
Tooling the Dynamic Behavior Models of

Graphical DSLs

Tihamér Levendovszky and Tamás Mészáros

Budapest University of Technology and Economics,
Department of Automation and Applied Informatics,
Goldmann György tér 3, H-1111 Budapest, Hungary

{tihamer,mesztam}@aut.bme.hu

http://www.aut.bme.hu

Abstract. Domain-specific modeling is a powerful technique to describe
complex systems in a precise but still understandable way. Rapid cre-
ation of graphical Domain-Specific Languages (DSLs) has been focused
for many years. Research efforts have proven that metamodeling is a
promising way of defining the abstract syntax of the language. It is also
clear that DSLs can be developed to describe the concrete syntax and the
dynamic behavior. Previous research has contributed a set of graphical
DSLs to model the behavior (”animation”) of arbitrary graphical DSLs.
This paper contributes practical techniques to simplify our message han-
dling method, automate the integration process, and show where domain-
specific model patterns can help to accelerate the simulation modeling
process.

Keywords: Domain-Specific Modeling Languages, Metamodeling, Sim-
ulation.

1 Introduction

Domain-specific modeling is a powerful technique to describe complex systems in
a precise but still understandable way. The strength of domain-specific modeling
lies in the application of domain-specific languages to describe a system. Domain-
specific languages are specialized to a concrete application domain; therefore,
they are particularly efficient in their problem area compared to general purpose
languages. Rapid creation of graphical Domain-Specific Languages (DSLs) has
been focused for many years. Research efforts have proven that metamodeling is
a promising way of defining the abstract syntax of the language. It is also clear
that DSLs can be developed to describe the concrete syntax.

VMTS [1] is a general purpose metamodeling and model transformation en-
vironment. The visualization of models is supported by the VMTS Presentation
Framework (VPF) [2]. VPF is a highly customizable presentation layer built on
domain-specific plugins that can be defined in a declarative manner. The VMTS
Animation Framework (VAF) [3] is a flexible framework supporting the real-time
animation of models both in their visualized and modeled properties.

J.A. Jacko (Ed.): Human-Computer Interaction, Part II, HCII 2009, LNCS 5611, pp. 830–839, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.aut.bme.hu

Tooling the Dynamic Behavior Models of Graphical DSLs 831

When we started using VAF, we encountered several simplification and sup-
port opportunities that make VMTS a more efficient and user-friendly tool that
is able to visualize the simulation of third party tools with metamodeling tech-
niques. This paper contributes practical techniques to simplify our message han-
dling method, automate the integration process, and show where domain-specific
model patterns can help to accelerate the modeling process.

1.1 VMTS Animation Framework

VAF separates the animation from the domain-dependent knowledge of the dy-
namic behavior. For instance, a dynamic behavior of a graphically simulated
statechart is really different from that of a simulated continuous control system
model. In our approach, the domain knowledge can be considered a black-box
whose integration is supported with visual modeling techniques. Using this ap-
proach, we can integrate various simulation frameworks or self-written compo-
nents with event-based communication. The architecture of VAF is illustrated
in Fig. 1.

PortPN PortTimer PortViews PortModels

[no fireable transitions]

PortPN:EventGetFireableTransition

[fireable transition]

PortViews:EventGetView

[PortViews:EventGetView_]

PortViews:EventHighlight

[PortTimer:Tick]

[PortTimer:Tick]

PortPN:EventFire

PortViews:UnHighlight

PNAnimator

PortModels PortViews PortPN PortTimer

P
or
tM
od
el
s

P
o r
tV
ie
w
s

EH
_Pet riN

et(…
)

P
ortP

N

EH
_Tim

er(…
)

P
ortTim

er

EH_GT Animator state machineHigh level animation model
Event handler modelEvent handler

implementation

Animated model
Animation
engine

apply

gen.

ref.

