebraic, executable semantics for the constrained
conformance relation to both formalize the use of OCL invariants for the definition of
the static semantics of a domain-specific language by means of a metamodel specifi-
cation (M ,C ), and to provide automatic verification of the constrained conformance
relation. In Section 2, we summarize preliminary concepts about mel and Maude.
Section 3 gives a summary of the main concepts of the algebraic semantics for MOF:
model type JM K and structural conformance between a model M and its metamodel
M , i.e., M : M . These concepts are used in Section 4 to define an algebraic, exe-
cutable semantics for OCL expressions. Section 5 gives the algebraic semantics for
metamodel specifications (M ,C ), illustrating how OCL can be used for static anal-
ysis. Section 6 shows how OCL can be used for dynamic, model checking analysis in
MOMENT2. Section 7 compares our approach with other approaches that formalize
OCL for different purposes, and Section 8 summarizes the main contributions of the
paper.

2 Preliminaries

A membership equational logic (mel) [6] signature is a triple (K,Σ, S) (just Σ in the
following), with K a set of kinds, Σ = {Σw,k}(w,k)∈K∗×K a many-kinded signature
and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts. The kind of a sort s is
denoted by [s]. A mel Σ-algebra A contains a set Ak for each kind k ∈ K, a function
Af : Ak1 × · · · × Akn → Ak for each operator f ∈ Σk1···kn,k and a subset As ⊆ Ak
for each sort s ∈ Sk, with the meaning that the elements in sorts are well-defined,
while elements without a sort are errors. TΣ,k and TΣ(X)k denote, respectively, the
set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in X,
where X = {x1 : k1, . . . , xn : kn} is a set of kinded variables.

Given a mel signature Σ, atomic formulae have either the form t = t′ (Σ-
equation) or t : s (Σ-membership) with t, t′ ∈ TΣ(X)k and s ∈ Sk; and Σ-sentences
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are conditional formulae of the form (∀X) ϕ if
∧
i pi = qi ∧

∧
j wj : sj , where ϕ

is either a Σ-equation or a Σ-membership, and all the variables in ϕ, pi, qi, and wj
are in X.

A mel theory is a pair (Σ,E), with Σ a mel signature and E a set of Σ-sentences.
The paper [6] gives a detailed presentation of (Σ,E)-algebras, sound and complete
deduction rules, and initial and free algebras. In particular, given a mel theory
(Σ,E), its initial algebra is denoted T(Σ/E); its elements are E-equivalence classes of
ground terms in TΣ . Under appropriate executability requirements explained in [9],
such as confluence, termination, and sort-decreasingness modulo A, a mel theory
(Σ,E), where E = E0 ∪ A, becomes executable by rewriting with the equations
and memberships E0 modulo some structural axioms A. Furthermore, the initial
algebra T(Σ/E) then becomes isomorphic to the canonical term algebra CanΣ/E0,A

whose elements are A-equivalence classes of ground Σ-terms that cannot be further
simplified by the equations and memberships in E0.

A rewrite theory [12] is a triple R = (Σ,E,R), where (Σ,E) is a mel theory, and
R is a collection of (possibly conditional) rewrite rules of the form t −→ t′ if C,
where t, t′ are Σ-terms of the same kind, and C is the rule’s condition. Intuitively,
what the rewrite theory R specifies is a concurrent system, whose states are ele-
ments of the algebraic data type TΣ/E defined by the mel theory (Σ,E), and whose
concurrent transitions are specified by the rules R. That is, a rule t −→ t′ if C spec-
ifies transitions in which a fragment of the current state matches the pattern t, and
then in the resulting state that state fragment is transformed by the corresponding
instance of t′, provided that the condition C is satisfied.

Maude [9] is a declarative language where programs are rewrite theories, and
where Maude computations are logical deductions using the axioms specified in the
theory/program. Maude provides several verification techniques, including model
checking, for systems specified as rewrite theories. We show how these model checking
facilities are applied to model analysis with OCL invariants in Section 6.

