
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 715–724, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Designing for Change: Engineering Adaptable and 
Adaptive User Interaction by Focusing on User Goals 

Bruno S. da Silva, Ariane M. Bueno, and Simone D.J. Barbosa 

Departamento de Informática, PUC-Rio 
R. Marquês de São Vicente, 225 

Gávea, Rio de Janeiro, RJ, Brasil, 22451-900 
{brunosantana,abueno,simone}@inf.puc-rio.br 

Abstract. In the human-computer interaction area, research work in end-user 
programming, end-user development, and user or system-driven adaptation of 
interactive systems has attempted to cope with variations in users’ intents, 
context changes and evolutions. In the field of requirements engineering, 
research that addresses similar issues has been called variability analysis. Most 
work in variability analysis, however, focuses on prioritizing one or few 
possible solutions to be implemented in the final product, whereas in human-
computer interaction many researchers advocate that we should strive to enable 
users to adjust and adapt the product as needed. This paper presents an 
approach to bring the results obtained in requirements engineering to inform the 
choice of interaction design solutions to cope with variability. 

Keywords: Variability analysis, interactive systems adaptation, bridging 
requirements engineering and interaction design. 

1   Introduction 

Despite the research effort to deal with differences and variations among users and 
devices in human-computer interaction (HCI), even today we lack a systematic 
approach to deal with variations that reflect differences in the context of use, in user 
goals, needs, preferences, and strategies to achieve them. Research focusing on 
requirements analysis calls our attention to the importance of variations among users, 
devices and contexts and which propose techniques to analyze them [10, 11, 12, 16, 
20]. In HCI, on the other hand, many researchers have proposed strategies to deal 
with variations at interaction time, typically with flexible, adaptive and adaptable 
solutions [15, 17, 18, 19, 26]. Nevertheless, there is still a gap between the 
identification of variability in the problem space and the definition of adequate 
solutions for coping with variability in the solution space.  

In requirements engineering, HCI-related concerns are typically treated as 
softgoals, which can be achieved by selecting, at design time, certain task 
decomposition, based on the user and business priorities identified by the 
requirements engineer [3, 13]. This means that, if users’ priorities and softgoals 
change during system usage, the system will not be able to accommodate them, and 
may therefore become inefficient or even obsolete. The research area of intelligent 



716 B.S. da Silva, A.M. Bueno, and S.D.J. Barbosa 

user interfaces, in particular on adaptable and adaptive systems [15], aims to 
accommodate changes in needs and priorities during interaction, thus rendering the 
system more efficient and useful for a longer period of time. 

Most work in adaptable and adaptive user interfaces, however, focuses on the 
specification and implementation of the adaptation mechanisms. There is little work 
on how to decide which adaptation strategy to adopt to deal with certain identified 
variations, based on the analysis of requirements and user needs. More specifically, 
there is little work on designing adaptation based on contextualized user goals 
(identified during analysis), as opposed to specific ways of achieving them (which 
already result from design decisions that, if made too early, may unnecessarily restrict 
the possible adaptation strategies). 

We have been working on a variability analysis approach based on the users’ 
discourse that characterizes their goals [24, 25]. In those previous works, the focus 
was to separately explore the problem and the solution spaces of the HCI design 
activity related to differences and variations among HCI concerns. In this work, we 
relate the dimensions analyzed in the problem space and the corresponding strategies 
deemed appropriate to accommodate change in the solution space during interaction 
time. 

This paper is organized as follows: the next section describes our account of the 
problem and solution spaces. The third section describes how variability is considered 
in each space. Next, the paper presents the proposed relations between the two spaces, 
and the fifth section presents some concluding remarks. 

2   The Problem and Solution Spaces 

The problem space may at first be characterized by the people who will use or benefit 
from the system, and, as in semiotic engineering, what they “want and need to do, in 
which preferred ways, and why” [4]. Moreover, the contexts [6] in which user activity 
occurs is also part of the problem space. Variations can be found in the heterogeneity 
of the user population, their goals or the context for their activities, as well as their 
evolution in time. 

