
J.A. Jacko (Ed.): Human-Computer Interaction, Part II, HCII 2009, LNCS 5611, pp. 752–760, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Compensate the Speech Recognition Delays for Accurate
Speech-Based Cursor Position Control

Qiang Tong and Ziyun Wang

College of Computer Science and Technology, Hubei Normal University,82, Cihu Road,
Huangshi, Hubei Province, 435002, P. R. China

qiangtong99@gmail.com

Abstract. In this paper, we describe a back-compensate mechanism to improve
the precision of speech-based cursor control. Using this mechanism we can con-
trol the cursor more easily to move to small on-screen targets during continuous
direction-based navigation despite the processing delays associated with speech
recognition. In comparison, using traditional speech-recognition systems, it is
difficult to move the cursor precisely to a desired position because of the proc-
essing delays introduced by speech recognition. We also describe an experiment
in which we evaluated the two alternative solutions, one using the traditional
speech-based cursor control, and the other using the back-compensate mecha-
nism. We present the encouraging evaluation results at the end of this paper and
discuss future work.

Keywords: Speech recognition, delays, navigation, mouse, cursor control.

1 Introduction

With the development of practical speech recognition systems and tools such as IBM
ViaVoice and Microsoft Speech SDK, a user can operate a computer and use com-
puter applications with only voice without traditional input devices such as keyboards
and mice. This is important for individuals with physical disabilities and limited abili-
ties to use keyboards and mice. Speech-recognition enabled computer applications
can also help users who need hand-free solutions when their hands are engaged in
other tasks.

Computer mouse has been one of the most important computer input devices since
the 1960s. Modern computer operating systems, such as Windows, Mac OS and
Linux, all provide WIMP (Windows, Icons, Menus and pointing devices) style inter-
faces. Almost every computer has a mouse and a keyboard as standard input devices.

Combining speech recognition with WIMP style interfaces to create speech-based
cursor control is very useful. It can help individuals with physical disabilities to use
any existing windows-based applications normally as opposed to only use special
applications designed for persons with disabilities.

One crucial problem with speech-based cursor control application is that speech
recognition always has delays during it works; the user must complete the utterance of
a word and wait for the recognition results. The speech-recognition result is only

 Compensate the Speech Recognition Delays 753

available at the end of the utterance, not at the start; this shortcoming limited the use
of speech based-applications especially for the continuous direction-based navigation
of speech-based cursor control. For example, the user specifies “Move Left” and the
cursor begins to move to left, when the cursor gets to the target the user says “Stop”
intending to have the cursor stop at the target. In speech-based systems, the cursor
often misses the target because the speech-recognition delays effect. The delay effect
becomes unacceptable when the user’s speech speed is slow (“stoooop”), the cursor
will stop farther away from the target.

This paper proposes the use of a compensate mechanism to help speech-based cur-
sor control to remedy against the delay effects with speech-recognition.

2 Related Work

Sears, Lin, and Karimullah [5] provided a detailed analysis of the delays associated
with the execution of speech-based commands, and they designed a predictive cursor
to help user to estimate where to issue the “Stop” command before the actual cursor
got to the target, but it failed to prove beneficial. This is because they hypothesized
that the predictive distance for a user is constant. They calibrated the offset used for
the predictive cursor for each individual user before they conducted the tests, but a
user can’t always issue the same commands using the same amount of time. The re-
search, however, found that cursor speed, target size, and speech recognition delays
and errors are the most critical factors in achieving precision using speech-based
cursor control.

Dai, Goldman, Sear, Lozier [2] presented a grid-based cursor control method. In
this grid-based system, the screen was divided into a 3x3 grid numbered one through
nine in row-major order. The user spoke aloud the number of the grid that contained
the target, and then the chosen grid was recursively divided into a smaller 3x3 grid,
and the user continued to speak out the number of the target grid, fine-tuning the
target position to move the cursor to reach the proper location eventually. Additional
commands were provided to move the whole 3x3 grid in four directions or back up a
recursion level if the user made a mistake. This grid-based approach can be efficient
in moving the cursor to a point on the screen, but it does not allow the user to move
the cursor continuously like in a normal WIMP environment. Further more, this ap-
proach works in applications where the cursor is only used for picking targets on the
screen; it doesn’t help in applications that require the use of the continuous motion of
the cursor, such as drawing a line in a painting program.

Igarashi, Hughes [3] showed how nonverbal voice can be used for interaction con-
trol, where the user controlled the application directly using continuous voice com-
mand, and the system provided immediate feed back. For example, one could say
“Cursor up, ahhhhhh…”, and the cursor would continually move up while the “ahhh”
sound continued, it will stop at once when the “ahhh” sound ended. Subsequent sys-
tems have used similar non-verbal voices for continuous input [1][2][6][7], primarily
for mouse pointer control. The limitation of these techniques is that it requires an
unnatural way of using the human voice.