E
N
V
IR
O
N
M
E
N
T

Domain knowledge and
simulation engines

UI model

GetDiagramView Default

Selecting

Firing GettingView

Highlighting

Initialized

PreNextCFEdge

PostNextCFEdge

PreStartNode

PostStartNode

PreDecision

PreEndNode

PreRuleNode

PreInitMatch

PreMatching

PreApplyMultipleMatch

PreApplyCurrentMatch

PreInternalCausalities

PreInternalCausality

PostInternalCausality

PostInternalCausalities

PostApplyCurrentMatch

PostApplyMultipleMatch

PostRuleNode

AgsiCFEdge

InternalCausalityResult

AgsiCFEndNode

TrafoOutputPlaces

AgsiInternalCausality

IAgsiCFNode

AgsiRuleExecutionResults

Initialize

ProcessNextCFEdge

ProcessStartNode

Matching

ApplyCurrentMatch

ApplyInternalCausalities

ApplyInternalCausality

Fig. 1. Architecture of the VMTS Animation Framework

The animation framework provides three visual languages to describe the
dynamic behavior of a metamodeled model and their processing via an event-
based concept. The key elements in our approach are the events. Events are
parameterizable messages that connect the components in our environment. The
services of the Presentation Framework, the domain-specific extensions, possible
external simulation engines (ENVIRONMENT block in Fig. 1) are wrapped
with event handlers, which provide an event-base interface. Communication with
event handlers can be established using events. The definition of event handlers
for custom components is supported with a visual language (Event handler model
block). The visual language defines the event handler, its parameters, the possible
events, and the parameters of the events - called entities. Based on the model, the
skeleton of the event handler can be generated (Event handler implementation
block). We have already implemented the elementary event handlers to wrap the
functions of the modeling environment, however, in case of integrating a third-
party component, the glue code between the component and the skeleton has to
be written manually.

832 T. Levendovszky and T. Mészáros

The animation logic can be described using an event-based state machine,
called Animator. We have designed another visual language to define these state
machines (Animator state machine block). The state machine consumes and
produces events. The transitions of the state machine are guarded by conditions
testing the input events and may fire other events after performing the transi-
tion. The input (output) events of the state machine are created in (sent to)
another state machine or an event handler. The events produced by the event
handlers and the state machines are scheduled and processed by a DEVS-based
[4] simulator engine (Animation engine block). The event handlers and the state
machines can be connected in a high-level model (High level animation model
block). The communication between components is established through ports.
Ports can be considered labeled buffers, which have a configurable size. On exe-
cuting an animation, both the high-level model and the low-level state machines
are converted into source code, which is executed after an automated compila-
tion phase. In addition to model animation, another visual language is provided
to design the layout of the user interface, which can be applied when executing
a model animation (UI model block).

2 Automated External Tool Integration

A shortcoming of our previous solution was that the integration of external com-
ponents (including simulation engines and third-party components) required too
much work compared to using their API themselves. To integrate a component,
we needed to create the event handler model including all the events for the com-
ponents and we also needed to write the glue-code between the generated event
handler and the component by hand. This is not a too intuitive task and is also
error-prone. If the interface of the adapted component changes for some reason,
the changes had to be propagated to the event handler model by hand, and the
glue-code also had to be updated. To address this issue we decided to use reflec-
tion to load the metainformation of the component and to generate the event
handler classes automatically, including both the event implementations and the
glue code. There are several types of .NET class-members we can assign events
to. The most trivial one is the .NET event. .NET events are language-supported
solutions to implement some kind of notification service. One can subscribe dele-
gates (roughly: function pointers) to the published events of an object, and they
can be called by the publisher object using the Observer design pattern [5]. If
a .NET event is fired, the event handler should catch it, and fire the appropri-
ate animation event with the right parameters (received from the .NET event)
through a port. If we consider the MouseClicked event of the Control object in
the .NET Base Class Library, it has two parameters: the first is called sender
and has a type of object – this parameter identifies the sender of the event –, the
second one is called e and is of type MouseEventArgs – it identifies the location
of the click, the pressed button etc. To wrap this .NET event we need to (i) cre-
ate a modeled event with the same type of properties as the parameters of the
event has (object, (ii) subscribe to the appropriate event of the inspected object