Regarding users, it is important to investigate the psychological characteristics 
(e.g. attitude, motivation, preferences), knowledge and experience (e.g. typing skill, 
task experience) and physical characteristics (e.g. color blindness, hearing difficulty). 
Regarding their goals, it is important to examine the user goals when they perform 
their activities, the frequency and importance of the activities, and the main artifacts 
and objects used in performing them. Concerning the context of the activity, it is 
important to study when and where the goals need to be/are achieved: the time 
divisions (e.g. hours and days) or intervals (e.g. seasonal intervals) which are relevant 
to user goals and related activities; the set of places (e.g. home and work) or a 
hierarchy of places (e.g. a room at a university, a campus, a city, and so on); the 
physical environment (e.g. open/close work areas, lighting, heat, noise level, 
distractions and interruptions); the social and cultural environment (e.g. in broad 
terms, morale, motivation, values and policy, or, in specific terms, the possibility of 
learning to use the system with colleagues, cases when users are pressured to go fast, 
and this culture works better with uncertainty than others) [11, 23]. 



 Designing for Change: Engineering Adaptable and Adaptive User Interaction  717 

To understand the design solution space, from an HCI perspective, we need to 
understand what goes on during the use of a system. The semiotic engineering theory 
of human-computer interaction [4] brings to our attention that, as intellectual artifacts, 
every software [5]: 

• linguistically encodes both a particular understanding or interpretation of a 
problem situation and a particular set of corresponding solutions; and 

• is designed with the goal that users will be able to formulate and express their 
intents within the linguistic system encoded in the artifact. 

By linguistic, de Souza means that the artifact encoding is “based on a system of 
symbols—verbal, visual, aural, or other—that can be interpreted by consistent 
semantic rules” [5]. In semiotic engineering, Jakobson’s communication model ([13], 
Fig. 1.) is used to illustrate human-computer interaction phenomena and as thus it 
provides a basis for defining the solution space. 

context

contact (channel)

addresser 
(sender)

addressee 
(receiver)

message

code

 

Fig. 1. Jakobson's communication model 

As with other semiotic approaches, semiotic engineering views HCI as a particular 
kind of computer-mediated human interaction [4]. It views software as a meta-
communication artifact, i.e., a (meta)message produced by the designer about the 
communication that may take place when users communicate with the message itself 
at interaction time. The user interface is said to be the “designer’s deputy”, in the 
sense that it encodes a range of meanings, meaning manipulations, and design 
principles that the designer chose to synthesize in the product. 

The MoLIC language, Modeling Language for Interaction as Conversation, was 
devised to help designers elaborate the metamessage [1] at a dialogue level, allowing 
them to represent and reflect on: the user’s goals or intents supported by the system; the 
conversations (i.e. sequences of illocutions and turn taking performed by the user and 
the designer’s deputy) through which the users may achieve their goals; restrictions on 
the utterance of certain illocutions according to the context of the conversation (or the 
world); the perlocutions or effects of each (segment of) conversation; illocutions aimed 
at repairing communicative breakdowns that the designer is able to anticipate; and the 
signs1 contained in the illocutions.  

Thus, we may say that MoLIC further details the solution space with respect to 
human-computer interaction. MoLIC does not, however, represent the concrete user 
interface, which is also part of the solution space. In this paper, we do not deal 
                                                           
1 Peirce defined sign as “anything that stands for something else, to somebody, in 

some respect or capacity” [22]. 



718 B.S. da Silva, A.M. Bueno, and S.D.J. Barbosa 

extensively with the user interface itself. When necessary, we only point to some forms 
of user interface adaptation, without detailing how it can or should be represented. 

In this paper, we propose to classify the signs in the solution space in three groups:  

• object signs, which represent concepts, entities or things; 
• task signs, which represent actions that manipulate the object signs; and 
• user interface signs, which represent the user interface elements that refer to 

objects and tasks. 

As we will see in the fourth section, variations in each group of signs (as a result of 
the requirements elicitation and analysis) will point to different interactive solutions 
to cope with these variations. 

3   Exploring Variability  

Changes in the problem space may require changes in the solution space. In order to 
explore variability in the problem space, we follow the variability analysis process 
defined in [24] and refined in [25], which comprises the following steps: 

1. Elicit information about domain, user goals, users, context of use and system 
(possible hardware and infrastructure). 

2. Identify goal-directed user requests. 
3. Identify and describe the signs present in the user discourse about their domain, 

goals, and tasks. 
4. Rewrite user requests using cases. 
5. Organize signs in an ontology. 
6. Explore possible variations by expanding user requests. 
7. Explore possible variations by substituting signs in user requests. 