754 Q. Tong and Z. Wang

3 Backward Compensate Cursor Control

We focus on speech-based cursor control for continuous directional navigation. Because
of the delay associated with spoken commands, a moving cursor will not stop immediately
when the “Stop” command is issued; it will pass the target for some additional distance
before it stops, assuming the beginning of the utterance is when the cursor SHOULD stop.
Our solution is to make cursor jump back an appropriate distance to compensate the addi-
tional distance the cursor travels after the “Stop” command is issued, therefore the cursor
will stop at the desired position after the compensation.

Sears, Lin, and Karimullah [5] have mentioned a compensate solution. In that solu-
tion, the compensated distance is calculated by determining the average delays from
historical usage data. Because true delay for each command never remains a constant,
the compensated delay feels artificial and inaccurate.

In fact, the length of command utterance not only varies from person to person, it
also varies for the same person from time to time, for example, when a person’s
speech speed changes due to fatigue or excitement. Therefore the compensate dis-
tance should not be a constant value.

In our solution, we detect the delay associated with spoken command such as
“Stop” every time when it is issued. Because the speed of the cursor is known, we can
calculate the extra distance the cursor travels every time, we then make the cursor
jump backwards this additional distance to the correct position when the command is
issued. The process is illustrated in Fig.1.

Fig. 1. Illustration of the compensate cursor control

 Compensate the Speech Recognition Delays 755

The key contribution of this solution is that the compensate distance is not a con-
stant value, but it is calculated with the actual delay based on when the spoken com-
mand is issued and when it is recognized. For example, when the user issues the
command STOP as “Stop” (speaking normal speed) and “S-t-o-p” (speaking slowly),
the delays are very different, therefore the compensate distances are very different
too, the second one is a bigger compensation whereas the first one is smaller.

We implemented the speech-based cursor control with compensate cursor solution
as follows:

Our application supports 4 directional voice commands: Left (Move left), Right
(Move right), Up (Move up), Down (Move down), and two action commands Stop
and Click (mouse left click). Of curse we can add other commands such as Double
Click, Drag and other directional commands if necessary.

The cursor moves at a rate of 100 pixels per second.
When the cursor is not moving, if any directional command is issued, the cursor

begins to move; when the “Stop” command is issued, the cursor stops and jumps back
a compensated distance (as shown in Figure 1); when the cursor is moving, if a differ-
ent directional command is issued, the cursor does a 3-step adjustment: the first step is
to stop, the second step is to jump back a compensate distance, and then the third step
is to begin a new direction movement according to the new directional command.

4 Experiment

4.1 Participants

Sixteen HBNU students (8 females and 8 males) volunteered to participate in a usabil-
ity study. They all speak Chinese and have no hearing, speech, or cognitive impair-
ments. Their average age was 21. They were divided into two groups with one group
using a compensate speech-based cursor application and the other group using a nor-
mal voice-controlled cursor application.

4.2 Equipment

An IBM ThinkPad running Windows XP was used. The LCD screen had a diagonal
size of 14.1 inches and the display resolution was set to 960x600 pixels; Our speech
cursor control applications were developed using Delphi 7.0 and Microsoft speech
recognition engine 5.1 through Microsoft Speech API. All participants used a headset
mounted microphone when testing the application. A set of custom applications were
developed using Delphi, presenting 3 different sizes of targets. The applications all
automatically recorded the voice command events, and various timing such as selec-
tion time used to pick the target.

4.3 Experiment Design

The purpose of this experiment is to determine the benefits of our compensate mecha-
nism in speech-based cursor control systems. The two sets of test applications are
only different in whether the delay is processed when stop or change direction com-
mand is issued. For accuracy, we designed a script for every test subject to follow in

756 Q. Tong and Z. Wang

Fig. 2. Target direction relative to the cursor start position

using both applications to complete the same list of tasks in the same order on a
screen layout illustrated in Fig. 2:

• use speech command to click the center button 0 to start the task, control the cursor
to move to button 1, stop the cursor and click. If the cursor does not stop in the but-
ton’s click-able area, adjust it’s position using speech command before clicking the
button,

• repeat the clicking task from button 1 to button.8;
• at last click button 1.

All the steps are controlled by speech-based cursor in both types of applications.
The application programs automatically record the time, number of stop commands
and total number of speech commands issued.

In order to obtain valid data, we give the participants enough time to train the voice
recognition engine to ensure it can recognize their speech commands. Before the
formal usability test, every participant trained at least 30 tasks to get complete famili-
arity with the speech-based control solution they would use.