3 Algebraic Semantics of MOF Metamodels

In this section, notions of the MOF standard and their formalization are presented.
These notions are specified in the MOMENT2 framework and constitute the basis for
the rest of the paper. MOF is a semiformal approach to define modeling languages
by defining their abstract syntax in a so-called metamodel M , which metarepresents
a model type JM K. What this metamodel describes is, of course, a set of models. We
call this the extensional semantics of M , and denote this semantics by JM K, which
can be informally defined as follows:

JM K = {M |M : M }.
In [4], we presented a formalization of the MOF framework in which the informal

MOF semantics just described is made mathematically precise in terms of the initial
algebra semantics of mel. Let JMOFK denote the set of all MOF metamodels M ,
and let SpecMEL denote the set of all mel specifications. Our algebraic semantics is
then defined as a function

A : JMOFK −→ SpecMEL
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that associates to each MOF metamodel M a corresponding mel specification
A(M ), which constitutes the metamodel realization. Recall that any mel signa-
ture Σ has an associated set S of sorts. Therefore, in the initial algebra T(Σ,E) each
sort s ∈ S has an associated set of elements T(Σ,E),s. The key point is that in any
mel specification of the form A(M ), there is always a sort called Model , whose data
elements in the initial algebra are precisely the data representations of those models
that conform to M . That is, the sort Model syntactically represents the model type
JM K associated to a metamodel M . The structural conformance relation between a
model and its metamodel is then defined mathematically by the equivalence

M : M ⇔ M ∈ TA(M ),Model .

Therefore, we can give a precise mathematical semantics to our informal MOF
extensional semantics by means of the defining equation

JM K = TA(M ),Model .

Note that this algebraic semantics gives a precise mathematical meaning to the
entities lacking such a precise meaning in the informal semantics, namely, the notions
of: (i) model type JM K, (ii) metamodel realization A(M ), and (iii) conformance
relation M : M .

For the metamodel M in Fig. 1.(a), the model depicted in Fig. 1.(c) can be
defined as a term of sort Model in the A(M ) theory as follows:

<< < ’c1 : Component | type = "client",

connectsTo = ’c2 ’c3 ’c4 >

< ’c2 : Component | type = "client", connectsTo = ’c4 >

< ’c3 : Component | type = "server", connectsTo >

< ’c4 : Component | type = "server", connectsTo > >>,

where each tuple < Oid : ClassName | Properties > represents an object that
is typed with a specific object type of the corresponding metamodel. Objects are
defined with properties of two kinds: attributes, typed with simple data types, and
references, typed with object identifier types. Each property is defined by a pair
(name = value). All the constructors that are used in the previous term are de-
fined in the signature of the A(M ) theory. Note that a term of this kind represents
an attributed typed graph with labelled unidirectional edges where the type graph
is the metamodel. This representation of models (graphs) as algebraic terms is au-
tomatically generated by MOMENT2 from EMF models.

4 Algebraic Semantics of OCL Expressions

In this section, we introduce the algebraic, executable specification of OCL available
in MOMENT2, which is based on [8,3]. OCL permits defining expressions that are
useful to perform queries upon models M that conform to a given metamodel M .
OCL expressions are parameterized with user-defined types, such as classes or enu-
merations, that are provided in a metamodel M . In MOMENT2, OCL expressions
acquire an algebraic semantics that can be used for many purposes. One of them
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is the executable formalization of the constrained conformance relation between a
model M and a metamodel specification (M ,C ) in the following section.

Let OclExpression denote the set of well-formed OCL expressions. Not all OCL
expressions in OclExpression make sense for a given metamodel. We say that a spe-
cific OCL expression e, such that e ∈ OclExpression, is meaningful for a metamodel
M , denoted by (M , e), iff all user-defined types, if any, that are used in the expres-
sion e are metarepresented in M .

An OCL expression is evaluated over a root object in a model M from which
other objects in the model can be traversed. In the example in Fig. 1.c), we can tra-
verse connected components through the connectsTo reference. In particular, those
objects that are reachable through references can be traversed. In the OCL expres-
sion, the object type of the root object is indicated in the so-called context of the
OCL expression. In this setting, the object type is called contextual type and the
root object, to which an OCL expression is applied, is called contextual instance. In
an OCL expression, the contextual instance can be explicitly referred to by means
of the self keyword.

In MOMENT2, we represent the concrete syntax of OCL as a membership equa-
tional theory OCLGrammar having a sort OclExpressionCS whose terms represent
syntactically well-formed OCL expressions3. Therefore, the following OCL expression
is a valid term of sort OclExpressionCS:

’self . ’connectsTo -> forAll( ’c | ’c . ’type == # "server")

and it is a meaningful OCL expression for the metamodel M of the example if we
take into account the object type Component as contextual type of the expression.

