Extrapolation-based Path Invariants for
Abstraction Refinement of Fifo Systems

Alexander Heuflner!, Tristan Le Gall?, and Grégoire Sutre!

! LaBRI, Université Bordeaux, CNRS {sutre, heussner}@labri.fr
2 Université Libre de Bruxelles (ULB) tlegall@ulb.ac.be

Abstract. The technique of counterexample-guided abstraction refine-
ment (CEGAR) has been successfully applied in the areas of software and
hardware verification. Automatic abstraction refinement is also desirable
for the safety verification of complex infinite-state models. This paper in-
vestigates CEGAR in the context of formal models of network protocols,
in our case, the verification of fifo systems. Our main contribution is the
introduction of extrapolation-based path invariants for abstraction re-
finement. We develop a range of algorithms that are based on this novel
theoretical notion, and which are parametrized by different extrapola-
tion operators. These are utilized as subroutines in the refinement step
of our CEGAR semi-algorithm that is based on recognizable partition ab-
stractions. We give sufficient conditions for the termination of CEGAR by
constraining the extrapolation operator. Our empirical evaluation con-
firms the benefit of extrapolation-based path invariants.

1 Introduction

Distributed processes that communicate over a network of reliable and un-
bounded fifo channels are an important model for the automatic verification
of client-server architectures and network protocols. In this paper, we focus on
communicating fifo systems that consist of a set of finite automata that model
the processes, and a set of reliable, unbounded fifo queues that model the com-
munication channels. This class of infinite-state systems is unfortunately Turing-
complete even in the case of one fifo queue [BZ83]. In general, two approaches
for the automatic verification of Turing-complete infinite-state models have been
considered in the literature: (a) exact semi-algorithms that compute forward
or backward reachability sets (e.g., [BG99, BH99, FIS03] for fifo systems) but
may not terminate, and (b) algorithms that always terminate but only compute
an over-approximation of these reachability sets (e.g., [LGJJ06, YBCIOS] for
fifo systems). In the last decade, counterexample-guided abstraction refinement
[CGJT03] has emerged as a powerful technique that bridges the gap between
these two approaches. CEGAR plays a prominent role in the automatic, iterative
approximation and refinement of abstractions and has been applied successfully
in the areas of software [BR0O1, HJMS02] and hardware verification [CGJT03].
Briefly, the CEGAR approach to the verification of a safety property utilizes an
abstract—check-refine loop that searches for a counterexample in a conservative

over-approximation of the original model, and, in the case of finding a false neg-
ative, refines the over-approximation to eliminate this spurious counterexample.

Our Contribution. We present a CEGAR semi-algorithm for safety verification of
fifo systems based on finite partition abstractions where equivalence classes are
recognizable languages of queue contents, or, equivalently, QDDs [BG99]. The
crucial part in CEGAR-based verification is refinement, which must find a new
partition that is both (1) precise enough to rule out the spurious counterexample
and (2) computationally “simple”. In most techniques, refinement is based on the
generation of path invariants; these are invariants along the spurious counterex-
ample that prove its unfeasibility (in our case, given by a series of recognizable
languages). We follow this approach, and present several generic algorithms to
obtain path invariants based on parametrized extrapolation operators for queue
contents. Our path invariant generation procedures are fully generic with respect
to the extrapolation. Refining the partition consists in splitting abstract states
occurring on the counterexample with the generated path invariant.

We formally present the resulting CEGAR semi-algorithm and give partial
termination results that, in contrast to the classical CEGAR literature, do not
rely on an “a priori finiteness condition” on the set of all possible abstractions.
Actually, our results depend mainly on our generic extrapolation-based path
invariant generation. In particular we show that our semi-algorithm always ter-
minates if (at least) one of these conditions is satisfied: (1) the fifo system under
verification is unsafe, or (2) it has a finite reachability set and the parametrized
extrapolation has a finite image for each value of the parameter.

