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Abstract. With the increasing interest in metamodeling techniques for
Domain Specific Modeling Languages (DSML) definition, there is a strong
need to improve the language modeling process. One of the problems to
solve is language evolution. Possible solutions include maximizing the
reuse of metamodel patterns, composing them to form new, more expres-
sive DSMLs.

In this paper we improve the process of rapid prototyping of DSML
graphical editors in meta-modeling tools, by defining composition rules
for the graphical syntax layer. The goal is to provide formally defined
operators to specify what happens to graphical mappings when their
respective metamodels are composed. This improves reuse of Domain
Specific Modeling Languages definitions and reduces development time.

1 Introduction

With increasing reports of success stories both in industry and academy, Software
Languages Engineering is becoming a more mature field. It is supported today
by proper conceptual and practical tools. Several domains of application are now
receiving benefit from the clarity and flexibility of specification that a Domain
Specific Modeling Language (DSML) approach provides.

Among supporting tools, some allow providing a DSML with a graphical syn-
tax and an editor, based on the DSML’s metamodel. However, providing a graph-
ical syntax to a DSML is still a very time consuming task. The main reasons
are that it is a task with a very low level of reusability and that integration
with the supporting tools is difficult. This is particularly relevant in the DSML
prototyping phase where modifications are performed very often.

Our motivation is improving the state of the art in what concerns rapid de-
velopment of graphical editors for DSMLs. In previous work, we defined what
happens to the semantic mappings of DSMLs (expressed by model transforma-
tions) when two DSML metamodels are composed. This work goes further in
defining a layer for graphical syntax composition. Operators are defined for the
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composition of metamodels. We explore the consequences of metamodel compo-
sition on graphical syntax and on the generation of graphical editors. We use an
example to illustrate the technique.

Section 2 will introduce some domain concepts we will use for composition
examples. A metamodel and a graphical syntax will be given for each domain
concept. Section 3 will define the composition operators and show how to com-
pose the example metamodels and their associated graphical syntax. Section 4
will reference related work. Section 5 will resume the article and discuss limits
and future work.

2 Case Study

Fig. 1 shows three simple metamodels. They represent very simple DSMLs, each
of which can be used to model a different concept. The first (a) allows the
specification of hierarchies of Objects. An Object may have one or more chil-
dren Objects. The second metamodel (b) allows the specification of finite state
machines (FSMs). A State may have outgoing Transitions, each one with a
destination State. A State has an attribute initial (a boolean). The third
metamodel (c) allows the specification of an event trigger. A Trigger is associ-
ated to one or more Events, which are triggered when the Trigger is activated.

Each of these metamodels has an associated graphical syntax, shown in Fig. 2.
The graphical syntax for objects (a) represents an Object as a rounded box,
and the children relationship as the containment of boxes (children are inside
parents). The graphical syntax for FSMs (b) represents a State as a box, and
a Transition as an arrow linking boxes. The direction of the arrow is given by
the relationships. The initial attribute of states is represented by a dot in a
corner of a state box (dot=true; no dot=false). The graphical syntax for triggers

Object

0..*

children

initial : boolean
State

Transition

outgoing

dest

0..*

1..1 Trigger

Event

triggers 1..*

(a) (b) (c)

Fig. 1. Object, FSM and Trigger metamodels

O1

O2

O3 O4
S2T1S1

TR1

E1 E2

(a) (b) (c)

Fig. 2. Object, FSM and Trigger graphical syntax
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(c) represents a Trigger as a gray box, containing a circle for each triggered
Event. In all cases, visual elements are labeled with the elements ID.

In the following section we will show how, given these metamodels, a developer
can define DSMLs to address each of the following example requirements:

1. Each object must contain an FSM.
2. Each object must be associated to an FSM. Several objects can be associated

to the same FSM.
3. In an FSM, reaching a state may trigger events.
4. An FSM can be hierarchical; a state can contain an FSM. Getting to that

state leads to the initial state of the internal FSM. From each internal state
it is always possible to leave the external state.