The data collected in (1) are typically answers to the general 5W2H questions: who, 
what, when, where, why, how, and how much. In addition, issues of time could 
combine when and how much to generate questions about how often and for how long. 

Who participates in the interaction process? Examining the interaction process, 
one realizes that both user and system participate in it. Regarding the users, 
information about their skills and preferences [11, 12, 23] need to be elicited, as well 
as any constraints and special needs they may have. Regarding the system, 
information about the available hardware platforms (desktop, laptop, PDA, cell 
phone, etc.), input and output devices (mouse, keyboard, pen, etc.), and infrastructure 
(network access, disk space, etc.) are necessary. It is important to note that, at this 
stage, no design or implementation decisions are made. Instead, possibilities are being 
elicited that will help anticipate variations. Only later should these aspects drive 
design decisions.  

What are the participants’ goals? The users’ goals (i.e. the expected results of their 
interaction with the system) are traditionally investigated during requirements 
engineering [3, 11, 1420, 20]. The “system’s” goals, on the other hand, are a product 
of the designers’ work to support the users’ goals, and thus are designed in later 
stages of development process.  



 Designing for Change: Engineering Adaptable and Adaptive User Interaction  719 

When, where, and in which contexts will goals be achieved? Besides common 
known time divisions, such as minutes, hours, days, months, and so on, the 
requirements engineer should investigate other relevant time divisions or intervals, 
such as seasonal intervals. The interaction can occur in a set or hierarchy of places, 
such as home and work, or university<campus<city<state<country. An analysis of the 
environments should investigate the physical (e.g. levels of light and noise), social 
(e.g. the possibility of learning to use the system with colleagues; pressure to be 
efficient) and cultural (e.g. ways to deal with uncertainty) aspects of the environment 
that can interfere in goal formulation and the user-system interaction [11, 23, 26]. 
Also, the more general question helps to uncover additional elements to be encoded in 
the problem space as part of the context, as discussed by Dourish in [6].  

How can each goal be achieved? Possible strategies users follow to achieve each 
goal in their current context of activity. More recently, variability has also been taken 
into account [10, 12, 16, 20]. Later, during design, one or more selected strategies will 
be mapped onto interaction sequences at the user interface. 

How often is each goal formulated? This is a variation of the How much? question 
that is very relevant for investigating recurring events and goals. 

The analysis should also consider variations in time, with special attention to the 
frequency of change. For example, it is not sufficient to investigate that a specific user 
has such and such skills and preferences, because they can change in time, motivated, 
among other factors, by training or promotion. As the concerns involved in variability 
can change during system usage, it may not sufficient to deal with variability 
searching for “the best option” at design time for user X and context Y (privileging 
some softgoals over others) to design and develop the system according to this option. 
It is also important to consider strategies to deal with variability during system usage. 

We identify the signs (words, pictures etc. that users employ to mean something) 
present in the users’ discourse about their goals, and organize them in an ontology; 
and to identify goal-directed user requests and rewrite them using cases (e.g. 
Fillmore’s [9]). These are then reviewed and expanded through systematic question 
asking and, finally, we analyze the system variability, also through systematic 
question asking and by traversing the sign ontology. 

The focus on goal-directed user requests means that goals have not yet been 
decomposed into tasks. A user request may be viewed as a high-level “instruction” 
issued to a system for the user to achieve her goal, assuming the system could 
interpret it and take appropriate action(s). For instance, in a media player application, 
“play this playlist at 50% volume” is a user request. 

The ontology allows us to explore if signs that are somehow related may fit in a 
user request case and thus represent a possible variation. For instance, the relation 
music–is-part-of–playlist gives us a clue to attempt to use a playlist in place of a 
music file. By representing user requests as verb+cases (Agentive, Dative, Objective, 
Factitive, Instrumental, Manner, Locational, and Temporal), one may restrict the 
ontology traversal to make the variability analysis more efficient. 

Systematic question asking is used to review and expand the user requests that 
were previously identified. To systematically find out about the possible variations, 
diverse questions are asked (e.g.: What can vary? When? How often? How much?) As 



720 B.S. da Silva, A.M. Bueno, and S.D.J. Barbosa 

a result of the analysis process, the answers associated to a structured user request and 
sign ontology, will help to make the upcoming design decisions. 

