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Abstract. We present a new method for morphing 2D and 3D objects.
In particular we focus on the problem of smooth interpolation on a shape
manifold. The proposed method takes advantage of two recent works on
2D and 3D shape analysis to compute elastic geodesics between any two
arbitrary shapes and interpolations on a Riemannian manifold. Given a
finite set of frames of the same (2D or 3D) object from a video sequence,
or different expressions of a 3D face, our goal is to interpolate between
the given data in a manner that is smooth. Experimental results are
presented to demonstrate the effectiveness of our method.

1 Introduction

There has been an increasing interest in recent years in analyzing shapes of
3D objects. Advances in shape estimation algorithms, 3D scanning technology,
hardware-accelerated 3D graphics, and related tools are enabling access to high-
quality 3D data. As such technologies continue to improve, the need for auto-
mated methods for analyzing shapes of 3D objects will also grow. In terms of
characterizing 3D objects, for detection, classification, morphing, and recogni-
tion, their shape is naturally an important feature. It already plays an important
role in medical diagnostics, object designs, database search, and some forms of
3D face animation. Focusing on the last topic, our goal in this paper is to de-
velop a new method for morphing 2D curves and 3D faces in a manner that
is smooth and more ”natural”, i.e. interpolate the given shapes smoothly, and
capture the optimal and elastic non-linear deformations when transforming one
face to another.

1.1 Previous Work

During the last few years several application driven methods have been proposed
for different purposes. For example, Crouch et al. [2] implemented the de Castel-
jau algorithm on Lie groups and on m-dimensional spheres under some boundary
conditions. More recently, Jakubiak et al. [5] presented a geometric algorithm to
generate splines of an arbitrary degree of smoothness on a Euclidean space and
then extended it to matrix Lie groups. They applied their algorithm to design a
smooth motion of a 3D object in space. Using an unrolling and unwarping proce-
dure on a Riemannian manifolds, Kume et al. [9] developed a new method to fit
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smooth curves through a series of landmark shapes. Using a discrete construc-
tion based on the de Casteljau algorithm, Altafini [1] proposed an interpolation
method by smooth closed-form curves on the Lie group of rigid body motions.
A new version of the de Casteljau algorithm, introduced by Popeil et al. [13]
generalizes Bézier curves on a connected Riemannian manifold. They replaced
line-segments in the classical de Casteljau algorithm by geodesics segments on
the manifold. Their algorithm was implemented and tested on a data set in a
two-dimensional hyperbolic space.

Most techniques for morphing, both 2D and 3D shapes, are based on a sparse
set of user selected feature points. These are then used to establish the corre-
spondences which in turn are used for interpolation. Much of the work done in
morphing has been done on 2D metamorphosis. 3D morphs on the other hand
change the geometry of the object and are then harder to compute and con-
trol. A good summary of previous work on the 3D morphing problem as that
of Lazarus et al. [11]. The authors note that there are unlimited ways to inter-
polate between different 3D objects. Hughes [4] proposed a method working in
the Fourier domain. This provided novel ways to control the morph by treating
frequency bands with different functions of time. Whitaker et al. [17] performed
morphing through the application of evolution equations.

1.2 Our Approach

Given a finite set of points on a shape manifold, we want to fit the given data
with a smooth and continuous curve. One efficient way to reach this goal, is to
apply the de Casteljau algorithm [5] to interpolate between the given data. The
goal here is to use classical polynomial interpolations, such as Bézier or Lagrange.
Introduced a few decades ago, those interpolations has been defined and applied
to the Euclidean plane. Recently, the de Casteljau algorithm served as a tool to
generalize them on any Riemannian manifold, given a way to compute geodesics
on the manifold [12].