4.1 Algebraic Executable Semantics of Meaningful OCL Expressions

OCL expressions can be defined by using generic OCL types, such as collections,
and user-defined types. The generic OCL types can be split in two groups: basic
datatypes and collection types. OCL provides a set of operators that can be applied
on values of these types. In particular, among collection operators, we can distinguish
between regular operators and loop operators. On the one hand, regular operators
provide common functionality such as the size of a collection or the inclusion of
elements within a collection. On the other hand, loop operators constitute second-
order operators that receive a user-defined OCL expression as argument, normally
called loop body expression, and that apply it to the elements of a collection depending
on the nature of the operator. For example, the forAll operator receives a boolean
loop body expression and checks that all the elements in the collection satisfy the
predicate.

The algebraic semantics of a meaningful OCL expression (M , e) is given by the
partial function

C : JMOFK×OclExpression ⇀ SpecMEL,

3 There are a few minor syntactic differences with the concrete syntax of OCL: identifiers
are preceded by a quote, literal values are wrapped by the # operator, and the equals
operator symbol = is ==.
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which is defined for all meaningful OCL expressions (M , e) and maps (M , e) to a
mel theory C(M , e) such that A(M ) ⊆ C(M , e). In addition, the C(M , e) theory
provides an algebraic specification for OCL basic datatypes and OCL collection
types, where their operators are provided as equationally-defined functions4.

The C function can be viewed as an internal compiler from OCL to mel. The C
function traverses the term-based abstract syntax tree of the input OCL expression e
by generating equationally-defined functions for user-defined OCL expressions, such
as loop body expressions, in a top-down manner. The outmost OCL expression is
represented by an equationally-defined function of the form

exp : Object ×Model −→ 〈OclType〉,

where exp is a symbol that is generated for the corresponding OCL expression e,
Object represents the set of objects that can be defined with user-defined types from
a metamodel M , Model is the model type that corresponds to M , and 〈OclType〉
represents a valid OCL type depending on the type of e. In our running example,
we obtain

exp : Object Model -> Bool.

OCL expressions can then be executed over a contextual instance o in a model
definition M by means of a term of the form exp(o,M), whose return type depends
on the user-defined expression. For the expression

’self . ’connectsTo -> forAll( ’c | ’c . ’type == # "server"),

the exp function is defined by the equation:

exp(c , M) = c . ’connectsTo(M) -> forAll ( body ; empty-env ; M ),

where body is a constant that identifies the function that represents the loop body
expression, c . ’connectsTo(M) projects all the objects in the model M that can be
traversed from the object c through the reference connectsTo, empty-env is a list of
environment variables (used when there are variables that are bound in an outer
OCL expression), and M is a variable that represents the model M . If we denote
the model in Fig. 1.(c) by model2 and the objects with identifiers c1 and c2 by o1
and o2, repectively, we obtain the following results with the above OCL expression:
exp(o1, model2) = false and exp(o2, model2) = true.

Therefore, the C function provides an algebraic executable semantics of meaning-
ful OCL expressions (M , e) by means of an executable mel theory where all OCL
datatypes are algebraically defined, and where user-defined OCL expressions are
available as equationally-defined functions. By considering the executability require-
ments for mel theories, the presented OCL formalization can be used for evaluating
OCL queries within a MOF-like modeling environment, such as the Eclipse Model-
ing Framework through MOMENT2. In addition, and even more importantly, this
algebraic semantics for OCL expressions can be used at a theoretical level to provide
a formal semantics to concepts that are not yet sufficiently precise in the MOF stan-
dard, such as the constrained conformance relation, and, at a more practical level,
to enhance static and dynamic model analysis with OCL invariants.
4 See [3] for a detailed explanation of the complete algebraic specification of OCL.
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5 Algebraic Executable Semantics of Metamodel
Specifications

OCL permits imposing constraints upon specific object types in a metamodel M ,
thus constraining the set of models M that conform to M . We call the resulting
conformance relation the constrained conformance relation. In this section, we define
the concept of metamodel specification (M ,C ), which is used to attach a set C of
meaningful OCL constraints to a metamodel M . Relying on the aforementioned
algebraic semantics of OCL expressions, the algebraic semantics of a metamodel
specification (M ,C ) is also given, defining how a model type can be semantically
enriched with OCL constraints.

