
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 882–889, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Investigating the Run Time Behavior of Distributed
Applications by Using Tiny Java Virtual Machines with

Wireless Communications

Tsuyoshi Miyazaki, Takayuki Suzuki, and Fujio Yamamoto

Department of Information and Computer Sciences, Kanagawa Institute of Technology,
1030 Shimo-ogino, Atsugi-shi, Kanagawa, 243-0292 Japan

{miyazaki,suzuki,yamamoto}@ic.kanagawa-it.ac.jp

Abstract. From the viewpoint of programming education, distributed applica-
tion programs carried out in a small JAVA machine group were considered.
These computers are equipped with radio communication facility, multi-thread
function, LEDs and various sensors. Parallel genetic algorithms and distributed
search problems were targeted for the study here. About the latter, a detailed
implementation method and the result of the experiment are shown. In such a
computing environment, it was understood that the internal behavior and the
data communication in the distributed application were easy to be grasped by an
effect of visualizing them by the physical interface.

Keywords: Physical Computing, Distributed Computing, Software Education.

1 Introduction

In the present age when Web-related technical development is remarkable, the impor-
tance of the software education at the university rises still more. Above all, it is neces-
sary to teach the basic technology of distributed systems or distributed applications
practically. Conventionally, in this field, lectures on a basic concept and the basic
technology of the distributed applications were performed in the classroom, whereas
the practice that uses computers seems not to be performed very much. The one of the
reasons is that there is not the environment where each person accesses a lot of PCs
except one's PC. The second reason is that grasping the cooperative activities among
PCs is not so easy, and consequently it is difficult to have overall image of the proc-
essing performed by that distributed application.

Recently small computer SunSPOT [5,6] equipped with JAVA virtual machine at-
tracts attention. SunSPOT possesses an acceleration sensor and an illumination sensor,
and can execute general JAVA programs on it. Therefore it is originally thought that it
is a device to build a radio sensor network. However, as a notable thing, this device
possesses a multi-thread function as well as a wireless communication function. These
functions can be used in the JAVA language like the case of the normal PC. In other
words, various network applications using multi-thread programming, socket communi-
cation and multicast can be made on this machine easily. Communication among

 Investigating the Run Time Behavior of Distributed Applications 883

SunSPOTs is enabled without being connected to the PC after an application program
was developed. The power supply by the built-in battery lasts comparatively for a long
time enough to demonstrate the applications anywhere.

By using radio communication facilities among SunSPOTs, various distributed ap-
plications can be performed. When it is compared with a general PC, the CPU per-
formance and the transmission rate of SunSPOT are considerably low. Fortunately,
such characteristics can be used effectively. In other words, an environment that can
watch the behavior of the distributed application by slow motion is provided. Sun-
SPOT is equipped with eight color LEDs and also can be attached an LCD display
such as one in a mobile telephone. If they are used, the operation of the CPU and the
movement of the transmission and reception can be grasped easily. Based upon this,
utilization of SunSPOT for education of the distributed application technology is
trying. In the following, distributed applications to work on a set of SunSPOTs devel-
oped this time are explained, and based on it, the possibility of the use by the future
education is considered.

2 Distributed Application Programs for Educational Use

Two applications are taken up to teach the technology of the distributed programs in a
computing environment mentioned above. The first is the parallel genetic algorithm,
and second is the issue of search of the two-dimensional domain by Bentley [2].
About the former, only the aim and method are described, and the implementation
will be reported in the near future. On the other hand, about the latter, the details on a
method and the implementation are shown below.

2.1 Parallel Genetic Algorithms

The genetic algorithm (GA) has been used as convincing technique to solve the issue
of complicated optimization for a long time. The potential concurrency of the process-
ing attracted attention early and there are many studies on it [4,8]. By the parallel ge-
netic algorithm, a population is divided into some partial groups, and each is allocated
to each processor. Evolution processing is carried out independently in each group. The
variety of the individual will be maintained in the whole population. However, in the
evolution, it is very likely that each sub-population converges early to each local opti-
mum status.

To prevent this problem, migration of individuals is necessary in the parallel genetic
algorithm. In other words the information should be exchanged at a certain suitable
period between sub-populations. Some individuals are moved to another sub-
population. And let the individuals take an opportunity to do crossing-over with the
individuals in the sub-population they arrived at. The individual to be migrated is lim-
ited to the elite who showed high fitness in its original sub-population. Because the elite
evolved in a different way from the evolution performed in the sub-population it arrived
at, a birth of child with new character is expected from the crossing-over with a native
individual there. Such situation will develop new searching area for global optimized
value.

884 T. Miyazaki, T. Suzuki, and F. Yamamoto

Here, a problem to search for the combination pattern of the color was solved by
such a parallel genetic algorithm. It is assumed that eight lamps are put to one line
now. Each lamp can display 256 colors by changing each value of R, G and B. Then
the combination of the color of eight lamps becomes the enormous number, that is,
256 to the 8th power (about 10 to the 19th power). It is the problem to find out one
specific pattern among them. The difference between the answer pattern and the pre-
sumed pattern is assumed known as a value of the fitness function. Each sub-
population has 30 individuals. Each individual estimates one color combination
pattern. From generation to generation, those individuals do crossing-over and the
individuals having high fitness (near the correct color pattern) will survive. In this
process, appropriate migration is important as shown above. By this migration, the
stoppage to a local optimum as a whole population can be avoided.