Based on recent work on 2D and 3D shape analysis, we will first introduce
an efficient method to compute geodesics on a shape manifold between any two
arbitrary closed curves in R

n. We will then generalize it to surfaces of genus zero.
To this end, we will choose a representation for curves and surfaces in order to
facilitate their analysis as elements of infinite non-linear manifolds [14]. Other
methods to compute geodesics on a shape manifold could be applied for the same
purpose. But we will show that our choice is based on some advantages of this
method: the smoothness of the resulting curve, the non-rigidity of the observed
object, and the non-linearity of transformations going from one control point to
another.

The rest of this paper is organized as follows. Detailed specific examples are
given in Section 2. A Riemannian analysis of closed curves in R

3 is presented
in Section 3, with its extension to a Riemannian analysis of facial surfaces. The
notion of smoothing (morphing of 3D faces) on a shape manifold is applied
to curves and facial surfaces in Section 4 and the paper finishes with a brief
summary in Section 5.
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2 Some Specific Examples of Manifolds

We will give two examples in order to make the reader familiar with the Lagrange
and Bézier fitting curves obtained by the de Casteljau and Neville-Aitken algo-
rithms [10].

2.1 On Euclidean Plane

In this section we will not re-visit the literature on interpolation polynomials in
detail, but we will give some examples on the Euclidean plane to help under-
standing the extension of this simple case to a Riemannian manifold. Bézier and
Lagrange fitting curves for a given set of points in R

2 are shown in figure 1(a).
Observe that the Lagrange interpolation passes through the control points, while
the Bézier curve starts at the first control point and ends at the last one without
passing through the intermediate control points.
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Fig. 1. (a): Bézier and Lagrange on Euclidean plane, (b): Bézier on SO(3), and (c):
Lagrange on SO(3)

2.2 Interpolation on SO(3) × R
3

In this section we will consider the problem of fitting curves to a finite set
of control points derived from a continuous observation of a rigid transfor-
mation of a 3D object in space. A similar idea was applied in [5] to build a
trajectory of a satellite in space, where only rotations and translations were
considered.

We are given a finite set of positions (3D coordinates) in R
3, and finite set

of rotations, at different instants of time. Our goal is to compute a rigid body
motion the object will pass through (or close to) the given positions, and will
rotate by the given rotations, at the given instants. The Bézier curve is obtained
by the de Casteljau algorithm ( see details in [1]) and the Lagrange curve by
the Neville-Aitken algorithm in SE(3). As shown in figure 1, we obtain different
fitting curves using Bézier in figure 1(b) and Lagrange in figure 1(c). In order
to visualize the end effect, the two figures show the motion of a rigid body,
where position is given by the curve in R

3, and rotation is displayed by rotating
axes.
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3 Interpolation on Shape Manifold

The crucial tool in applying Neville-Aitken’s and de Casteljau’s algorithms on
a manifold is a method that constructs a geodesic between any pair of points.
In this section, we consider methods for constructing geodesics between pairs of
curves and between pairs of surfaces.

3.1 Geodesic between Curves

Here we adopt the approach presented in Joshi et al. [6] because it greatly
simplifies the elastic shape analysis. The main steps are: (i) defining a space
of closed curves of interest, (ii) imposing a Riemannian structure on it using
the elastic metric, and (iii) computing geodesic paths under this metric. These
geodesic paths can then be interpreted as optimal elastic deformations of curves.

For the interval I ≡ [0, 2π], let β : I → R
3 be a parameterized curve with a

non-vanishing derivative everywhere. We represent its shape by the function:

q : I → R
3, q(s) =

β̇(s)√
||β̇(s)||

∈ R
3.

Where, || · || ≡ √
(·, ·)R3 , and (·, ·)R3 are taken to be the standard Euclidean

inner product in R
3. The quantity ||q(s)|| is the square-root of the instantaneous

speed of the curve β, whereas the ratio q(s)
||q(s)|| = β̇(s)

‖β̇(s)‖ is the direction for each
s ∈ [0, 2π) along the curve. Let Q be the space of all square integrable functions
in R

3,
Q ≡ {q = (q1, q2, q3)|q(s) : I → R

3, q(s) �= 0, ∀s}.
The closure condition for a curve β requires that

∫
I
β̇(s)ds = 0, which trans-

lates to
∫

I ||q(s)||q(s) ds = 0. We define a mapping G : Q �→ R
4, with compo-

nents:

G1=

∫

I

q1(s) ||q(s)||ds, G2=

∫

I

q2(s) ||q(s)||ds, G3=

∫

I

q3(s) ||q(s)||ds, G4=

∫

I

‖q(s)‖2ds=1 .