5.1 Metamodel Specifications

An OCL invariant c is a constraint that is defined using a boolean body expres-
sion that evaluates to true if the invariant is satisfied. The body expression of
an invariant c, denoted body(c), is a well-formed boolean OCL expression, i.e.,
body(c) ∈ OclExpression. An invariant is also defined with a contextual type by
means of the clause context as follows:

context ’Component inv : <meaningful OCL expression>

where ’Component is the name of an object type, in this case defined in the metamodel
M of the example. An OCL invariant c must hold true for any instance of the
contextual type at any moment in time. Only when an instance is executing an
operation, is c allowed not to evaluate to true.

An invariant c is meaningful for a metamodel M iff (M , body(c)) is a meaningful
boolean OCL expression. A set of OCL invariants that are meaningful for a meta-
model M may be evaluated over a specific model M : M . More precisely, each OCL
invariant c ∈ C is evaluated for each contextual instance o ∈ M . We say that a
model M satisfies a set C of OCL invariants that are meaningful for a metamodel
M iff all such invariants evaluate to true for every contextual instance of the model
M . We write M � C to denote this OCL constraint satisfaction relation.

A metamodel specification (M ,C ) is constituted by a metamodel M , such that
M : MOF, and a set C of OCL invariants that are meaningful for M . A metamodel
specification (M ,C ) defines a model type whose values are models M that both
conform to the metamodel M and satisfy the set C of meaningful OCL invariants.
We define the extensional semantics of a metamodel specification (M ,C ) by the
equality:

J(M ,C )K = {M |M : M ∧ M � C }.

5.2 Algebraic Executable Semantics of Metamodel Specifications

Let SpecMOF denote the set of well-defined metamodel specifications (M ,C ). To
realize a metamodel specification (M ,C ), we define a function

A : SpecMOF −→ SpecMEL
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that maps a metamodel specification (M ,C ) to an executable mel theory A(M ,C ).
The resulting A(M ,C ) theory, called metamodel specification realization, also formal-
izes the body expressions of all constraints C involved in the metamodel specification,
i.e., we have the mel theory inclusion⋃

c ∈ C

C(M , body(c)) ⊆ A(M ,C ).

Given a metamodel specification (M ,C ), the model type JM K is defined in the
A(M ) theory. The model type JM K is preserved in the A(M ,C ) theory by means of
the subtheory inclusion

A(M ) ⊆ A(M ,C ),

where the constrained model type J(M ,C )K is defined as a subset of the model type
JM K, i.e., J(M ,C )K ⊆ JM K. J(M ,C )K constitutes the constrained model type that
is syntactically represented by the sort CModel in the theory A(M ,C ). This model
type inclusion is syntactically defined by the subsort relation CModel < Model .

The A function defines the constrained model type J(M ,C )K, in the A(M ,C )
theory, by means of a membership axiom of the form

M : CModel
if M : Model ∧ condition1(M) = true ∧ · · · ∧ conditionn(M) = true, (†)

where each constraint definition ci, in C , corresponds to a boolean function conditioni
that is generated by means of the C function and that is evaluated over a model
M as explained in Section 4.1. When C = ∅, JM K = J(M , ∅)K and therefore
A(M ) = A(M , ∅). The above membership axiom forces the evaluation of OCL con-
straints C over a model M , so that M : (M ,C ) iff M � C . Therefore, a model
definition M , such that M : M , satisfies all the constraints that are defined in C ,
iff M is a value of the constrained model type J(M ,C )K. Each conditioni function
evaluates the boolean body expression of an invariant for all the corresponding con-
textual instances. In the invariant of our running example we obtain the function:

op condition : Model -> Bool .

eq [counterexample] : condition(<<

< O1 : Component | connectsTo = O2 S, PS1 >

< O2 : Component | type = "client", PS2 > ObjCol >> ) = false .

eq [invariant-satisfied] : condition(M) = true [owise] .

where the equation counterexample tries to find a component where the invariant is
not satisfied, i.e., is connected to a client component. If no counterexample exists the
equation invariant-satisfied states that the invariant is satisfied. The resulting
membership that is automatically compiled for the OCL constraint of the example
is expressed, in Maude notation, as follows

cmb M : CModel if condition(M).

