
J.A. Jacko (Ed.): Human-Computer Interaction, Part II, HCII 2009, LNCS 5611, pp. 850–859, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Specification of a Drawing Facility for Diagram Editors

Sonja Maier and Mark Minas

Universität der Bundeswehr München, Germany
{sonja.maier,mark.minas}@unibw.de

Abstract. The purpose of this paper is to give an overview of a drawing ap-
proach for the visualization of diagrams. The approach is tailored to editors for
visual languages, which support structured editing as well as free-hand editing.
In this approach, the editor developer visually specifies layout behavior. From
this specification a drawing facility is generated. With the generated editor, the
user may perform incremental diagram drawing at any time. When visualizing
components, taking into account geometric dependencies between different
components for layout computation is a challenging task. Therefore, we choose
the visual languages Petri nets and GUI forms as running examples. Based on
these examples, we show the applicability of our approach to graph-based and
hierarchical visual languages.

1 Introduction

When implementing an editor for a visual language, layout is a challenging task. The
drawing approach should produce a good-looking result and should support the user.
Additionally, the layout specification should be very easy. In the following, we intro-
duce an approach that aims at achieving these concurrent goals.

The approach supports incremental layout computation, which is triggered by user
input. As a consequence, layout needs to be computed at runtime. It is tailored to this
requirement, which is best known in the graph drawing context as online layout com-
putation [10].

With our generic approach, it is possible to compute an initial layout. E.g. for a Pe-
tri net editor, a simple graph layout is implemented. In addition, the approach is best
suited for incremental layout [7, 8], which starts with an initial layout and performs
minor changes to improve it while still preserving the mental map of the original
layout.

Our approach succeeds in the context of editors that support structured editing as
well as free-hand editing. Structured editors offer the user some operations that trans-
form correct diagrams into (other) correct diagrams. Free-hand editors allow arrang-
ing diagram components on the screen without any restrictions.

It was implemented and tested in DIAMETa [4], an editor generation framework.
With this tool an editor developer may create an editor for a specific visual language,
e.g. Petri nets. The result is an editor that can be utilized by the editor user to create
Petri nets. With DIAMETa, not only editors for graph-based visual languages like Petri
nets, but also editors for other visual languages like GUI forms can be created (see
Figure 1).

In Section 2 we introduc
paper. Section 3 gives an
editor user. The layout algo
in Section 4. Section 5 pro
has when he creates a layou
the approach are shown in
tion. In Section 7 future wo

2 Running Examples

In general, we distinguish
guages and non-graph-like
nets, mindmaps or busines
Nassi-Shneiderman diagram
shortly introduce the two vi

Fig.

2.1 Petri Net Editor

As a representative of the fi
Petri net editor, which was
syntax of the visual lang
represented by a hypergrap
edges of hypergraphs may
the left side of Figure 2, is
2. Here, nodes are visualiz
rectangles. Places and tran
node), whereas arrows have

Specification of a Drawing Facility for Diagram Editors

ce two visual editors that serve as running examples in
overview of the functionality our approach offers to

orithm, which is applied after user interaction, is descri
vides an overview of the possibilities the editor develo
ut specification. Some details about the implementation
Section 6. Especially DIAMETa is introduced in this s

ork is summarized and the paper is concluded.

s

two categories of visual languages: graph-like visual l
visual languages. Examples for the first category are P

ss process models. Examples for the second category
ms, VEX diagrams [3] or GUI forms. In the following
isual languages that will serve as running examples.

. 1. Petri net editor & GUI forms editor

first category, we choose Petri nets. In Figure 1 (left side
 created with DIAMETa, is shown. Internally, the concr

guage is represented by a graph. More precisely, it
ph [4], a generalization of graphs. In contrast to grap
visit more than two nodes. E.g., a Petri net, as shown
represented by the graph shown on the right side of Fig

zed as circles, and edges are visualized as arrows and
sitions have one attachment area (the edge “connects”
e two attachment areas (the edge “connects” two nodes)

851

this
the

ibed
oper
n of
sec-

lan-
Petri

are
we

e), a
rete
t is
phs,
n on
gure
d as
one
.