2.2 Bentley’s Searching Problems

The second application developed this time is a solution for the searching problem
that Bentley, J. L. (1985) presented [2]. It is assumed that a two dimensional array of
NxN contains the elements of plus and minuses numbers at random position. The
problem is to find out the best rectangle among all possible rectangles covering the
part of the array. The best rectangle here denotes the one that gives the maximum
value resulting from the summation of all the elements contained in that rectangle.
That maximum value is the final answer.

A naive algorithm. For example, in the case of an array A of 4x4 in Fig. 1, the grand
total of the elements in the rectangle of the dot line frame becomes 3. On the other hand,
the grand total of the elements in the rectangle of the black bold frame is 8, and this
becomes the maximum. The empty rectangle that nothing includes is permitted, and, in
that case, the sum of elements is considered to be a zero. Therefore, the maximum does
not become the minus number. Generally, in this solution, computational complexity
suddenly increases as size N of the array A grows big.

Fig. 1. Bentley’s problem (for 4x4 array)

The most naive algorithm needs computational complexity of the order of N to the
6th. However, by some improvement, it can be reduced to the order of N to the 5th.
The main part of this algorithm is shown below.

 Investigating the Run Time Behavior of Distributed Applications 885

int maxsofar = 0;
int sum;
for (int is =0; is<N; is++){
for (int js =0; js<N; js++){
for (int ib =is; ib<N; ib++){
sum = 0;
for (int jb =js; jb<N; jb++){
for (int i = is; i<=ib; i++) {
sum = sum + A[i][jb];

 }
if (sum > maxsofar) maxsofar = sum;

 }
 }
 }
 }

An Optimized Algorithm. More effective algorithm is usable if much memory can
be used. The main part of this algorithm is shown below. Here, the intermediate result
of the calculation is stored in a work array W, and it is used effectively as a partial
sum. This algorithmic computational complexity becomes the order of N cubed [1].

int globalmax =0;
int sum;
int i, j, k ;
for (j=0; j<N; j++){
for (i=0; i<N; i++){
sum = 0.0;
for (k=i; k<N; k++){
sum = sum + A[k][j];
W[i][k] = max(0, W[i][k]+sum);
globalmax = max(globalmax, W[i][k]);

 }
 }
 }

However, because the SunSPOT machine does not have much quantity of memory,
it was decided to use the algorithm of N to the 5th mentioned above. Here, the
performance enhancement of the application is not necessarily assumed the main
purpose. Therefore, this algorithm is useful enough as an exercise to grasp inside
behavior of the distributed application.

3 Distributed Solution for the Bentley’s Problem Using SunSPOTs

Here, an algorithm with the complexity of N to the fifth is adopted. And a JAVA
program is developed that divides the search calculation into small parts and distrib-
utes them among several SunSPOTs. One SunSPOT is chosen as a host machine, and
other SunSPOTs act as a worker that performs provided part of searching. The host
sends appropriate partial search area to the worker that sent a “READY" message, and
then waits for the searched result. The worker, which received a partial search area,

886 T. Miyazaki, T. Suzuki, and F. Yamamoto

performs calculation and sends back the result (local maximum value) to the host, and
then sends “READY" message again. During the computation with several workers,
another new workers can be dynamically joined the computation. When all the results
from the workers sent back to the host, the global maximum value should be taken as
the final answer.

3.1 Observing Internal Processing and Data Transmission

In this distributed application, the host SunSPOT has two threads run simultaneously.
The first thread receives “READY” from a worker, and then sends back partial search
area to that worker. The second thread waits for the result that a worker calculated on
the partial search area. Eight LEDs of SunSPOT is used to display the movement of
this application. When a SunSPOT sends or receives data, LED-7 or LED-0 turns on
blue respectively for a pre-defined period. While a SunSPOT performs calculation,
four central LEDs turn on red, whereas while it is in “READY” they turn on green.
Because a LCD device (a display part of a mobile telephone) is connected to the host
SunSPOT, it is possible to display successive data sent from each worker and also the
final answer. Fig. 2 shows the communications among a host and the workers.