We have implemented our approach in the tool McscM [McS] that performs
CEGAR-based safety verification of fifo systems. Experimental results on a suite
of (simple) network protocols allow for a first discussion of our approach’s ad-
vantages.

Related Work. Exact semi-algorithms for reachability set computations of fifo
systems usually apply acceleration techniques [BG99, BH99, FIS03] that, in-
tuitively, compute the effect of iterating a given “control flow” loop. The tools
LasH [Las] (for counter/fifo systems) and Trex [TRe] (for lossy fifo systems) im-
plement these techniques. However, recognizable languages equipped with Pres-
burger formulas (CQDDs [BH99]) are required to represent (and compute) the
effect of so-called counting loops [BG99, FIS03]. Moreover such tools may only
terminate when the fifo system can be flattened into an equivalent system with-
out nested loops. Our experiments show that our approach can cope with both
counting loops and nested loops that cannot be flattened.

The closest approach to ours is abstract regular model checking [BHV04],
an extension of the generic regular model-checking framework based on the
abstract—check-refine paradigm. As in classical regular model-checking, a sys-
tem is modeled as follows: configurations are words over a finite alphabet and
the transition relation is given by a finite-state transducer. The analysis consists
in an over-approximated forward exploration (by Kleene iteration), followed, in
case of a non-empty intersection with the bad states, by an exact backward
computation along the reached sets. Two parametrized automata abstraction

schemes are provided in [BHV04], both based on state merging. These schemes
fit in our definition of extrapolation, and therefore can also be used in our frame-
work. Notice that in ARMC, abstraction is performed on the data structures used
to represent sets of configurations, whereas in our case the system itself is ab-
stracted. After each refinement step, ARMC restarts (from scratch) the approxi-
mated forward exploration from the refined reached set, whereas our refinement
is local to the spurious counterexample path. Moreover, the precision of the ab-
straction is global in ARMC, and may only increase (for the whole system) at
each refinement step. In contrast, our path invariant generation procedures only
use the precision required for each spurious counterexample, and ongoing bench-
marks encourage our adaptive approach as in most protocols (un-)safety depends
solely on a “highly” precise abstraction of few control loops. Last, but not least,
our approach is not tied to words and automata. We only focus in this work on
fifo systems, but our framework is fully generic and could be applied to other
infinite-state systems (e.g., hybrid systems), provided that suitable parametrized
extrapolations are designed (e.g., on polyhedra).

Outline. We recapitulate fifo systems in Section 2 and define their partition ab-
stractions in Section 3. Refinement and extrapolation-based generation of path
invariants are developed in Section 4. In Section 5, we present the general CE-
GAR semi-algorithm, and analyse its correctness and termination. Experimental
results are presented in Section 6, along with some perspectives.

2 Fifo Systems

This section presents basic definitions and notations for fifo systems that will be
used throughout the paper. For any set S we write p(S) for the set of all subsets
of S, and S™ for the set of n-tuples over S (when n > 1). For any ¢ € {1,...,n},
we denote by s(i) the it" component of an n-tuple s. Given s € S™,i € {1,...,n}
and u € S, we write s[i « u] for the n-tuple s’ € S™ defined by s’(i) = u and
s'(j) = s(j) for all j € {1,...,n} with j # i. Let X' denote an alphabet (i.e., a
finite, non empty set). We write X* for the set of all finite words (words for short)
over X. The empty word is written € and we denote by X+ the set X*\ {e}. For
any two words w,w’ € X*, we write w - w’ for their concatenation. A language
is any subset of X*. For singleton languages, we will sometimes omit the curly
brackets, e.g., {w} C X* will be written simply as word w when no confusion is
possible.

Safety Verification of Labeled Transition Systems. We will use labeled transition
systems to formally define the behavioral semantics of fifo systems. A labeled
transition system is any triple LT'S = (C, X', —) where C is a set of configurations,
X is a finite set of actions and — C C x X' x C is a (labeled) transition relation.
We often simply write ¢ L, ¢ when (¢,1,c) € —.