Tooling the Dynamic Behavior Models of Graphical DSLs 833

with a callback method, (iii) instantiate the modeled event and fire it through
a port if the callback method is called. A simple member method can also be
considered both an event source and a sink as well: a method call can be initi-
ated by firing an event to the event handler, the parameters of the event should
correspond to the parameters of the called method. The possible return value of
the method call can be propagated towards the animation logic using an event
as well. For example we assume a GetMatrix method having a parameter of type
string and a return value of type double[,]. The method can be wrapped with
two events: GetMatrix and GetMatrix . The GetMatrix event has a property of
type string (as the corresponding method also has such a similar parameter),
while GetMatrix – the response event sent by the event handler – has a property
of type double[,], which corresponds to the return value of the wrapped method.
.NET properties can be considered getter/setter methods for private fields or
calculated data. However, instead of function calls, we usually access the hidden
data with the syntax of accessing member fields. In fact, properties are imple-
mented with special methods in the background, but the language hides them
to the programmer. Thus, properties require three events to be created: (i) one
to set the value of the property (similar to a method call without return value),
(ii) one to query its value (sent to the event handler component) and (iii) an-
other one to return the value in response to the query (sent by the event handler
component).

Instead of modeling the necessary events to wrap a component, we provide
tools to automate the wrapping. In addition to define events in the event handler
model manually, one can extend the event handler by adding fields to it. A field
can be considered a member variable of the event handler, and the type of the
field can be defined in an arbitrary external .NET assembly. Each field has the
following attributes: name, type, initField and members. Setting the initField
attribute to true indicates the instantiation of the field together with the in-
stantiation of the event handler. The members attribute of the field defines the
members of the field-type we would like to generate events and default event
handlers for. Members are identified by name (memberName attribute), over-
loaded method names are distinguished with an order-id postfix. Each modeled
member corresponds to an existing member of the type of the parent field. If
a member is selected for generation, one, two or three events (depending on
its type) are generated with parameters to wrap the properties of the wrapped
member. The portId attribute of a Member identifies the port the generated
events are sent or received through. Furthermore, we can also specify whether
to generate the send/receive events using the send and receive attributes. This
feature is useful if we do not want to take care of the return value of a method
call, or, for example we would like to get the value of a property, but we would
never like to set it directly. For example, if we would like to wrap a Form control,
especially for its ShowDialog method and MouseClicked event, we need to add a
Field of type Form to an event handler, add two Members called MouseClicked
and ShowDialog to the Field, set their PortId attribute to an existing port, and
set their Send and Receive attributes to true – in fact, the Send attribute of

834 T. Levendovszky and T. Mészáros

members for .NET events is omitted. The presented procedure is also supported
by a graphical user interface which automatically provides available type mem-
bers and ports to create Member attributes

2.1 Integration of the MATLAB-Simulink Simulator

To illustrate the usage of our approach, we have integrated the MATLAB [6]
API into VMTS, and we simulated a Simulink model and presented its re-
sults in VMTS. MATLAB does not have an official .NET-based interface, so
we have used a free class library which wraps the most important MATLAB
operations with a .NET class. The name of the component is EngMATLib [7].
The event handler model for EngMATLib contains a single EventHandler node
which has a field called matlab, and its type is set to EngMATLib. We selected
the Execute and GetMatrix methods of EngMATLib to generate events for. The
Execute method is used to execute an arbitrary MATLAB command using its
interpreter. It does not have a return value, and expects a single string param-
eter, thus the generator produces an event class called Execute, which has a
string attribute. The GetMatrix method returns a floating point matrix identi-
fied by its name parameter. As the GetMatrix method has a return value, we
generate both a query event (called GetMatrix) which has a name attribute,
and a response event (called GetMatrix) for the return value of the method
call. Based on the performed settings the event handler implementation can be
generated.