Sears concluded that users had little difficulty accurately select large targets [5],
therefore it is only meaningful to measure performance using realistic sized target.
There are four sizes for Windows icons: 48 × 48, 32 × 32, 24 × 24, and 16 × 16 pix-
els[8]. The Windows toolbar displays two sizes for icons: 24 × 24 and 16 × 16 pixels.
We chose 3 kinds of square targets measuring 16x16, 24x24 , and 32x32 pixels (re-
ferred to as D16,D24,D32). If our speech-based cursor system can work in such test-
ing environment, it will provide an indication of its usefulness for normal windows
applications. These three target sizes were tested separately. For each target size, the
buttons are arranged the same way as depicted in Figure.2.

During the execution of every task, our test application recorded the number of
“Stop” commands, total number of speech commands except “click”, and the time to
finish a task.

4.4 Hypotheses

We expect the delay-compensated speech-cursor control to have a significant impact
on the user’s performance. The user’s performance is measured by total number of

 Compensate the Speech Recognition Delays 757

speech commands to finish a task, the selection time and number of “stop” commands
used. The hypotheses for this experiment were:
H0a: The compensate cursor will not have a significant effect on the total number of

speech commands and the time required to finish the test tasks compared to a
standard speech controlled cursor.

H0b: The compensate cursor will have a significant effect on the total number of
speech commands and the times required to finish the test tasks compared to a
standard speech controlled cursor.

H1a: The target size will not have a significant effect on compensate cursor control.
H1b: The target size will have a significant effect on compensate cursor control.

(Note, as reported in [5], target size’s effect is significant in normal speech-
controlled cursor applications.).

4.5 Results

Means and standard deviations for the tasks including number of “stop” commands,
total number of commands (including directional commands) and selection time using
compensate and standard cursor control solutions are reported in Table 1.

Table 1. Means and standard deviations (in parentheses) of number of “Stop” commands ,
number of all voice commands, and selection time(in seconds) for tasks completed using two
types of cursor controls and 3 types target sizes

 Compensate cursor Normal cursor

Number
of “stop”

Number of all
commands

Selection
time

Number
of “stop”

Number of all
commands

Selection
time

D16 11.23
(1.59)

30.46
(3.18)

40.84
(2.48)

21
(3.87)

60.38
(10.57)

66.29
(10.80)

D24 9.08
(0.28)

26.46
(0.88)

37.45
(1.11)

14.77
(2.62)

40.38
(5.01)

46.50
(5.89)

D32 9
(0)

26
(0)

35.39
(1.06)

12.15
(1.52)

33.38
(3.60)

38.06
(3.93)

For the total number of speech commands, a one-way analysis of variance

(ANOVA) with repeated measures for target size was utilized to assess the effect of
cursor type. As we expected, the type of cursor control has a significant effect on the
total number of commands required to finish the task (F (1, 76) =60.12, p<0.001), and
from figure 3, we can see the total number of commands increased a lot using the
normal cursor control when the target size is reduced from D32 to D16, but for delay-
compensated cursor control solution the number only increased a little.

For selection time, another ANOVA with repeated measures for target size was
utilized to assess the effect of cursor type. The result indicated a significant effect for
delay-compensated cursor control type (F (1, 76) =29.31, p<0.001). From figure.4, we
can see that when the target size is reduced from D32 to D16, the selection time in-
creased a lot using non-compensate solution, and the compensate solution only in-
creased a little at the same time.

758 Q. Tong and Z. Wang

0

20

40

60

80

100

D32 D24 D16

Target size

N
um

be
r
of

 to
ta

l

co
m

m
an

ds

Compensate cursor Normal cursor

Fig. 3. Means of total commands using compensate and non-compensate solutions

0
10
20
30
40
50
60
70

D32 D24 D16

Target size

S
el

ec
tio

n
tim

e

(s
ec

on
ds

)

Compensate cursor Normal cursor

Fig. 4. Means of target selection time using compensate and non-compensate solutions

In addition, the target size has a significant effect on the on the total number re-
quired to finish the task for compensate type (F (2, 36) =21.59, p<0.001), the result
also indicated that the target size has a significant effect on the selection time for
compensate type (F (2, 36) =34.57, p<0.001). But from Fig.3 and Fig.4 can see that
the delay-compensated approach fares better: that the size of the target doesn’t have
as much impact on delay-compensated approach than on normal approach.

H0b and H1b were supported by the data analysis.

5 Discussion

As expected, the delay-compensated cursor control solution provided significant
benefits compared with the standard speech-based cursor control solution. When the
target size is small the delay-compensated cursor control solution has even more ad-
vantage, the total number of commands is only the half of the that of non-
compensated solution.

Though target size has a significant effect on the tasks, the effect is far less signifi-
cant on delay-compensated cursor control solution compared with standard solution.

 Compensate the Speech Recognition Delays 759

This is illustrated in Figure.3 and Figure.4, especially when the target size changed
from D32 to D24, the target size has no significant effect on total number of com-
mands (F (1,24)=3.6, p>0.05) for delay-compensated cursor control solution.