3 Composition Approach

The composition approach extends previous work [13] on composition opera-
tors for DSML metamodel blocks. This work perceives DSML definition as an
incremental task: a DSML’s metamodel is created by composing several sub-
metamodels, or domain concepts. Each concept is associated to one or more
concrete graphical syntaxes. The semantic aspects of composition have been
tackled in [13]. The work presented in this article goes further in exploring the
syntactic aspects of composition at the graphical layer.

We use four composition operators [7] to compose metamodels and reuse
graphical definitions. We assume that a domain concept is a metamodel with
an associated graphical syntax and that in the process of developing a DSML
several concepts are going to be composed. This section will give details about
what happens to graphical syntax when these composition operators are used on
metamodels. For all the examples and definitions that follow it is also assumed
that there are three metamodels: a left metamodel mmleft; a right metamodel
mmright; and a resulting composed metamodel mm′. A composition of meta-
models Comp is defined by a mapping function ϕoperator as

mm′ = Comp(mmleft, mmright, ϕoperator)

where operator stands for the name of the composition operator to be spec-
ified. The metamodels used as an example are those presented in Fig. 1. Their
associated graphical syntax is shown in Fig. 2.

3.1 Containment

This operator allows to create containment relations to provide hierarchical con-
structs. The hierarchy is defined by an aggregation relationship from one class of
the left metamodel to a set of classes of the right metamodel. The containment
operator is defined by ϕcontainment, a total function creating a map between
elements of mmleft and mmright:

ϕcontainment : mmleft → mmright, C
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where C stands for the cardinality of the aggregation relationship between the
metaclass of the mmleft metamodel and the metaclass(es) of the mmright meta-
model.

As an example, let mmleft be the Object metamodel in Fig. 1 (a) and as
mmright the State metamodel in Fig. 1 (b). Let us assume that the developer
wants to define a language to specify an FSM inside each modeled object. The
mapping function is defined as:

ϕcontainment = {〈Object, {〈State, 1..1〉}〉}
The containment operator is applied to obtain a composed metamodel, shown

in Fig. 3. The composition produced a state relationship which aggregates the
State class inside the Object class.

Object

0..*

children

initial : boolean
State

Transition

outgoing

dest

0..*

1..1

1..1

state

Fig. 3. Result of application of ϕcontainment = {〈Object, {〈State, 1..1〉}〉}

The pattern produced by the composition (the state aggregation) is reflected
in the graphical syntax by the possibility of defining states inside objects, as
shown in Fig. 4. The graphical symbols for objects, states and transitions do not
change.

S1

O1

O2

S3 S4
T2 S2

T1

Fig. 4. Composed visual syntax for containment between Object and State

3.2 Association

The association operator is very similar to the containment operator in what
concerns metamodel composition. However, instead of creating an aggregation,
this operator creates a reference between a class of the mmleft metamodel and
a class of the mmright metamodel. The association operator is defined by the
ϕassociation mapping function:

ϕassociation : mmleft → mmright, C
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where C is the cardinality of the reference between the metaclass of the mmleft

metamodel and the metaclass of the mmright metamodel.
As an example, let mmleft be the Object metamodel in Fig. 1 (a) and as

mmright the State metamodel in Fig. 1 (b). The developer wants to define a
language to specify an FSM for each object; however, rather than defining the
FSM inside the object, he just wants objects to reference an FSM, so that the
same FSM can be used for several objects. The mapping function is defined as:

ϕassociation = {〈Object, {〈State, 1..1〉}〉}

Fig. 5 shows the result of applying the association operator. The composition
produced a state reference, which relates the Object and State classes.

Object

0..*

children

initial : boolean
State

Transition

outgoing

dest

0..*

1..1state 1..1

Fig. 5. Result of application of ϕassociation = {〈Object, {〈State, 1..1〉}〉}

The pattern produced by the composition (the state reference) is reflected in
the graphical syntax by the possibility of creating a dashed arrow from an object
to a state, as shown in Fig. 6. In this case too, graphical symbols for objects,
states and transitions do not change.