The simulated Simulink model (called sldemo autotrans, Fig. 2 c) is shipped
with the MATLAB installation, and models an automatic transmission con-
troller. If we execute the simulation in Simulink, we can inspect the parameters
of the car (including speed, engine rotation-per-minute, and throttle state) at
different conditions. In the following example, we present these parameters on
diagrams and also on monitors in VMTS. For this purpose, we have created a
very simple visual language which can model indicators: numeric and stripe (Fig.
2 d). Each indicator has a name a range and a value, the modeled indicators are
animated according to the results received from MATLAB.

Fig. 2 a and b present the high-and low-level (state machine) animation mod-
els. As it can be seen on the high-level animation model, the animator is con-
nected to (i) the UI event handler (EH UI), (ii) to the generated EngMATLib
event handler and (iii) to a Timer which schedules the animation by sending
a Tick event every 0.1 secs. The state machine model consists of the following
steps: (1) query the active diagram, which contains the indicators to be ani-
mated (Fig. 2 e); (2) execute the simulation by sending an Execute event with
a ”sim(’sldemo autotrans’)” command to MATLAB; (3) query the time, speed,
RPM and throttle state vectors using GetMatrix on the signal logging structure
called sldemo autotrans output ; (4) obtain a reference to the indicators using
their names; (5) present the data-vectors on a diagram; (6) animate the indica-
tors by iterating through the vectors, and updating the Value property of the
indicators based on the data-vectors. Note, that the loop is controlled by the
Ticks of the timer event handler.

Tooling the Dynamic Behavior Models of Graphical DSLs 835

Fig. 2. Integrating Simulink simulations into VMTS

3 Hierarchical State Machines

Another shortcoming of our original solution was that in case of complex ani-
mation logics, the state machine became too large to be easily understood and
to be modified. To overcome this drawback, we have extended the state machine
formalism to support the modeling of hierarchical state machines. Fig. 3 depicts
the metamodel of the actual state machine language. The containment loop-edge
on the State node expresses the capability of building compound states. The ex-
ecution of the extended state-machine is modified as follows: if a compound state
becomes active, (i) its Action script is executed, (ii) the Start state of its internal
state machine is activated, (iii) the internal state machine is executed, (iv) when
reaching a Stop state in the internal state machine, the container state becomes
active. If a nested state is active, both its and the container state’s transitions
are checked when the state machine is activated. If a nested state does not have
any transitions which trigger the actual input, the transitions of the container

Fig. 3. State machine metamodel

836 T. Levendovszky and T. Mészáros

state are verified, and - if any of them can be fired - the control is taken from
the nested state, and returned to the container one. We have used nested states
during the integration of Simulink as it can be seen in Fig. 2 b.

4 Domain-Specific Model Patterns

Software developers usually use a widespread UI framework and follow its guide-
lines when designing the user interface for their application. Therefore they usu-
ally met recurring cases when very similar components, or often exactly the same
user interfaces, have to be designed. This situation is even more typical when
someone is specialized for a certain kind of applications, e.g. mobile applications
using a special platform. Using object oriented design techniques, one can han-
dle these cases by applying design patterns [5]. We have extended [8] the idea
of design patterns in VMTS to support not only UML based languages, but ar-
bitrary metamodeled languages. VMTS also provides tool support for the rapid
definition of design patterns, to organize them into repositories and to configure
and insert patterns into an edited model. We have examined whether we can
discover often recurring patterns in animation models and define them as ani-
mation design patterns. After creating numerous simulation models, we found
that animation state machines are not quite appropriate sources to find patterns.
This fact can be attributed to the language itself as well: the constraints of the
transitions have to be defined in a textual way, and the firing of the events is also
performed with action scripts. Furthermore, the integrated external components
have their own type of events, and the specific state machines operate on these
events. Instead of general patterns, one may discover recurring patterns during
the animation of a specific domain.