A finite path (path for short) in LTS is any pair 7 = (¢,u) where ¢ € C,
and u is either the empty sequence, or a non-empty finite sequence of transitions
(co,lo,¢4), - -5 (eh=1,1n—1,¢},_;) such that ¢ = ¢ and ¢}_; = ¢; for every 0 <

ln
1 < h. We simply write 7 as ¢g bo, ... 2oty cp. The natural number h is called

the length of w. We say that 7 is a simple path if ¢; # c¢; for all 0 < i < j < h.
For any two sets Init C C and Bad C C of configurations, a path from Init to

Bad is any path cq b, ... lh—_1> cp, such that cg € Init and ¢, € Bad. Observe
that if ¢ € Init N Bad then c¢ is a path (of zero length) from Init to Bad. The
reachability set of LTS from Init is the set of configurations ¢ such that there
is a path from Init to {c}.

In this paper, we focus on the verification of safety properties on fifo sys-
tems. A safety property is in general specified as a set of “bad” configurations
that should not be reachable from the initial configurations. Formally, a safety
condition for a labeled transition system LTS = (C, X, —) is a pair (Init, Bad)
of subsets of C. We say that LTS is (Init, Bad)-unsafe if there is a path from
Init to Bad in LTS, which is called a counterexample. We say that LTS is
(Init, Bad)-safe when it is not (Init, Bad)-unsafe.

Fifo Systems. The asynchronous communication of distributed systems is usu-
ally modeled as a set of local processes together with a network topology given by
channels between processes. Each process can be modeled by a finite-state ma-
chine that sends and receives messages on the channels to which it is connected.
Let us consider a classical example, which will be used in the remainder of this
paper to illustrate our approach. The connection/disconnection protocol [JR86]
— abbreviated c¢/d protocol — between two hosts is depicted in Figure 1. This
model is composed of two processes, a client and a server, as well as two unidi-
rectional channels.

?d 4
ch.1
CLIENT Ic ?c SERVER
-@Z ~@Z>
lo 70

Fig. 1: The Connection/Disconnection Protocol [JR86]

To simplify the presentation, we restrict our attention to the case of one
finite-state control process. The general case of multiple processes can be reduced
to this simpler form by taking the asynchronous product of all processes. For
the connection/disconnection protocol, the asynchronous product of the two
processes is depicted in Figure 2.

Definition 2.1. A fifo system A is a 4-tuple (Q, M,n, A) where:

— @ is a finite set of control states,
— M is a finite alphabet of messages,
— n > 1 is the number of fifo queues,
— ACQx X xQ is a set of transition rules,
where X ={1,...,n} x {!,?7} x M is the set of fifo actions over n queues.

Simplifying notation, fifo actions in X will be shortly written ilm and i?m
instead of (i,!,m) and (i,?,m). The intended meaning of fifo actions is the fol-
lowing: i!m means “emission of message m in queue i” and i7m means “reception

of message m from queue ¢”. The operational semantics of a fifo system A is
formally given by its associated labeled transition system [.A] defined as follows.

Definition 2.2. The operational semantics of a fifo system A = (Q, M,n, A)
is the labeled transition system [A] = (C, X, —) defined as follows:
— C=Q x (M*)™ is the set of configurations,
- X2 ={1,...,n} x {I,?} x M is the set of actions,
— the transition relation — C C x X' x C is the set of triples ((¢,w),l, (¢, w’))
such that (q,1,q") € A and which satisfies the two following conditions:

— if L =ilm then w’(i) = w(i) - m and w'(j) = w(j) for all j #1,
— if l=1i?m then w(i) =m - w’(i) and w'(j) = w(j) for all j #1i.