The space obtained by the inverse image C = G−1(0) is the space of all closed
curves of unit length, and this representation is invariant under translation and
scaling. C is endowed with a Riemannian structure using the following metric:
for any two tangent vectors v1, v2 ∈ Tq(C), we define

〈v1, v2〉 =
∫

I

(v1(s), v2(s))R3ds . (1)

Next, we want a tool to compute geodesic paths between arbitrary elements of
C. There have been two prominent numerical approaches for computing geodesic
paths on nonlinear manifolds. One approach uses the shooting method [8] where,
given a pair of shapes, one finds a tangent direction at the first shape such that
its image under the exponential map gets as close to the second shape as possible.
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We will use another, more stable approach that uses path-straightening flows to
find a geodesic between two shapes. In this approach, the given pair of shapes
is connected by an initial arbitrary path that is iteratively “straightened” so
as to minimize its length. The path-straightening method, proposed by Klassen
et al [7], overcomes some of the practical limitations in the shooting method.
Other authors, including Schmidt et al. [15] and Glaunes et al [3], have also
presented other variational techniques for finding optimal matches. Given two
curves, represented by q0 and q1, our goal is to find a geodesic between them
in C. Let α : [0, 1] → C be any path connecting q0, q1 in C, i.e. α(0) = q0 and
α(1) = q1. Then, the critical points of the energy

E[α] =
1
2

∫ 1

0

〈α̇(t), α̇(t)〉 dt , (2)

with the inner product defined in Eqn. 1, are geodesics in C (this result is true
on a general manifold [16]). As described by Klassen et al. [7] (for general shape
manifolds), one can use a gradient approach to find a critical point of E and
converge to a geodesic. The distance between the two curves q0 and q0 is given
by the length of the geodesic α:

dc(q1, q2) =
∫ 1

0

(〈α̇(t), α̇(t)〉)1/2dt .

We call this the elastic distance in deforming the curve represented by q0 to the
curve represented by q1.

We will illustrate these ideas using some examples. Some examples of elas-
tic matching between planar shapes are presented in Figure 2. Nonlinearity of
matching between points across the two shapes emphasizes the elastic nature of
this matching. One can also view these paths as optimal elastic deformations of
one curve to another.

Fig. 2. Elastic deformation (geodesic) between 2D curves from Kimia database

3.2 Geodesic between Faces

Analyzing the morphing of a surface is much more complicated due to the cor-
responding difficulty in analyzing shapes of surfaces. The space of parameteriza-
tions of a surface is much larger than that of a curve, and this hinders an analysis
of deformation in a way that is invariant to parameterization. One solution is to
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Fig. 3. Representation of facial surfaces as indexed collection of closed curves in R
3

restrict to a family of parameterizations and perform shape analysis over that
space. Although this can not be done for all surfaces, it is natural for certain
surfaces such as the facial surfaces as described next.

Using the approach of Samir et al. [14], we can represent a facial surface
S as an indexed collection of facial curves, as shown in Figure 3. Each facial
curve, denoted by cλ, is obtained as a level set of the (surface) distance function
from the tip of the nose; it is a closed curve in R

3. As earlier, let dc denote
the geodesic distance between closed curves in R

3, when computed on the shape
space S = C/(SO(3)×Γ ), where C is the same as defined in the previous section
except this time it is for curves in R

3, and Γ is the set of all parameterizations.
A surface S is represented as a collection ∪λcλ and the elastic distance between
any two facial surfaces is given by: ds(S1, S2) =