Fig. 2. Radio communications among SunSPOTs

Outline of the Host program. Pseudo-coding shows the outline of this method below.
This illustrates the programs of the host SunSPOT. In this version, it is necessary to start
this host program earlier than a worker.

poblic void run(){
start listenReady() in the main thread;
start listenResult() in the second thread;

 }

 Investigating the Run Time Behavior of Distributed Applications 887

public void listenReady(){
loop = true;
while(loop){
receive datagram at port 171;
if(the message equals “READY”){
turn on LED-0 for 100ms (receiving);
extracts sender’s address A;
if(partial search area is still left){
send a partial search area
to the address A at port 172;

turn on LED-7 for 100ms (sending);
}else{
loop = false;

 }
 }
 }
 }
public void listenResult(){
loop = ture;
while(loop){
receive datagram at port 173;

if(the message equals “RESULT”）{
turn on LED-0 for 100ms (receiving);
take that data as an local maximum;
update the global maximum value;

 }
if(all the answers have been received){
loop = false;

 }
 }
 }

Outline of the Worker program. The following pseudo-coding illustrates the outline
of the worker program on a SunSPOT. This worker can be added dynamically during
processing with the host and other workers. The relationship among the host and
workers are shown in Fig. 2.

public void run(){
while(true){
turn on green with LED2-5 (as “READY”);
receive datagram at port 172;
if(it indicates a partial search area){
if(the problem is to me){
turn on LED-0 for 100ms (receiving);
turn on red with LED2-5(as “BUSY”);
search the partial area (local max);
send result to the host at port 173;
turn on LED-7 for 100ms (sending);
send “READY” with my address
to the host at port 171;

888 T. Miyazaki, T. Suzuki, and F. Yamamoto

turn on LED-7 for 100ms (sending);
 }
 }
 }
 }

3.2 Observing the Behavior of the Application

With up to sixteen SunSPOTs (including host SunSPOT), demonstration of this appli-
cation was performed in a classroom. Strong interest of students was attracted. Pri-
marily, they can understand well the cooperative activities among JAVA machines
that are small enough to put in their palm. They can clearly see which machine re-
ceives a problem (partial search domain) from a host, and when it goes busy or ready
state. In other word, even in the case that the calculation (searching) completes in-
stantly with a normal PC, they can observe steadily and slowly the activities when
using SunSPOTs. The positional transparency in a distributed system can be pre-
sented simply by moving some of the machines running the application outside the
door. Additionally they can understand some new machines join the calculation dy-
namically by turning on the power switch of them. Through these experiences they
can be familiarized with distributed systems technology. It took 176 seconds when
using one host and one worker in case of an array of 60x60. In contrast, a solution
was obtained in 67 seconds when the number of workers was increased to three.

3.3 Considerations in Programming Education

The students may wrestle with the following problems after having had interest in this
way, and it is thought that their software development ability can be improved. At
first, in this application the amount of operations each machine takes care of may be
unequal, depending on the division method of the search domain. This situation can
be observed by the red lightning of LEDs, which denotes execution of operations.
Students may have willing to do load balancing among workers. As a next problem,
consider the case that a worker suddenly goes down while executing operations, for
example by pushing the power button off. In this case, some of the expected result
will never returned to the host forever. It may be understandable that some kind of
transaction facility should be introduced. Namely, recovering mechanism that another
worker can take care of the missing problem should be necessary.

There exits a bottleneck in the communication among the host and many workers.
This problem may also be observable by frequent lightning of blue LEDs of the host
when a lot of extra new workers are added. For that problem, a method that the local
maximum value should be reserved in a worker by communications between workers
in the sub-group will be thought about. By this method, only few workers send a re-
sult to a host and consequently communication traffic should be reduced.

4 Conclusion

By being familiar with a distributed application, actually holding portable JAVA
machines in a hand in this way, most students probably wrestle with the acquisition of

 Investigating the Run Time Behavior of Distributed Applications 889

the software technology based on multi-threads and network communications eagerly.
The environment of physical computing except SunSPOT used this time is also regu-
lated well recently [3]. With it, the application to education [7] would largely be
extended.

References

1. Arisawa, M.: Algorithms and Their Analysis, Corona Publishing (1989) (in Japanese)
2. Bentley, J.L.: Programming Pearls. Addison-Wesley, Reading (1985)
3. Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the Physical World with Perva-

sive Networks. Pervasive Computing (2002)
4. Juille, H., Pollack, J.B.: Massively Parallel Genetic Programming. In: Advances in Genetic

Programming II, MIT Press, Cambridge (1996)
5. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java(TM) on the Bare Metal of

Wireless Sensor Devices – The Squawk Java Virtual Machine, VEE, Ottawa (2006)
6. Smith, R.B.: SPOTWorld and the Sun SPOT. In: Proceedings of the 6th international con-

ference on Information processing in sensor networks, pp. 565–566 (2007)
7. Yamamoto, F.: An Educational JavaSpaces Programming Environment with Phidgets De-

vices. In: Supplementary Proceedings of The 15th International Conference on Computers
in Education, pp. 1–2 (2007)

8. Yamamoto, F., Araki, T.: A Parallel Genetic Algorithm with Diversity Controlled Migration
and its Applicability to Multimodal Function Optimization. In: Proc. of the AFSS 1998, pp.
629–633 (1998)

	Investigating the Run Time Behavior of Distributed Applications by Using Tiny Java Virtual Machines with Wireless Communications
	Introduction
	Distributed Application Programs for Educational Use
	Parallel Genetic Algorithms
	Bentley’s Searching Problems

	Distributed Solution for the Bentley’s Problem Using SunSPOTs
	Observing Internal Processing and Data Transmission
	Observing the Behavior of the Application
	Considerations in Programming Education

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