O1

O2

S3 S4
T2

S1 S2
T1

Fig. 6. Composed visual syntax for association between Object and State

3.3 Inheritance

The inheritance operator allows to compose metamodels with a UML-like inher-
itance concept. It specifies that a class of the left metamodel is specialized by a
class of the right metamodel. The inheritance operator is defined by the ϕinherit

mapping function:
ϕinherit : mmleft → mmright

where the metaclass in mmleft is the specialized class and the metaclass in
mmright is the specialization class.

As an example, let mmleft be the Object metamodel in Fig. 1 (a) and as
mmright the Trigger metamodel in Fig. 1 (c). The developer wants to define a
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language for specifying FSMs, in which reaching a certain state triggers events.
The mapping function is defined as:

ϕinherit = {〈State, T rigger〉}
Fig. 7 shows the result of applying the inheritance operator. The Trigger

class specializes the State class.

initial : boolean
State

Transition

outgoing

dest

0..*

1..1

Trigger

Event

triggers 1..*

Fig. 7. Result of application of ϕinherit = {〈State, T rigger〉}

The specialization pattern is reflected in the graphical syntax by substitution
of the graphical symbol of the specialized class by that of the specializing class,
as shown in Fig. 8. This allows defining FSMs in which a transition has a trigger
– instead of a state – as source and/or destination. The graphical symbol for a
trigger can be used in place of the graphical symbol for a state. Triggers and
states keep their original graphical definition (e.g. one can still define events
inside triggers, but not inside states).

S1
T1

S3
T2

TR1

E1 E2

Fig. 8. Composed visual syntax for inheritance between State and Trigger

3.4 Parameterized Merge

This operator is used as “join point” to compose two DSMLs. Originally, package
merge was specified in the MOF specification [12]. Package merge allows the
merging of packages to specialize metamodel classes having matching names.
The necessity for metamodel classes to have matching names is however a strong
limitation, which is not always satisfied.

In a more practical approach we defined the parameterized merge operation.
ϕmerge is a total function that creates a map between elements of mmleft and
mmright

ϕmerge : mmleft → mmright

The merge between mmleft and mmright is not performed on metamodel
classes with matching names, but rather by defining a mapping fuction between
classes:



Composing Visual Syntax for Domain Specific Languages 895

– ϕmerge is a function that maps metaclasses of the left and right metamodels;
– the merge is done on mmright meaning that the element of mmright defined

in the ϕmerge function keeps its name.

As an example, let mmleft be the Object metamodel in Fig. 1 (a) and as
mmright the State metamodel in Fig. 1 (b). Let us say that the developer wants
to define a language to specify hierarchical finite state machines [3]. The mapping
function is defined as:

ϕmerge = {〈Object, State〉}
The merge operator is applied to obtain a composed metamodel, shown in

Fig. 9. The new State class has all attributes and relationships from the old
State and Object classes, including the child aggregation.

initial
State

Transition

outgoing

dest

0..*

1..1

children
0..*

Fig. 9. Result of application of ϕmerge = {〈Object, State〉}

Here, the pattern is a graphical representation of a class having features of
both merged classes. At the graphical syntax layer, it means that the graphical
symbol for the State class keeps its graphical notation; however the newly added
child aggregation makes it possible to define states inside other states (just like
objects of the Object metamodel could be defined inside other objects). The
resulting graphical syntax is shown in Fig. 10.

S1 S2
T1

S3 S4
T2

Fig. 10. Composed visual syntax for parameterized merge between Object and State

4 Related Work

Several tools can be found which are able to generate graphical editors from the
metamodel of a language. These tools have different approaches to specify the
concrete graphical syntax for DSMLs.

The Graphical Modeling Framework (GMF) [4] is an Eclipse project, with
which a DSML’s graphical editor can be generated. The resources for editor
generation are the EMF metamodel of the language and several additional pre-
sentation models (gmfgraph, gmftool, gmfmap) mapped to the EMF metamodel.
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The presentation models define the DSML’s concrete syntax (diagram elements,
toolbar options, etc).

The Generic Modeling Environment (GME) [6] is a highly configurable meta-
modeling tool. Instead of having external descriptions for the concrete syntax,
GME gives the ability to decorate the DSML’s metamodel with special enti-
ties called views. For each element of the metamodel the designer can define a
concrete visual syntax in the generated DSML’s graphical editor.