852 S. Maier and M. Min

Fig. 2. A Petri net con

In the graph, the edges t
contained in the diagram:
at_place and at_tran
connections between arrow

2.2 GUI Forms Editor

As a second example, GUI
ry. In Figure 1 (right side),
the left side of Figure 3, wh
Figure 3. The graph stores
that are aligned horizontall
and 2 express horizontal co
nections. An inside relation
node 6, as they may not con

Fig. 3. A GUI cons

3 Layout Modes

After introducing the runni
nality our approach offers to

The layout engine may
changed by the user, or the

nas

nsisting of a transition and two places, and its graph model

that are visualized as rectangles represent the compone
one transition, two places and two arrows. The ed

ns represent connections between arrow and place
 and transition.

forms are chosen as a representative of the second cate
 a GUI forms editor is shown. A sample GUI is shown
hich is represented by the graph shown on the right side
 the information that the diagram consists of two butt
y, and of a panel that contains these two buttons. Node
onnections. Similarly, nodes 3 and 4 express vertical c
n is expressed by the nodes 5 and 6. Buttons do not hav
ntain other components.

sisting of two buttons and a panel, and its graph model

ing examples, we now present an overview of the func
o the editor user.
either be called automatically each time the diagram

e layout engine may be called explicitly, e.g. by clickin

ents
dges
and

ego-
n on
e of
tons
es 1
con-
ve a

ctio-

m is
ng a

button. The first strategy
second strategy static layo
lized the first time, or that
pens in structured editing
case, the layout engine doe
and hence computes an in
into account previous layo
is computed. In the next
categories.

Automatic Layout
On the left side of Figure 4
row stays attached to the ou

Static Layout
After creating the diagram
“Graph Layout” (see Figur
formation, and draws the di

Initial Layout
For the GUI forms editor,
graph shown on the left si
shown on the right side of F

Specification of a Drawing Facility for Diagram Editors

Fig. 4. Automatic & static layout

y is called automatic layout in the following, and
out. Furthermore, it may either be that a diagram is vis

a diagram was visualized already. The first usually h
mode, the second in free-hand editing mode. In the f
es not take into account any previous layout informati

nitial layout. In the second case, the layout engine ta
out information, which means that an incremental lay
t paragraph, we give an example of each of the f

4, a place is moved to the right. During movement, the
utlines of the components at any time.

m in image 3 of Figure 4, the user may click the but
re 1). The layout engine considers the previous layout
iagram as shown in image 4.

we defined a structured editing operation that creates
ide of Figure 5. From this graph, the visualization tha
Figure 5 is automatically created.

Fig. 5. Initial layout

853

the
sua-
hap-
first
ion,
akes
yout
four

e ar-

tton
t in-

the
at is

854 S. Maier and M. Minas

Incremental Layout
In Figure 6 on the left, the user moves the checkbox “Red” to the right. As a conse-
quence, the layout engine moves the other checkboxes and the surrounding panel,
taking into account previous layout information.

Fig. 6. Incremental layout

4 Layout Algorithm

After describing the different layout modes, we now explain what happens if the
layout engine is called. Roughly speaking, several layout rules are applied, following
an application recipe (called application control).

The algorithm is based on ideas described in [1, 2]. In the new approach, layout
rules are defined on the concrete syntax level, whereas the application control is de-
scribed on the abstract syntax level. As layout rules are defined on the concrete syntax
level, it is now possible to specify them visually in the application domain.

Layout Rule
The layout algorithm consists of several layout rules. Examples for layout rules are
“align buttons horizontally” or “keep arrows attached to places”. For each rule, one
diagram component is given as input. This is usually a component, the user changed, or
a component the layout engine changed. E.g., for the rule “keep arrows attached to
places”, this is the place. Then other components that are necessary for the layout rule
are identified. In case of the rule “keep arrows attached to places”, this is the arrow. The
set of required components is called pattern. Then, if a certain condition is fulfilled, a
particular action is applied. For the example rule, the condition checks if the “arrow is
correctly attached”, and the action executes “attach arrow correctly”. This means that
one (or more) layout attribute(s) of one (ore more) component(s) is (are) changed. In
conditions and actions, attribute values may be accessed. Here, several values are avail-
able: old values (values before user interaction), new values (values after user interac-
tion), and several intermediate values (values during layout computation).

Application Control
The layout rules, which are defined by the editor developer, are applied in an order,
which is determined by the editor developer. The application control defines this
sequence of applied layout rules. E.g., first places and transitions are aligned in a tree-
like structure, and afterwards, the arrows connecting these places and transitions are
updated. In addition, the order in which the layout rule is applied to different parts of
the diagram usually follows an exact plan. For instance, buttons are aligned

horizontally from left to rig
once, or iteratively until a c
applied to just one match, o

5 Layouter Definitio

In this section we will desc
are used when implementin
reas the application control
rules, Java classes are gener
ten classes and some framew
included in the editor.

5.1 Definition of Layout

To allow a more intuitive d
layout rule definition, which

A generic editor for spec
tor is based on a diagram e
layout yet (as shown in Figu

In Figure 7, a screensho
create a layout rule, the edi
a condition and a rule in the
the pattern, he may use the

Fig. 7.