The other two animation languages (the high-level animation language and the
UI designer language - introduced in [3]) are better sources for pattern definition.
Here we present only an outline of them. Two often recurring patterns for high-
level animation models are presented in Fig. 4 a and b. The pattern in 4 a is the
most elementary pattern which occurs in every animation model which provides
visualization. The pattern contains an Animator and an EventHandler element,
and their Model and View ports are connected with bi-directional EventRoute
edges. Fig. 4 b can be considered the extension of 4 a with the notion of time
by adding a Timer event handler to the model.

The VMTS UI designer language is used to describe the layout of the mod-
eling environment during an animation. The designer language is very strict in
the sense that most elements (windows in VMTS) have a maximal cardinality of
1. The two exceptions are the DiagramWindow and the CustomWindow compo-
nents which model the presentation of a diagram or a custom edit control in the
application. However, the number of the applied windows is limited by the size
of the screen, as the more windows are presented, the smaller and less usable
they are. Thus, the set of practically applicable layouts can be considered a small
finite number. The two most common layouts are depicted in Fig. 4 c and d. In
Fig. 4 c the most common windows (browser and property setter) are placed

Tooling the Dynamic Behavior Models of Graphical DSLs 837

on the screen and one diagram is open. In Fig. 4 d the full screen is utilized:
a diagram and the standard output windows are open. The usual scenario is
that one can inspect the animation on the diagram, while the standard output
presents trace information.

Fig. 4. Animation design patterns

5 Related Work

AToM3 [9] is a general purpose metamodeling environment with simulation and
model animation features. AToM3 models can be animated either by handling
predefined events fired during the editing of the model or by executing model
transformation on the model and updating the visualization. Model elements in
VMTS can also react to events similar to the ones defined in AToM3, but we
do not define these event handlers in the metamodel but in the plugin which
defines the concrete syntax. Our approach also focuses on the visualization and
modeling of the animation logic, instead of implementing it by hand. AToM3
provides language-level support for the integration of external components which
can be called from Python. The main benefit of our approach is its flexibility and
extensibility: external components can be adapted to the animation framework,
the integration of external components and frameworks can be modeled, and
they are wrapped into a unified event-based interface.

The Generic Modeling Environment (GME) [10] is a general purpose
metamodeling and program synthesis environment. GME provides two ways to
animate models: (i) with the help of executing graph rewriting-based model

838 T. Levendovszky and T. Mészáros

transformations or (ii) by transforming models with custom traversing proces-
sors. Both approaches build on the fact that on updating model elements in the
object space (MGA-MultiGraph Architecture) of GME, the presentation layer
is notified about the changes, and the visualization of elements also updates.
GME supports external component integration on binary level. One can embed
components providing a COM interface into GME, however, the visual modeling
of the integration is not supported, it has to be performed with manual coding
without tool support.

MetaEdit+ [11] is a general purpose metamodeling tool. It supports model
animation through its Web Service API. Model elements in MetaEdit+ can be
animated by inserting API calls into the code generated from the model, or by
modifying the code generator to automatically insert these calls. If the attributes
of a model element are changed, its visualization is automatically up-dated. The
update mechanism can be influenced with constraints written in a proprietary
textual script language of MetaEdit+. The modification of model attributes in
VMTS also results in the automatic update of the presentation with the help of
data binding. By Applying converters to the data binding, we can perform an
arbitrary transformation on the presented data. This is a similar approach to
constraints in MetaEdit+. Compared to VMTS, MetaEdit+ does not provide a
graphical notation to define animation. The integration of external components
is not supported by modeling or generative techniques.