o=
=

Fig. 2: Fifo System Representing the Connection/Disconnection Protocol

Ezample 2.3. The fifo system A = ({00,01,10,11},{o,c,d},2, A) that corre-
sponds to the c¢/d protocol is displayed in Figure 2. A set of bad configurations
for this protocol is the set Bad = {00,10} x (c - M* x M*). This set contains
configurations where the server is in control state 0 but the first message in
the queue is close. This is the classical case of an undefined reception which
results in a (local) deadlock for the server. Setting the initial configuration to
co = (00, s 5) a counterexample to the safety condition ({co}, Bad) is the path

(00,) == (10,0 5) % (11,e 5) %4 (10,¢, d) % (00, c,d) in [A]. 0

3 Partition Abstraction for Fifo Systems

In the context of CEGAR-based safety verification, automatic abstraction tech-
niques are usually based on predicates [GS97] or partitions [CGJT03]. In this
work, we develop partition-based abstraction and refinement techniques for fifo
systems. A partition of a set S is any set P of non-empty pairwise disjoint sub-
sets of S such that S = |J P. Elements of a partition P are called classes. For
any s € S, we write [s], for the class containing s.

At the labeled transition system level, partition abstraction consists of merg-
ing configurations that are equivalent with respect to a given equivalence rela-
tion, or a given partition. In practice, it is often desirable to maintain different
partitions for different control states, to keep partition sizes relatively small. We
follow this approach in our definition of partition abstraction for fifo systems,
by associating a partition of (M*)™ with each control state. To ease notation,
we write L = (M*)™ \ L the complement of any subset L of (M*)".

To effectively compute partition abstractions for fifo systems, we need a fam-
ily of finitely representable subsets of (M*)™. A natural candidate is the class
of recognizable subsets of (M*)™, or, equivalently, of QDD-definable subsets of
(M*)™ [BG99], since this class is effectively closed under Boolean operations.
Recall that a subset L of (M*)™ is recognizable if (and only if) it is a finite
union of subsets of the form L; x --- x L, where each L; is a regular lan-
guage over M [Ber79]. We extend recognizability in the natural way to subsets
of the set C = Q x (M*)" of configurations. A subset C' C C is recognizable if
{w] (g, w) € C} is recognizable for every g € Q). We denote by Rec ((M*)™) the
set of recognizable subsets of (M*)™, and write P ((M*)™) for the set of all finite
partitions of (M*)™ where classes are recognizable subsets of (M*)™.

Definition 3.1. Consider a fifo system A= (Q, M,n,A) and a partition map
P:Q — P((M*)™). The partition abstraction of [.A] induced by P is the labeled

transition system [[.A]H; = <C§), X, —>ﬁp> defined as follows:

— C?D ={(¢,p) | ¢ € Q and p € P(q)} is the set of abstract configurations,
- XY =A{1,...,n} x{,?7} x M is the set of actions,
— the abstract transition relation —>§3g C?D x X x Clﬁg is the set of triples

((g,p),1,(¢',p")) such that (g, w) LR (¢',w") for some w € p and w’' € p'.

To relate concrete and abstract configurations, we define the abstraction function
ap:C — C?D, and its extension to p(C) — p(C?D), as well as the concretization
function vp : ng — C, extended to p(C?D) — p(C), as expected:

ap((¢,w)) = (¢,[w]p) ap(C) = {afc) | ce C}
vp((g,p)) = {a} xp (0 = U | ¢ et}

To simplify notations, we shall drop the P subscript when the partition map
can easily be derived from the context. Intuitively, an abstract configuration
(¢, p) of [A]* represents the set {q} x p of (concrete) configurations of [A]. The
abstract transition relation —! is the existential lift of the concrete transition
relation — to abstract configurations.