Specification of a Drawing Facility for Diagram Editors

ght. The layout creator can choose whether a rule is appl
certain condition is fulfilled. Besides, a rule may either

or to all matches that occur.

n

cribe, how layout rules may be defined, and what conce
ng the application control. Rules are defined visually, w

has to be written by hand. From the visual specification
rated. The generated classes, together with some handw
work classes form the desired layout engine, which may

Rule

description of layout, we introduced a visual language
h is based on the concrete syntax of the diagram languag
cifying these rules is provided. This language-specific e
ditor for a certain visual language, which does not supp
ure 10).
ot of such an editor for GUI forms is shown. In order
tor developer draws a pattern, and enters the pattern na
e middle of the editor (from top to bottom). For specify

e components available on the left side of the editor. In

. Layout editor for specifying layout rules

855

lied
r be

epts
whe-
n of

writ-
y be

for
ge.
edi-
port

r to
me,

ying
the

856 S. Maier and M. Min

example, he uses the comp
he may access the attribute
uses the attributes xPos, y

Incremental Layout
To define a layout rule usa
He has to provide a pattern
(Figure 7), the pattern cons
nent that was changed by t
means that the rule is app
attributes xPos and yPos
the attributes are used. (“_
may access an attribute via

Figure 8 shows another
a Petri net before and after
of the places c1 and c2 i
sented. Here, component c
fied version of the conditio
The rule introduces a (rathe

Initial Layout
Defining a layout rule usab
rule usable for incremental
layout is computed as usua
case an attribute is require
computation proceeds.

5.2 Definition of Applica

The definition of the applic
language. Up to now, the w
will be provided some stand
structure of the meta mod
chooses the appropriate stra

nas

onent button twice. For specifying conditions and ru
es shown on the right side of the editor. In the example
Pos and width.

ble for incremental layout, we need to proceed as follo
, a condition (which is optional) and a rule. In the exam
ists of two buttons. The left button (comp0) is the com
the user. In the example, no condition is provided, wh
lied each time. The rule that is defined here updates
of the right component (comp1). Here, the new values

_c” stands for changed.) If we want to use old values,
#_p_xPos#.
rule that modifies attributes. On the right side of Figur
applying a rule that updates the attributes xPos and yP

is shown. On the left side of Figure 8, the pattern is p
0 is the component, which the user has changed. A sim
on as well as the rule is shown in the middle of Figure
er simple) tree-like structure to Petri nets.

Fig. 8. Layout rule

ble for initial layout is a special case of defining a lay
l layout: all components are marked as changed. Then
al, without having initial values for attributes available
ed in a computation, this attribute is set to zero, and

tion Control

cation control is based on the abstract syntax of the diagr
whole definition needs to be hand-coded. In future, th
dard traversal strategies. Usually these strategies follow
del of the diagram language. After the editor develo
ategy, it would be possible to generate the control progr

ules,
, he

ows:
mple
mpo-
hich
the

s of
we

e 8,
Pos
pre-

mpli-
e 8.

yout
the

e. In
the

ram
here
the

oper
ram

automatically. Then, only t
gram needs to be defined.

Fig. 9. Excerpt of the meta mo

Another example is mov
the surrounding panel, are
frame) are also moved, if t
otherwise.

6 Implementation

The approach was implem
framework. The editor gen
rapidly developing diagram
shows a DIAMETa editor f
(right). Each DIAMETa edi
justed to the specific diagra
code generation, primarily t

6.1 DIAMETa Framework

The DIAMETa environmen
framework and editor fra
framework is basically a c
functionality, necessary for

In order to create an ed
has to enter two specificat
Editor Specification. Besid
tion, which was described in

A language’s class dia
compiler is used to create J
uses the DIAMETa Desig
appearance of diagram com
DIAMETa Designer generat

Specification of a Drawing Facility for Diagram Editors

the choice which action is applied to what part of the d

For instance, an excerpt of

meta model of GUI forms is sho
in Figure 9. If a button is resized,
follow the links nextH and nex
Following the link nextH, the n
components are moved and resiz
When following the link nextV,
next components are also moved
resized.

odel of GUI forms

ving a panel. Then, the components, which are contained
moved. Surrounding components (e.g. another panel o

the moved panel would leave the surrounding compon

mented and tested in DIAMETa [4], an editor generat
neration framework DIAMETa provides an environment
m editors based on meta modeling. Figure 1, for instan
for Petri nets (left) and a DIAMETa editor for GUI for
itor is based on the same editor architecture, which is
am language. DIAMETa’s tool support for specification
the DIAMETa Designer is described in this section.

k

nt consists of a framework (consisting of layout ed
mework) and the DIAMETa Designer (Figure 10). T
ollection of Java classes and provides the dynamic ed
editing and analyzing diagrams.

ditor for a specific diagram language, the editor develo
tions: First, the ECore Specification [5], and second
es, the editor developer has to provide a Layout Specifi
n Section 5.

agram is defined by an ECore specification. The E
Java code that represents this model. The editor develo
ner for specifying the concrete syntax and the vis

mponents, e.g., places (Petri nets) are drawn as circles. T
es Java code from this specification.