For instance, a play[O(media_file)] user request may originate an expanded 
user request, like: 

play[O(media_file),M(volume),M(speed),M(equalization), 
O(current_playing_position),F(state=playing)] 

Regarding variability in the solution space, literature on intelligent, adaptable and 
adaptive user interfaces (cf, for instance, [15, 17, 18]) addresses variations in the 
solution space according to multiple dimensions: 

• What is adapted?What aspect of it is adapted? 
• Who makes the adaptation? 
• The adaptation is associated to what?  
• And in the case of adaptive systems, The adaptation is computed as a function of 

what?  

Regarding what is adapted (what kinds of signs are adapted), we have that task signs, 
(conceptual) object signs and user interface (ui) signs can be adapted. This adaptation 
can be of two kinds: token selection or configuration (attribute values or tokens), and 
type selection  or composition (selection of a subset of types within a sign).  

Regarding who makes the adaptation, we can have either the user (manual 
adaptation, as in adaptable systems) or the system (automatic adaptation, as in adaptive 
systems). If the adaptation is manual, we also need to decide: To what is the adaptation 
associated? An adaptation can be associated to any element of the domain model, the 
communication model or the context of activity that is encoded in the system, such as: a 
single user, a group of users or a user profile; the application, i.e., valid across users; a 
single device (e.g. my cell phone whose serial number is VN2531) or a set of devices, 
extensionally or intensionally defined (e.g. smartphones with 3G connection capability); 
a certain object (e.g. document, paragraph) or a set of objects extensionally or 
intensionally defined (e.g. all documents produced by the WriteOn text editor); certain 
periods of time (e.g. turn sound notifications off between 12am and 6am); certain 
locations (e.g. at home vs. at the workplace); and so on. 

In the case of manual adaptation, there can be implicitly or explicitly setting 
parameters (e.g. in “preference” dialogue boxes), to creating macros, styles and 
templates. In this kind of adaptation, the user is in control of the application’s behavior, 
but the necessary effort to adapt the application needs to be taken into careful 
consideration so as not to hinder the adaptation possibilities [18]. In importing a picture 
into a document, the path where the previously imported picture was located can be 
remembered in the next import operation, assuming that the user will keep most of their 
pictures in the same directory. This is a case of implicit parameter setting: it was meant 
by the user only to be part of defining a single operation, but designed to be 
remembered and later reused, as if the user had defined it as the preferred path for 
locating media files in a “preferences” dialog box. 

If the adaptation is automatic, we need to decide: How (As a function of what) will 
the adaptation computed? In any case, care must be taken to allow users to easily 
regain control of the application behavior, either by configuring the rules of the 
adaptation mechanism “just-in-time” or by turning them off altogether.  



 Designing for Change: Engineering Adaptable and Adaptive User Interaction  721 

Most adaptive systems adjust the content and formatting presented to users as a 
function of the user’s (and other users’) interaction history, device, network 
capabilities, and so on. In the text editor example, the documents could be listed with 
different formatting or in a different order depending on how often they were 
accessed, for instance. Adaptive hypermedia systems are among the most prominent 
examples of adaptive systems. In e-commerce applications, recommender system 
modules are a common example of this category of adaptation. 

A few adaptive systems make permanent changes to the application or the object 
with which the user is working, such as “autocorrect” and “autocomplete” features in 
form fields, for instance. It is paramount that this kind of adaptation is adequately 
communicated to users, easily reversible, and possible to be turned off.  

Thus, variations in the solution space can be encoded by the tuple <what, 
type/token, who, f(X), g(Y)>, where f(X) is to what the adaptations is associated, 
and g(Y) is the set of elements that drive the adaptation (in the case of adaptive 
systems, the actual rules that adapt the user interface).  

4   From Analysis to Design: Make Decisions about Variability 

When moving from analysis to design, there are at least four strategies to deal with 
variations:  

• not to accommodate variation (single non-adaptable system);  
• to accommodate variation in a family of products (software product line);  
• to allow users to manually change some aspects of the system (adaptable system); 

and  
• to embed rules and inference mechanisms for the system to automatically adapt 

itself (adaptive system). 