For D32 and D24 target sizes, the delay-compensated solution has recorded the
least total number of speech commands: 26 times and stop number: 9 times..

We observed that out of the total time to finish the tasks (denoted as Selection
Time), the time the cursor took to travel the distance between targets was significant.
This time cursor moving time was also constant for different target sizes. Therefore,
we considered the number of total speech commands as a more important perform-
ance measure that the Selection Time.

Finish the same task uses less time and fewer speech commands means the delay-
compensated cursor control solution gives user more efficiency and confidence to use
speech-based cursor control.

6 Future Work

Theoretically our solution can compensate the main delays associated with speech
recognition, namely speaking time and processing delays. But this approach still can
not compensate the reaction delays, for example, the delay introduced when the cur-
sor moves into the target area but the user hasn’t reacted immediately, just like a un-
focused 100-meter dash athlete hesitates to start to run after the starting gun shot.

We plan to conduct additional future work to investigate the relationship between
cursor speed and the reaction delays, and study the way to compensate the reaction
delays, or the way to help user to reduce the reaction delays.

Another area for further study is around variable cursor speed. In our current im-
plementation the cursor’s speed is constant. We plan to add speed control to the appli-
cation, so we can control the cursor to move faster when it needs to travel longer
distances, and move slower for shorter distances or when it near the targets. We be-
lieve such variable cursor speed controls will improve usability and are more realistic.

7 Conclusion

We presented a new delay-compensated solution for speech-based cursor control,
where the cursor movement is reversed at the end of the speech command recognition
to compensate speech delay. We conducted preliminary usability tests to show that
delay-compensated cursor control provides the expected benefits. The result is en-
couraging, compared with the normal speech-based cursor, our solution allows users
to finish the same task faster and use fewer commands.

Using delay-compensated cursor control solution can help speech-based cursor
control systems to overcome the limitation of accurately positioning control associ-
ated introduced by the recognition delay. At the same time the user can control the
cursor by a natural way of using the voice.

Acknowledgements. This material is based upon work supported by the Science
Foundation of Technology Bureau of HuangShi, Hubei Province in P.R. China (Grant
No: HZT [2007]40), Any opinions, findings and conclusions, or recommendations

760 Q. Tong and Z. Wang

expressed in this material are those of the authors and do not necessarily reflect the
views of Technology Bureau of HuangShi. We also supported by the plan for
scientific and technological innovation team of excellent young and middle-aged in
institute of high learning of Hubei Province in P.R. China (Grant No:T200806).

References

1. Olwal, A., Feiner, S.: Interaction techniques using prosodic features of speech and audio
localization. In: IUI 2005: Proc. 10th Int. Conf. on Intelligent User Interfaces, pp. 284–286.
ACM Press, New York (2005)

2. Harada, S., Landay, J.A., Malkin, J., Li, X., Bilmes, J.A.: The vocal joystick: evaluation of
voice-based cursor control techniques. In: Proc. Assets 2006, pp. 197–204. ACM Press,
New York (2006)

3. Dai, L., Goldman, R., Sears, A., Lozier, J.: Speech-based cursor control: a study of grid-
based solutions. In: Proceedings of the 6th international ACM SIGACCESS conference on
Computers and accessibility, vol. (77-78), pp. 94–101. ACM Press, New York (2004)

4. Igarashi, T., Hughes, J.F.: Voice as sound: using non-verbal voice input for interactive con-
trol. In: UIST 2001: Proceedings of the 14th annual ACM symposium on User interface
software and technology, pp. 155–156. ACM Press, New York (2001)

5. Sears, A., Lin, M., Karimullah, A.S.: Speech-Based Cursor Control: Understanding the ef-
fects of target size, cursor speed, and command selection. Universal Access in the Informa-
tion Society 2(1), 30–43 (2002)

6. Mihara, Y., Shibayama, E., Takahashi, S.: The migratory cursor: accurate speech-based cur-
sor movement by moving multiple ghost cursors using non-verbal vocalizations. In: Assets
2005: Proceedings of the 7th international ACM SIGACCESS conference on Computers
and accessibility, pp. 76–83. ACM Press, New York (2005)

7. Sporka, A.J., Kurniawan, S.H., Slavík, P.: Whistling user interface (U3I). In: User Inter-
faces for All, p. 472 (2004)

8. Windows User Experience Team Microsoft Corporation (July 2001). Creating Windows XP
Icons, http://msdn.microsoft.com/en-us/library/ms997636.aspx (vis-
ited, July 2008)

	Compensate the Speech Recognition Delays for Accurate Speech-Based Cursor Position Control
	Introduction
	Related Work
	Backward Compensate Cursor Control
	Experiment
	Participants
	Equipment
	Experiment Design
	Hypotheses
	Results

	Discussion
	Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