Meta-CASE editors (e.g. MetaEdit+ [9]) are environments capable of gener-
ating CASE tools. They allow creating tool definitions in a high-level graphical
environment. However, the user interface is coded manually. These environments
store concrete syntax definitions directly in the metamodel properties.

Another framework is the Diagram Editor Generator (DiaGen) [11], which
is an efficient solution to create visual editors for DSMLs. DiaGen is not based
on metamodeling techniques; it uses its own specification language for defining
the structure of diagrams. DiaGen supports editing of the concrete syntax in
a graphical context, but in a tree control-based form only, where there is no
support to define the graphical shape of elements. Concrete syntax in DiaGen is
based on properties. DiaGen can generate an editor based on the specification
using hypergraph grammars and transformations.

AToM3 (A Tool for Multi-formalism and Meta-Modelling) [1]) is a flexible
modeling tool. It employs an appearance editor to define the graphical shape of
model elements. It uses model properties to store the concrete syntax (model
definitions are extended with visualization-based attributes). AToM3 can gener-
ate plug-ins that use the defined syntax, but the code generation is not based
on a presentation DSL. Model views are generated with triple graph grammars.

Visual Modeling and Transformation System (VMTS) [10] is an n-layer meta-
modeling environment that unifies the metamodeling techniques used by the
common modeling tools. It employs model transformation applying graph rewrit-
ing as the underlying mechanism. Concrete syntax definitions are created by in-
stantiating VMTS’s Presentation DSL (VPD) and they define how model items
are visualized. These definitions are afterwards mapped to the DSML’s abstract
syntax.

Although these modeling frameworks support concrete graphical syntax def-
initions, very little work has been done to support the composition of these
definitions.

In [8] and [5], the first steps of DSML composition in GME are presented.
In these works the composition operators (e.g. metamodel interfacing, class re-
finement) only affect the metamodel elements referring to the DSML’s abstract
syntax. The corresponding effects on the visual concrete syntax are left implicit,
as part of the composition operator’s semantics. In [7] an overview over the sev-
eral composition operators for metamodel composition is provided, on which our
work is based.

In [2], a new composition operator was introduced: template instantiation,
in the context of GME. Again this composition operator does not focus on the
visual concrete syntax, but only on the abstract syntax.
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In [13] several new metamodel composition methods were presented, both at
the syntactic and semantic level. These methods can be parameterized to specify
what are the consequences of metamodel composition at the semantic level of a
DSML (expressed as a model transformations to a target platform).

5 Conclusions

We presented a proposal for automatically mapping composition patterns to
graphical syntax. A limitation of the presented work is that the composition
operators might not cover all possible compositions. We might have a case in
which we want to apply the metamodel composition operator and not have
the composition of the graphical syntax. For example, we might want to define
instances of class State inside class Object, but at the same time be able to
have instances of State which are not contained in any object. This would
require either manual composition, or identification of more complex composition
patterns. Also, there are cases in which the proposed graphical representations
for patterns might create ambiguity with pre-existing graphical notations of
the composed metamodels. For example, if a metamodels already uses dashed
arrows in its graphical syntax, then applying the Association operator to it
might introduce more dashed arrows with a different meaning than the pre-
existing ones. However, based on mentioned related work, we think the presented
operators cover a large number of use cases.

Future work includes the identification of more complex patterns based on
case studies. In order to do this, we have to explore the implementation of the
proposed approaches using standardized tools. Our current point of view is that
the most viable frameworks for implementation are GEF and GMF. Implemen-
tation in GEF might be easier to develop as the graphical syntax definition is
at a lower level. The level of abstraction of definitions in GMF could make im-
plementation more difficult; however, from the end user point of view it might
be more usable.

Although further investigation is needed, we think that this approach is rel-
evant in the context of defining the graphical layer of DSMLs. This task is
usually non-trivial in current language development environments. Being able
to reuse previously defined graphical patterns can boost DSML development
productivity.
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