Focusing on flexible, adaptable and adaptive systems, we can relate the problem 
space to the solution space, as follows: 

 
Problem Space Solution Space 

(conceptual) 

regarding the focus of the adaptation (cases in the user request) 

agent, object, dative, factitive object 

manner, instrument, locational, temporal task 

regarding the structure of user requests 

goal-driven user request with fixed cases token selection 

goal-driven user request with varying cases type composition 

regarding the frequency of occurrence of a set of tokens or types 

varying set of tokens or types that cannot be associated to 
specific contexts of use 

⎯    (no defaults) 

prominent set of tokens or types associated to most contexts of 
use 

⎯    (fixed defaults) 



722 B.S. da Silva, A.M. Bueno, and S.D.J. Barbosa 

tokens or types associated to certain contexts that cannot be 
inferred 

manual 

tokens or types associated to contexts that can be inferred automatic 

 
Within the solution space, we can relate the possible adaptation solutions to different 
interaction design solutions, as follows: 

 
Conceptual 
Solution 

Interaction Solution and Examples 

no adaptation, 
fixed solution 

traditional HCI design solutions, with or without default values 

no adaptation, 
flexible solution 

alternative tasks and parameters for a certain task 

 selection of printing parameters, character and paragraph formatting 

<task, token 
selection> 

setting or inferring application or task profiles, i.e., sets of configuration 
parameters related to the whole application, to a set of tasks, or to a 
single task, instead of being applied to specific objects 

 configuration sets for different environments, so that when printing a 
certain document at home, the configuration would be different from 
when printing the same document at the workplace 

 having the default printer configured differently in distinct 
environments, such as at home or at the workplace, or depending on 
the network to which the device is connected 

<task, type 
composition> 

manually or automatically composing sequences of tasks into a macro or 
script, especially by recording the user-system interaction to be 
reproduced later as a single interaction step. This kind of adaptation is 
especially useful for repetitive action sequences. 

 manual: composing task sequences into a macro or script; macro 
recording, interactive macro editing and running, scripting 

 automatic: programming by demonstration 

<object, token 
selection> 

setting or inferring attribute values of an object to establish a new default 
or a named configuration 

 formatting styles in text editors, which can be applied to characters 
and paragraphs to facilitate consistent formatting  

 certain patterns of printing for certain kinds of document, such as 
technical report, illustration, and so on. Each document could then be 
associated with a template so that it is printed with the corresponding 
configuration settings (also related to task adaptation) 

<object, type 
composition> 

manually or automatically creating new objects or templates composed 
of existing objects, either extensionally or intensionally 

 special sets of documents, such as manually defined favorite 
documents or automatically inferred most accessed documents, most 
recently accessed documents, and so on 

<ui, token 
selection> 

setting or inferring attributes of user interface signs 

 manually redefining colors, labels, images  

 automatically highlighting user interface signs according to some 
context-dependent relevance criteria 



 Designing for Change: Engineering Adaptable and Adaptive User Interaction  723 

<ui, type 
composition> 

manually or automatically arranging user interface signs 

 reconfiguring the layout, panels, toolbars, and menus 

 putting frequently accessed operations first on a list, “remembering” 
the last user interface layout configuration 

 
To increase the user’s control of the interaction, a candidate design solution for 
adaptivity generally involves suggesting and adaptation and having the user approve 
or dismiss it or, for less risky adaptations, to make the adaptation but provide a clear 
and easy mechanism for reversing it. 

It is important to note that the “associated to” and the “computed from” functions 
are closely related to the problem space, and their mapping onto the solution space 
depends on the domain and context elements the designer decides to encode in the 
software.  

5   Concluding Remarks 

Our preliminary evaluation of the variability analysis approach confirmed the benefits of 
avoiding early task decomposition, organizing signs in an ontology and systematically 
asking questions to analyze variability. The support for traversing from the problem to 
the solution space has been mainly inspired by existing literature involving both 
theoretical and technical work. Further work includes a more extensive evaluation of the 
proposed traversals, and also the design and evaluation of alternative interaction 
mechanisms to support the user goals in the identified range of variations. 