∑
λ dc(λ), where

dc(λ) = inf
O∈SO(3),γ∈Γ

dc(q1
λ,

√
γ̇Oq2

λ(γ)) . (3)

Here q1
λ and q2

λ are q representations of the curves c1
λ and c2

λ, respectively. Ac-
cording to this equation, for each pair of curves in S1 and S2, c1

λ and c2
λ, we

obtain an optimal rotation and re-parameterization of the second curve. To put
together geodesic paths between full facial surfaces, we need a single rotational
alignment between them, not individually for each curve as we have now. Thus
we compute an average rotation:

Ô = average{Oλ} ,

using a standard approach, and apply Ô to S2 to align it with S1. This global
rotation, along with optimal re-parameterizations for each λ, provides an optimal
alignment between individual facial curves and results in shortest geodesic paths
between them. Combining these geodesic paths, for all λ’s, one obtains geodesic
paths between the original facial surfaces.

Fig. 4. Geodesic path between two facial surfaces, and the corresponding magnitude
of deformation
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4 Experimental Results

In this section, we present some examples and discuss the effectiveness of our
method. At each step of the interpolation, optimal deformations between two
shapes are computed using geodesics on a shape manifold, as segments were
used in the classical de Casteljau algorithm on the Euclidean plane. Note that
all shapes are extracted from real data and are generated fully automatically
without any user interaction.

4.1 Examples Derived from Video-Sequences

In the first example (see figure 5), curves are extracted from video sequences
of growing leaves. In the second example (see figure 6), curves are extracted
from a video sequence of a human walk. In each example, only four key frames
are selected to be used as control points for interpolation. Curves are then ex-
tracted and represented as a vector of 100 points. Recall that shapes are invari-
ant under rotation, translation, and re-parameterization. Thus, the alignment
between the given curves is implicit in geodesics which makes the morphing
process fully automatic. In figures 5 and 6, the first three rows show optimal
deformations between ending shapes and the morphing sequences are shown in
the last two rows. Thus, the fourth row shows Lagrange interpolation, and the
last row shows Bézier fitting curve. It is clear from figures 5 and 6 that Lagrange
interpolation gives (visually) a good morphing and passes through the given
data.

Fig. 5. First three rows: geodesic between the ending shapes (leaf contours). Fourth
row: Lagrange interpolation between four control points (ending points in previous
rows). Last row: Bézier fitting curve using the same control points.
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Fig. 6. First three rows: geodesic between the ending shapes (human silhouettes from
gait). Fourth row: Lagrange interpolation between four control points (ending points
in previous rows). Last row: Bézier fitting curve using the same control points.

Fig. 7. Morphing 3D faces by applying Lagrange interpolation on four different facial
expressions of the same person (1:4:17)

4.2 3D Face Morphing

In this example we show how to build an animation of 3D faces using different
facial surfaces that represent the same person under different facial expressions.
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In contrast with some previous methods that show morphing between faces as
a deformation from one face to another, which could be obtained here by a
geodesic between two faces, our goal is to provide a way to build a morphing
that includes a finite set of faces. So, as shown in figure 7, we can use different
facial expressions (four in the figure) and make the animation start from one
face and pass through different facial expressions using Lagrange interpolation
on a shape manifold. As mentioned above, no manual alignment is needed. Thus,
the animation is fully automatic. In this experiment, we represent a face as a
collection of 17 curves, and each curve is represented as a vector of 100 points.
The method proposed in this paper can be applied to more general surfaces
if there is a natural way of representing them as indexed collections of closed
curves. For more details, we refer the reader to [14].

5 Summary

We have introduced a new method for 2D and 3D shape metamorphosis based
on Neville-Aitken’s and de Casteljau’s algorithms on a shape manifold. A fully
automatic method to morph a shape passing through (or close to) finite set
of other shapes. We have shown some examples using 2D curves from a walk-
observation, leaf-growth, and 3D faces to demonstrate the effectiveness of our
method. The method is applicable to other object parameterizations. All that is
required is a method to compute a geodesic between pairs of objects.
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