Using the mel theory A(M ,C ), the semantics of the constrained model type
J(M ,C )K is defined in terms of the initial algebra semantics of
A(M ,C ) as follows

J(M ,C )K = TA(M ,C ),CModel
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the OCL constraint satisfaction is defined by the equivalence

M � C ⇔M ∈ J(M ,C )K

and the constrained conformance relation M : (M ,C ) is defined by the equivalence

M : (M ,C )⇔M ∈ J(M ,C )K.

The A(M ,C ) theory constitutes a formal realization as a theory in mel of the
metamodel specification (M ,C ). In addition, A(M ,C ) is executable, providing a
formal decision procedure for the OCL constraint satisfaction relation. Furthermore,
by being a mel theory with initial algebra semantics, it gives an algebraic semantics
for the types that are defined as data in (M ,C ).

5.3 MOMENT2-OCL

The presented algebraic semantics for OCL is available in MOMENT2 [5], a formal
specification and verification framework for MOF-based software artifacts, specified
in Maude and plugged into the EMF. MOMENT2 provides a collection of tools,
among which MOMENT2-OCL provides a front-end for defining metamodel specifi-
cations (M ,C ), where M is an EMF metamodel and C is a set of textual OCL invari-
ants. MOMENT2-OCL defines the semantics of a metamodel specification (M ,C )
by means of the function A, and offers a mechanism to automatically check the con-
strained conformance relation between a model M and a constrained model type
J(M ,C )K, i.e., M : (M ,C ) by evaluating the membership axiom †.

6 Dynamic Analysis with OCL Invariants

In this section, we show how the aforementioned algebraic semantics for OCL expres-
sions and metamodel specifications (M ,C ) can be used for formal dynamic analy-
sis. In our running example, software architectures are configurations of components
that may be connected to each other through the connectsTo reference. Given a
specific initial configuration M of components, we can use model checking in order
to verify whether or not all possible reconfigurations of an initial configuration are
style-preserving w.r.t. a metamodel specification (M ,C ), where the set C defines
the corresponding architectural style to be preserved.

We add a dynamic connection load balancing strategy, so that a server component
should not have more than two connections at a time, i.e., when a component has
more than two connections, the spare connections are forwarded to other components
with less than two incoming connections. We depict the reconfiguration as a graph
transformation rule in Fig. 2, where a rule is defined with a left-hand side (LHS)
pattern and a right-hand side (RHS) pattern. Each pattern is constituted by nodes
that represent Component objects in a model (graph) M and edges representing
connectsTo references between them. A reconfiguration can be applied whenever
the LHS pattern of the rule can be matched against a specific configuration M of
components, and then the edges are manipulated as follows: an edge in the LHS and
not in the RHS is removed from the configuration, an edge not in the LHS but in
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the RHS is added, the rest of edges remain unmodified. Marked edges indicate that
the references must not exist in order to apply the rule; this is known as a negative
application condition in the graph transformation community.

Fig. 2. Reconfiguration rule.

The graph-theoretic nature of models is axiomatized in our algebraic semantics
as a set of objects modulo the associativity, commutativity, and identity axioms of
set union. The semantics of a reconfiguration can then be naturally expressed as
a rewrite theory [12] extending the algebraic semantics A(M ,C ) of our metamodel
specification with rewrite rules that are applied modulo the equational axioms. In
this way, the above graph-transformation rule can be summarized at a high level as
follows:

op free-reconfiguration : Model -> Model .

crl free-reconfiguration(M) =>

free-reconfiguration(<< < O1 : Component | PS1 >

< O2 : Component | connectsTo = O1 S2, PS2 >

< O3 : Component | connectsTo = O1 S3, PS3 >

< O4 : Component | connectsTo = O6 S4, PS4 >

< O6 : Component | PS6 > ObjCol >>)

if << < O1 : Component | PS1 >

< O2 : Component | connectsTo = O1 S2, PS2 >

< O3 : Component | connectsTo = O1 S3, PS3 >

< O4 : Component | connectsTo = O1 S4, PS4 >

< O6 : Component | PS6 >

ObjCol >> := M /\ nac(O6, M) .

where the terms with variables that constitute the LHS and RHS of the equation
represent the graph patterns defined in Fig. 2, and the condition corresponds to the
negative application condition that enables the application of the rule:

op nac : Oid Model -> Bool .

eq [satisfiedNAC] : nac(O1, M) = true [owise] .

eq [counterexampleNAC] :

nac(O1, << < O2 : Component | connectsTo = O1 S2, PS2 >

< O3 : Component | connectsTo = O1 S3, PS3 > ObjCol >>) = false .