References 

1. Barbosa, S.D.J., de Paula, M.G.: Designing and evaluating interaction as conversation: A 
modeling language based on semiotic engineering. In: Jorge, J.A., Jardim Nunes, N., 
Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 16–33. Springer, Heidelberg 
(2003) 

2. Carroll, J.M., Mack, R.L., Robertson, S.P., Rosson, M.B.: Binding objects to scenarios of 
use. International Journal of Human-Computer Studies 41(1-2), 243–276 (1994) 

3. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. 
Science of Computer Programming 20(1-2), 3–50 (1993) 

4. de Souza, C.S.: The Semiotic Engineering of Human-Computer Interaction. MIT Press, 
Cambridge (2005) 

5. de Souza, C.S.: Semiotic engineering: Bringing designers and users together at interaction 
time. Interacting with Computers 17(3), 317–341 (2005) 

6. Dourish, P.: What We Talk About When We Talk About Context. Personal and Ubiquitous 
Computing 8, 19–30 (2004) 

7. Eco, U.: Semiotics and the Philosophy of Language. Indiana University Press, 
Bloomington IN (1984) 

8. Eco, U.: Theory of Semiotics. University Press, Bloomington (1979) 
9. Fillmore, C.: The case for case. In: Bach, E., Harms, R.T. (eds.) Universals in Linguist 

Theory. Holt, New York (1968) 



724 B.S. da Silva, A.M. Bueno, and S.D.J. Barbosa 

10. González-Baixauli, B., Laguna, M.A., Leite, J.C.S.P.: Aplicación de un Enfoque 
Intencional al Análisis de Variabilidad. In: Proceedings of the 8th Workshop on 
Requirements Engineering, Porto, Portugal, pp. 100–111 (2005) 

11. Hackos, J.T., Redish, J.C.: User and task analysis for interface design. John Wiley & Sons, 
New York (1998) 

12. Hui, B., Liaskos, S., Mylopoulos, J.: Requirements Analysis for Customizable Software: a 
Goals-Skills-Preferences Framework. In: Proceedings of the 11th IEEE International 
Requirements Engineering Conference, pp. 117–126 (2003) 

13. Jakobson, R.: Linguistics and Poetics. In: Sebeok, T. (ed.) Style in Language, pp. 350–377. 
MIT Press, Cambridge (1960) 

14. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. 
Wiley, Chichester (1998) 

15. Kühme, T., Malinowski, U. (eds.): Adaptive User Interfaces: Principles and Practice. 
North-Holland, Elsevier (1993) 

16. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On Goal-based Variability 
Acquisition and Analysis. In: Proceedings of the 14th IEEE International Conference on 
Requirements Engineering, pp. 76–85 (2006) 

17. Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development. Springer, Heidelberg 
(2006) 

18. Mackay, W.E.: Triggers and barriers to customizing software. In: Proceedings of CHI 
1991, New Orleans, USA, pp. 153–160 (1991) 

19. McGrenere, J.: The design and evaluation of multiple interfaces - a solution for complex 
software. PhD thesis. Department of Computer Science, U. of Toronto, Canada (2002) 

20. Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring alternatives during 
requirements analysis. IEEE Software 18(1), 92–96 (2001) 

21. Nielsen, J.: Heuristic Evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection 
Methods. John Wiley & Sons, New York (1994) 

22. Peirce, C.S.: Collected Papers. Harvard University Press, Cambridge (1931-1955); 
excerpted in Buchler, Justus (ed.): Philosophical Writings of Peirce. Dover, NY (1955) 

23. Preece, J., Rogers, Y., Sharp, E.: Interaction Design: Beyond Human-computer Interaction. 
John Wiley & Sons, New York, NY (2002) 

24. Silva, B.S., Barbosa, S.D.J., Leite, J.C.: A Language-Based Approach to Variability 
Analysis. In: Proceedings of WER 2008 (2008) 

25. Silva, B.S., Barbosa, S.D.J.: Variability Analysis: From requirements engineering towards 
interaction design. In: Proceedings of SEW-32, Kassandra, Greece (2008) 

26. Sutcliffe, A., Fickasm, S., Sohlberg, M.M.: PC-RE: a method for personal and contextual 
requirements engineering with some experinence. Requirements Engineering 11, 157–173 
(2006) 


	Designing for Change: Engineering Adaptable and Adaptive User Interaction by Focusing on User Goals
	Introduction
	The Problem and Solution Spaces
	Exploring Variability
	From Analysis to Design: Make Decisions about Variability
	Concluding Remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




