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Abstract. The purpose of this paper is to give an overview of a drawing ap-
proach for the visualization of diagrams. The approach is tailored to editors for 
visual languages, which support structured editing as well as free-hand editing. 
In this approach, the editor developer visually specifies layout behavior. From 
this specification a drawing facility is generated. With the generated editor, the 
user may perform incremental diagram drawing at any time. When visualizing 
components, taking into account geometric dependencies between different 
components for layout computation is a challenging task. Therefore, we choose 
the visual languages Petri nets and GUI forms as running examples. Based on 
these examples, we show the applicability of our approach to graph-based and 
hierarchical visual languages. 

1   Introduction 

When implementing an editor for a visual language, layout is a challenging task. The 
drawing approach should produce a good-looking result and should support the user. 
Additionally, the layout specification should be very easy. In the following, we intro-
duce an approach that aims at achieving these concurrent goals.  

The approach supports incremental layout computation, which is triggered by user 
input. As a consequence, layout needs to be computed at runtime. It is tailored to this 
requirement, which is best known in the graph drawing context as online layout com-
putation [10]. 

With our generic approach, it is possible to compute an initial layout. E.g. for a Pe-
tri net editor, a simple graph layout is implemented. In addition, the approach is best 
suited for incremental layout [7, 8], which starts with an initial layout and performs 
minor changes to improve it while still preserving the mental map of the original 
layout.  

Our approach succeeds in the context of editors that support structured editing as 
well as free-hand editing. Structured editors offer the user some operations that trans-
form correct diagrams into (other) correct diagrams. Free-hand editors allow arrang-
ing diagram components on the screen without any restrictions. 

It was implemented and tested in DIAMETa [4], an editor generation framework. 
With this tool an editor developer may create an editor for a specific visual language, 
e.g. Petri nets. The result is an editor that can be utilized by the editor user to create 
Petri nets. With DIAMETa, not only editors for graph-based visual languages like Petri 
nets, but also editors for other visual languages like GUI forms can be created (see 
Figure 1). 
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Fig. 4. Automatic & static layout 
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Incremental Layout 
In Figure 6 on the left, the user moves the checkbox “Red” to the right. As a conse-
quence, the layout engine moves the other checkboxes and the surrounding panel, 
taking into account previous layout information. 

 

Fig. 6. Incremental layout 

4   Layout Algorithm  

After describing the different layout modes, we now explain what happens if the 
layout engine is called. Roughly speaking, several layout rules are applied, following 
an application recipe (called application control). 

The algorithm is based on ideas described in [1, 2]. In the new approach, layout 
rules are defined on the concrete syntax level, whereas the application control is de-
scribed on the abstract syntax level. As layout rules are defined on the concrete syntax 
level, it is now possible to specify them visually in the application domain. 

Layout Rule 
The layout algorithm consists of several layout rules. Examples for layout rules are 
“align buttons horizontally” or “keep arrows attached to places”. For each rule, one 
diagram component is given as input. This is usually a component, the user changed, or 
a component the layout engine changed. E.g., for the rule “keep arrows attached to 
places”, this is the place. Then other components that are necessary for the layout rule 
are identified. In case of the rule “keep arrows attached to places”, this is the arrow. The 
set of required components is called pattern. Then, if a certain condition is fulfilled, a 
particular action is applied. For the example rule, the condition checks if the “arrow is 
correctly attached”, and the action executes “attach arrow correctly”. This means that 
one (or more) layout attribute(s) of one (ore more) component(s) is (are) changed. In 
conditions and actions, attribute values may be accessed. Here, several values are avail-
able: old values (values before user interaction), new values (values after user interac-
tion), and several intermediate values (values during layout computation). 

Application Control 
The layout rules, which are defined by the editor developer, are applied in an order, 
which is determined by the editor developer. The application control defines this 
sequence of applied layout rules. E.g., first places and transitions are aligned in a tree-
like structure, and afterwards, the arrows connecting these places and transitions are 
updated. In addition, the order in which the layout rule is applied to different parts of 
the diagram usually follows an exact plan. For instance, buttons are aligned  
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layout, force-directed layout, edge routing and layered drawing [6], which are tailored 
to the special needs of dynamic graph drawing. 

Currently, we also work on a three-dimensional visualization of visual languages. 
In this context, we extend our layouting approach to a third dimension. 

Up to now, we primarily focus on achieving “nice” results. In future, we also plan 
to take care of easy diagram manipulation. In this context, some user studies will need 
to be performed. To evaluate the “degree of mental map preservation”, some metrics 
will be helpful [9]. 
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