The metamodel specification realization A(M ,C ), corresponding to Fig. 1.(a)
and to the singleton set C of OCL constraints, and the rewriting rule just presented
above define a state transition system, where states represent configurations M and
M ′ of components and transitions M −→M ′ represent an application of the recon-
figuration rule. However, a reconfiguration of this kind could conceivably produce
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configurations M ′ of components that are not client/server style-preserving, i.e., such
that M ′ : M but M ′ 2 C . Therefore, it is important to formally verify whether or
not a given reconfiguration, like the one above, is style-preserving.

Fig. 3. Initial software architecture configuration (a) and configuration that does
not preserve the client/server architectural style (b).

In Maude, the search command allows one to exhaustively explore (following a
breadth-first strategy) the reachable state space defined by a state transition system
as the one above, checking whether an invariant is violated. We can use the search
command to find out if the reconfiguration free-reconfiguration produces such an
illegal configuration as follows:

search [1] free-reconfiguration(model) =>+

free-reconfiguration(M:Model)

such that not(M:Model :: CModel) .

where model is a constant that represents the model M in Fig. 3.a. This command
finds a counterexample, shown in Fig. 3.b, where a client component is connected to
another client component. An alternative reconfiguration rule can be defined to avoid
this problem as shown below, by indicating that the node 6 in the graph patterns
of the rule in Fig. 2 is of type server. No counterexamples are found when running
again the search command with the new reconfiguration rule.

op safe-reconfiguration : Model -> Model .

crl safe-reconfiguration(M) =>

safe-reconfiguration(<< < O1 : Component | PS1 >

< O2 : Component | connectsTo = O1 S2, PS2 >

< O3 : Component | connectsTo = O1 S3, PS3 >

< O4 : Component | connectsTo = O6 S4, PS4 >

< O6 : Component | type = "server", PS6 > ObjCol >>)

if << < O1 : Component | PS1 >

< O2 : Component | connectsTo = O1 S2, PS2 >

< O3 : Component | connectsTo = O1 S3, PS3 >

< O4 : Component | connectsTo = O1 S4, PS4 >

< O6 : Component | type = "server", PS6 >

ObjCol >> := M /\ nac(O6, M) .
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7 Related work

The formal semantics of OCL was introduced in [13] and was included in the standard
specification [7]. The MOF standard specification [2] provides the semantics of the
MOF meta-metamodel and indicates how OCL constraints can be attached to a
MOF metamodel from a syntactical point of view.

Clark, Evans and Kent formalized the use of UML and OCL with the MML lan-
guage in [14]. In their approach the concrete syntax of MML is mapped to the MML
Calculus, which provides an operational semantics for both UML modeling con-
structs and OCL operations. In MOMENT2, we also follow a translational approach
to provide semantics to MOF (as presented in [15]) and to OCL. MOF (through
EMF) and OCL constitute our concrete syntax and the C mapping provides the
translation of OCL expressions, defined in a metamodel specification, into a mel
theory. Due to the fact that we focus on MOF, we have not considered class meth-
ods at this stage, so that OCL pre- and post-conditions are not currently supported.

Our goal in MOMENT2 consists in leveraging the use of rewriting logic and
Maude-based formal verification techniques in model-driven development, in partic-
ular in the use of OCL in this paper. Therefore, we discuss below other approaches
that provide support for formal analysis based on OCL. On the one hand, several
tools provide support for static analysis with OCL constraints: USE [16] and MOVA
[17] with validation of OCL constraints, and HOL-OCL [18], UML2Alloy [19] and
UMLToCSP [20] for verification of UML/OCL models, among others. In particu-
lar, HOL/OCL provides an elegant approach to encode OCL iterator operators as
higher order constructs. However, we have chosen mel for our OCL formalization be-
cause it is a sublogic of rewriting logic, hence equationally-defined OCL expressions
can be used to define properties that can be verified in rewrite systems by means of
Maude’s facilities for reachability analysis and LTL model checking. MOVA also uses
mel as underlying formalism and focuses on the specification of UML/OCL mod-
els, which are represented as mel theories. In MOMENT2, we focus on metamodel
specifications (M ,C ), and a model M is defined as a term modulo associativity
commutativity and identity, i.e., a graph [4], and not as a mel theory as in MOVA.