The following forward and backward language transformers will be used to
capture the effect of fifo actions. The functions post : X x p((M*)™) — p((M*)™)
and pre : ¥ x p((M*)™) — p((M*)™) are defined by:

post(ilm,L) = {wli—u] | we L,ue M* and w(i) - m = u}

post(itm,L) = {w[i«—u] | w e L,u € M* and w(i) =m - u}

pre(ilm,L) = {wfi+—u]|we L,ue M* and w(i) =u-m}
) [i =] |

pre(itm,L) = {w[i—u]|we€ L,uc M* and m-w(i) = u}

Obviously, post(l, L) and pre(l, L) are effectively recognizable subsets of (M*)™
for any [€ X and for any recognizable subset L C (M*)™. Moreover, we may
use post and pre to characterize the abstract transition relation of a partition

abstraction [AMD, by: for any rule (g,1,¢') € A and for any pair p € P(q),p’ €
P(q'), we have (¢,p) - (¢',p') iff post(l,p) Np' # 0 iff p N pre(l,p') # 0.

Lemma 3.2. For any fifo system A and partition map P : Q — P (M*)"), [A]*
is effectively computable. For any recognizable subset C C C, a(C) is effectively
computable.

loﬁ

e
SLUEEN cn) = aleg) —>

We extend « to paths in the obvious way: «(cg b, ...

In_
Lo a(cn). Observe that a() is an abstract path in [A]* for any concrete

path 7 in [LA]. We therefore obtain the following safety preservation property.

Proposition 3.3. Consider a fifo system A and a safety condition (Init, Bad)
for [A]. For any partition abstraction [A]* of [A], if [A]" is (a(Init),a(Bad))-
safe then [A] is (Init, Bad)-safe.

The converse to this proposition does not hold in general. An abstract coun-
terexample 7 is called feasible if there exists a concrete counterexample 7 such
that 7# = a(7), and 7 is called spurious otherwise.

Lemma 3.4. For any fifo system A, partition map P : Q — P((M™*)"™), and
any safety condition (Init, Bad) for [A], feasibility of abstract counterexzamples
1s effectively decidable.

Ezample 3.5. Continuing the discussion of the ¢/d protocol, we consider the
abstraction induced by the following partition map:

q€Q| 00 | 10 | o1 | 11

P(q) ‘(5 X M*), (M™T x M*)‘(o* x M*), (07x M*)‘M* X M*‘M* x M*
The set of initial abstract configurations is a(Init) = {(00,e x M*)}, and the
set of bad abstract configurations is a(Bad) = {(00, M+ x M*), (10, 0% x M*)}.
A simple graph search reveals several abstract counterexamples, for instance
(00, x M*) Lo, (10,0* x M™) LR (00, M+ x M*). This counterexample is
spurious since the only concrete path that corresponds to this abstract coun-

!

terexample is (00, ¢,¢) Lo, (10,0,¢) Le, (00, 0c,¢) ¢ Bad. O

4 Counterexample-based Partition Refinement

The abstraction-based verification of safety properties relies on refinement tech-
niques to gradually increase the precision of abstractions in order to rule out
spurious abstract counterexamples. Refinement for partition abstractions sim-
ply consists in splitting some classes into a sub-partition. _

Given two partitions P and P of a set S, we say that P refines P when each
class p € P is contained in some class p € P. Moreover we then write [p], for
the class p € P containing p.

Let us fix, for the remainder of this section, a fifo system A = (Q, M, n, A)
and a safety condition (Init, Bad) for [A]. Given two partition maps P, P Q—
P ((M*)™), we say that P refines P if P(q) refines P(q) for every control state

Iho1 ¢

q € Q. If P refines P, then for any abstract path (qo, Po) LD LN (qn,Dn)

in [[A]]ﬁ—ﬁ, it holds that (qo, [ﬁO}P(qO)) bog, Inoid (gn, [ﬁh]P(qh)) is an abstract

path in [[Aﬂgg. This fact shows that, informally, refining a partition abstraction
does not introduce any new spurious counterexample.
When a spurious counterexample is found in the abstraction, the partition

map must be refined so as to rule out this counterexample. We formalize this

U
for an abstract path wﬁp = (g0, P0) Log .. a1t (qn,pn) in [[A]]ﬁp from ap(Init)