Human Assisted Logical Language (H)ALL [12] is a domain-specific visual
language for automatic derivation of user interfaces for critical control systems
within the BATIC3S [13] project. Compared to VMTS, (H)ALL also applies
hierarchical state machines to express the dynamic behavior of user interfaces.
The state machines communicate via messages. The semantics of (H)ALL mod-
els is defined with Concurrent Object-Oriented Petri-Nets [14] (CO-OPN). The
conversion between (H)ALL and CO-OPN is described with QVT [15] trans-
formations. Compared to VMTS, (H)ALL does not deal with the integration
of external components, it needs proprietary integration of components to the
coordination engine.

6 Conclusion

The focus of our contribution is how to simplify the handling of complex mes-
sages, how to support the automatic integration to external tools, and how to
optimize use of the existing DSLs with domain-specific model patterns. We found
that the use of hierarchical state machines to describe the message handling sim-
plifies the models to a great extent. The automation of the integration process
accelerates the development time significantly. We outlined a few design patterns
that can help reusing existing high-level animation and user interface models.
In our experience, using these practical techniques helps to make the graphical
DSL-based approach more efficient than manual coding. Future work includes
creating more applications, optimizing the generators, enriching the DSLs, and
identifying more specific model patterns for the animation paradigm.

Tooling the Dynamic Behavior Models of Graphical DSLs 839

Acknowledgments. The fund of Mobile Innovation Centre has supported, in
part, the activities described in this paper. This paper was supported by the
János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

1. VMTS homepage, http://vmts.aut.bme.hu
2. Mészáros, T., Mezei, G., Levendovszky, T.: A flexible, declarative presentation

framework for domain-specific modeling. In: Proceedings of the working conference
on Advanced visual interfaces (AVI 2008), Naples, Italy, pp. 309–312 (2008)

3. Mészáros, T., Mezei, G., Charaf, H.: Engineering the Dynamic Behavior of Meta-
modeled Languages, Simulation, Special Issue on Multi-paradigm Modeling (2008)
(accepted)

4. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, 2nd
edn. Academic Press, London (2000)

5. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, Reading (1994)

6. MATLAB homepage, http://www.mathworks.com
7. EngMATLib homepage, http://www.thecodeproject.com
8. Levendovszky, T., et al.: Supporting Domain-Specific Model Patterns with Meta-

modeling, System Special Issue on Metamodeling (submitted)
9. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-Formalism and Meta-

modeling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp.
174–188. Springer, Heidelberg (2002)

10. Lédeczi, Á., et al.: Composing Domain-Specific Design Environments. IEEE Com-
puter 34(11), 44–51 (2001)

11. Tolvanen, J.-P.: MetaEdit+: integrated modeling and metamodeling environment
for domain-specific languages. In: Companion to the 21st ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages, and applications, Port-
land, USA, pp. 690–691 (2006)

12. Barroca, B., Amaral, V. (H)ALL: a DSVL for designing user interfaces for Control
Systems. In: Proceedings of the 5th Nordic Workshop on Model Driven Engineer-
ing, Göteborg, Sweden (2007)

13. BATIC3S homepage, http://smv.unige.ch/tiki-index.php?page=BATICS
14. Buchs, B., Guelfi, N.: A formal specification framework for object-oriented dis-

tributed systems. IEEE Trans. Software Eng. 26(7), 635–652 (2000)
15. MOF QVT Final adopted specification,

http://www.omg.org/docs/ptc/05-11-01.pdf

http://vmts.aut.bme.hu
http://www.mathworks.com
http://www.thecodeproject.com
http://smv.unige.ch/tiki-index.php?page=BATICS
http://www.omg.org/docs/ptc/05-11-01.pdf

	Tooling the Dynamic Behavior Models of Graphical DSLs
	Introduction
	VMTS Animation Framework

	Automated External Tool Integration
	Integration of the MATLAB-Simulink Simulator

	Hierarchical State Machines
	Domain-Specific Model Patterns
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