On the other hand, dynamic analysis with OCL is usually supported by mapping
UML/OCL models into a given formalism for model checking, such as the Object-
Based Temporal Logic (BOTL), a logic based on branching temporal logic CTL and
OCL, in [21]. The tool SOCLe [22] provides an extension of OCL (EOCL) with CTL
temporal operators and first-order features, inspired in BOTL, that allows model
checking EOCL predicates on UML models expressed as abstract state machines.
In our case, we automatically map metamodel specifications (M ,C ) to mel theo-
ries enabling model checking of OCL invariants in rewriting logic as shown above.
Although without OCL, in [23], the authors present how to directly use Maude
to provide the structural and dynamic semantics of DSLs, where metamodels are
encoded as rewrite theories and models as collections of objects. Therefore, Maude-
based formal verification techniques can be applied as described in [9]. Despite the
similar use of verification techniques, there are several differences between both ap-
proaches. MOMENT2 uses OMG standards, such as MOF and OCL, as interface
between industrial environments, such as EMF, and the formalism based on Maude
so that the use of the formalism remains hidden to the user. In addition, we have
identified and formalized the notions of model type and conformance relation where
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OCL constraints can be taken into account. A complete description of these concepts
and their formalization is provided in [3].

In the graph transformation field, several analysis techniques have been developed
[24], but they usually work with simple type graphs, less expressive than metamodel
specifications. [25] shows how graph transformations can be mapped to OCL pre- and
post-conditions, so that the aforementioned tools for OCL-based formal verification
can be applied. In addition, the authors considered a number of analysis techniques
with OCL properties, such as correctness preservation when a transformation rule
is applied, among others. Our approach and strategy are just the opposite: we have
mapped metamodel specifications (M ,C ) into mel theories so that the C function is
used to include OCL expressions in graph transformations in the tool MOMENT2-
GT [5].

As for the running example, Architectural Design Rewriting (ADR) [26] is an
approach for hierarchical style-based reconfigurations of software architectures that
is based on rewriting logic. ADR allows defining style-preserving reconfigurations
while in our approach style preservation should be explicitly verified. However, our
approach is not specific to the service-oriented computing domain and relies on OMG
standards for formalizing DSLs.

8 Conclusions and Future Work

We have presented several contributions towards the main goal of increasing the
formal analysis power of model-based software engineering. Our first contribution
has centered on the fact that metamodel specifications frequently include both the
metamodel syntax itself and additional semantic constraints, thus making the issue
of checking conformance of a model to a metamodel specification a semantic one.
To automate the cheking of what we have called constrained model conformance, we
have given an algebraic, executable semantics of metamodel specifications, embodied
in the function A. This provides a static analysis feature for models in a modeling lan-
guage with semantic constraints, and we have illustrated its use with a client-server
architectural style example. Our second contribution has been to show how the same
A function can also be used for dynamic analysis when models are transformed, so
that one can check that the models obtained by transforming a given model us-
ing reconfiguration rules satisfy some correctness criteria. We have illustrated this
by showing through model checking how a given reconfiguration rule is incorrect,
producing models that fail to satisfy the client-server matamodel specification and
giving a better rule not making such violations. More generally, the semantics and
infrastructure developed here can be used in conjuntion with Maude’s LTL model
checker to verify any dynamic properties expressed as LTL formulas whose atomic
predicates are defined by OCL invariants. Our third and last contribution has been
to incorporate support for automatic verification of OCL invariants and of the con-
strained conformance relation in the latest version MOMENT2 tool [5].

The presented semantics for OCL expressions is integrated in a QVT-based graph
transformation language, MOMENT2-GT (also available in the MOMENT2 frame-
work), so that OCL expressions can be used to perform queries and to manipulate
data. In MOMENT2-GT, a model transformation is defined as a collection of graph
production rules, which are compiled to equations and rewrites as the ones shown in
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Section 6. Therefore, Maude-based model checking facilities can be used for model
checking model transformations with OCL predicates. In future work, we plan to
apply MOMENT2 and Maude-based formal verification techniques to perform for-
mal analysis of real-time embedded systems in the avionics specific domain, by using
model-based languages like the Architecture Analysis and Design Language (AADL)
[27].
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