to ap(Bad) as follows: a refinement P of P is said to rule out the abstract

. . - ln_ _
counterexample 71'53 if there exists no path 7753 = (qo, Do) LR e N (gn, pn)

from ap(Init) to ap(Bad) in [[.A]Pj3 satisfying p; C p; for all 0 < ¢ < h. Note
that if 7r§k,iD is a feasible counterexample, then no refinement of P can rule it out.
Conversely, if P is a refinement of P that rules out ﬂfp then any refinement of
P also rules out ﬂgj. The main challenge in CEGAR is the discovery of suitable

refinements which are computationally “simple” but “precise enough”. In this
work, we focus on counterexample-guided refinements based on path invariants.

Definition 4.1. Consider a partition map P and a spurious counterexample

lho
7% = (qo,po) Lo . hrd (gn,pn) in [[.Aﬂﬁp. A path invariant for 7 is any

sequence Lo, ..., Ly of recognizable subsets of (M*)™ such that:

(i) we have ({qo} X po) NInit C {qo} x Lo, and

(#i) we have post(l;, L; Np;) C L;y1 for every0 <i<h—1, and
(111) we have ({gn} X Lp) N Bad =

Observe that condition (i4) is more general than post(l;, L;) C L;1; which
is classically required for inductive invariants. With this relaxed condition, path
invariants are tailored to the given spurious counterexample, and therefore can
be simpler (e.g., be coarser or have more empty L;).

Proposition 4.2. Consider a partition map P and a simple spurious counterez-

ample 7 = (qo,po) ot ..

for ©t, the partition map P defined below is a refinement of P that rules out 7t :

P(g) = (P@\{pi | i€ 1(@}) U Uiereg {pi N Lispi N L} \ {0}
where I(q) ={i | 0 <i < h,q; = q} for each control state q € Q.

lL* - . .
N (qn,pn). Given a path invariant Lo,..., Ly

We propose a generic approach to obtain path invariants by utilizing a
parametrized approximation operator for queue contents. The parameter (the
k in the definition below) is used to adjust the precision of the approximation.

Definition 4.3. A (parametrized) extrapolation is any function V from N to
Rec (M*)™) — Rec ((M*)™) that satisfies, for any L € Rec((M*)"), the two
following conditions (with V (k) written as Vy):

(i) we have L C V(L) for every k € N,

(i) there exists k € N such that L = V(L) for every k > kr.

Our definition of extrapolation is quite general, in particular, it does not re-
quire monotonicity in k or in L, but it is sufficient for the design of path invariant
generation procedures. The most simple extrapolation is the naive extrapolation
that maps each k € N to the identity on Rec ((M*)™). The parametrized au-
tomata approximations of [BHV04] and [LGJJ06] also satisfy the requirements
of Definition 4.3. Notice that extrapolations are closed under functional union,
intersection and composition. The choice of an appropriate extrapolation with
respect to the underlying domain of fifo systems is crucial for the implementation
of CEGAR’s refinement step and will be mentioned in Section 6.

We now present two extrapolation-based path invariant generation proce-
dures. Recall that the parameter k£ of an extrapolation intuitively indicates the
desired precision of the approximation. The first algorithm, UPInv, performs an
approximated post computation along the spurious counterexample, and itera-
tively increases the precision k of the approximation until a path invariant is
obtained. The applied precision in UPInv is uniform along the counterexample.
Due to its simplicity, the termination analysis of CEGAR in the following section
will refer to UPInv. The second algorithm, APInv, first performs an exact pre
computation along the spurious counterexample to identify the “bad” coreach-
able subsets B;. The path invariant is then computed with forward traversal that
uses the Split subroutine to simplify each post image while remaining disjoint
from the B;. The precision used in Split is therefore tailored to each post image,
which may lead to simpler path invariants. Naturally, both algorithms may be
“reversed” to generate path invariants backwards.