857

dia-

the
own
, we
xtV.
next
zed.
 the
and

d in
or a
ent,

tion
for

nce,
rms
ad-
and

ditor
The

ditor

oper
the

fica-

EMF
oper
sual
The

858 S. Maier and M. Min

The Java code generated
EMF compiler, and the lay
specified diagram language
ing the layout engine. From

The Java code generated
EMF compiler, the Java co
work, finally implement a D

7 Future Work and C

In this paper, we gave an
diagrams. The approach is
structured editing as well
specifies layout behavior. F
the generated editor, the us
As running examples, we
representatives for graph-lik

An open issue is the re
moment, they are rewritten
we plan to apply the concep

In this regard, we also
drawing algorithms. Right n

nas

Fig. 10. DIAMETa framework

d by the DIAMETa Designer, the Java code created by
yout editor framework, implement a Layout Editor for
e. The editor developer uses this Layout Editor for spec

m this specification, Java code is generated.
d by the DIAMETa Designer, the Java code created by
ode generated by the Layout Editor and the editor fram
Diagram Editor for the specified diagram language.

Conclusions

overview of a drawing approach for the visualization
tailored to an editor for visual languages, which suppo
as free-hand editing. Here, the editor developer visua

From this specification a drawing facility is generated. W
ser may perform incremental diagram drawing at any ti
chose the visual languages Petri nets and GUI forms
ke and non-graph-like visual languages.

eusability of layout rules and application controls. At
n each time they are needed. To cope with this challen
pts used in [11].
plan to provide a way of integrating hand-written gr
now, we are developing the graph drawing algorithms t

the
the
ify-

the
me-

n of
orts
ally

With
me.
, as

the
nge,

raph
tree

 Specification of a Drawing Facility for Diagram Editors 859

layout, force-directed layout, edge routing and layered drawing [6], which are tailored
to the special needs of dynamic graph drawing.

Currently, we also work on a three-dimensional visualization of visual languages.
In this context, we extend our layouting approach to a third dimension.

Up to now, we primarily focus on achieving “nice” results. In future, we also plan
to take care of easy diagram manipulation. In this context, some user studies will need
to be performed. To evaluate the “degree of mental map preservation”, some metrics
will be helpful [9].

References

1. Maier, S., Minas, M.: A Static Layout Algorithm for DiaMeta. In: Proc. of the 7th Intl.
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2008).
ECEASST (2008)

2. Maier, S., Mazanek, S., Minas, M.: Layout Specification on the Concrete and Abstract
Syntax Level of a Diagram Language. In: Proc. of the 2nd Intl. Workshop on Layout of
(Software) Engineering Diagrams (LED 2008). ECEASST (2008)

3. Citrin, W., Hall, R., Zorn, B.: Programming with visual expressions. In: Proc. of IEEE
Symposium on Visual Languages (VL 1995). IEEE Computer Society Press, Los Alamitos
(1995)

4. Minas, M.: Generating Meta-Model-Based Freehand Editors. In: Proc. of 3rd Intl. Work-
shop on Graph Based Tools. ECEASST (2006)

5. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson Education,
London (2003)

6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, En-
glewood Cliffs (1999)

7. Purchase, H.C., Samra, A.: Extremes are better: Investigating mental map preservation in
dynamic graphs. In: Proceedings Diagrams. LNCS(LNAI) (2008)

8. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Jour-
nal of Visual Languages and Computing (1995)

9. Bridgeman, S., Tamassia, R.: Difference metrics for interactive orthogonal graph drawing
algorithms. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, p. 57. Springer, Heidel-
berg (1999)

10. Branke, J.: Dynamic Graph Drawing. In: Drawing Graphs (1999)
11. Schmidt, C., Cramer, B., Kastens, U.: Usability Evaluation of a System for Implementation

of Visual Languages. In: Proceedings VL/HCC 2007 (2007)

	Specification of a Drawing Facility for Diagram Editors
	Introduction
	Running Examples
	Petri Net Editor
	GUI Forms Editor

	Layout Modes
	Layout Algorithm
	Layouter Definition
	Definition of Layout Rule
	Definition of Application Control

	Implementation
	DIAMETa Framework

	Future Work and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