Observe that if the extrapolation V is effectively computable, then all steps in
the algorithms UPInv, Split and APInv are effectively computable. We now prove
correctness and termination of these algorithms. Let us fix, for the remainder of
this section, an extrapolation V and a partition map P : Q — P ((M*)™), and
assume that Init and Bad are recognizable.

Proposition 4.4. For any spurious abstract counterexample 7r§;, the execution
of UPInv(V, Init, Bad, 7753) terminates and returns a path invariant for 7r§3.

Lemma 4.5. For any two recognizable subsets Lo, Ly of (M*)™, if LoN Ly =10
then Split(V, Lo, L1) terminates and returns a recognizable subset L of (M*)"
that satisfies Lo C L C L.

Proposition 4.6. For any spurious abstract counterexample 7I'§3, the execution
of APInv(V, Init, Bad, 7T§;) terminates and returns a path invariant for 77?;.
Ezample 4.7. Assume an extrapolation V satisfying Vo(e x M*) = ¢ x M*,
Volo X M*) = o x M* and Vo(oc X M*) = otc x M*. The UPInv algorithm,
applied to the spurious counterexample (00,e x M*) Lo (10,0* x M*) Lot
(00, M™ x M*) of Example 3.5, would produce the path invariant (g,0,07c).
According to Proposition 4.2, the partition map would be refined to :

qc Q‘ 00 ‘ 10 ‘ o1 ‘ 11
P(q) [{z,07c, MT \oTc} x M*[{o,0" \ 0,07} x M*[M* x M*|M* x M
The refined partition clearly rules out the spurious counterexample. 0

UPInv (V, Init, Bad, %)

Input: extrapolation V, recognizable subsets Init, Bad of QX (M*)", spurious

counterexample 7%, = (go, po) Jojr.. o1 (gn,pn)
1 k<0
2 do
3 Lo — Vi (po N{w]| (qo, w) € Init})
4 for i from 1 upto h
5 F; — pOSt(lifl,Lifl ﬂpz‘71)
6 if Fl ﬂpi = @
7 Li — @
8 else
9 L; — Vi (F;)
10 k—k+1
11 while ({gn} x Ly) N Bad # 0
12 return (Lo,...,Lp) Split (V, Lo, L1)
APInv (V, Init, Bad, 7r§3) Input: extrapolation V,
L Lo, L1 C Rec((M™)™)
Input: (viz. UPInv above) disjoint
1 iBh 2 PR N Bad L ko0
2 — .
. _ . 2> while Vi (Lo)N Ly #0
z whilli?:;él@andz>0 . ke ka1
) Bi — ps A pre(lisn, Bist) 4 return Vi (Lo)
6 if i=0
7 I — poNn{w](qo,w) € Init}
8 Lo — Split (V, I, Bo)
9 else

[
o

(Lo, L) — (M), (MF)")
for j from i upto h — 1

Lj+1 < Split (V, post(l;, L; Np;), Bj+1)
return (Lo,...,Lp)

=
-

-
)

-
w

5 Safety Cegar Semi-Algorithm for Fifo Systems

We are now equipped with the key ingredients to present our CEGAR semi-
algorithm for fifo systems. The semi-algorithm takes as input a fifo system A,
a recognizable safety condition (Init, Bad), an initial partition map P, and a
path invariant generation procedure Pathlnv. The initial partition map may be
the trivial one, mapping each control state to (M*)™. We may use any path
invariant generation procedure, such as the ones presented in the previous sec-
tion. The semi-algorithm iteratively refines the partition abstraction until either
the abstraction is precise enough to prove that [A] is (Init, Bad)-safe (line 10),
or a feasible counterexample is found (line 4). If the abstract counterexample
picked at line 2 is spurious, a path invariant is generated and is used to refine the
partition. The new partition map obtained after the foreach loop (lines 8-9) is
precisely the partition map P from Proposition 4.2, and hence it rules out this

10

abstract counterexample. Recall that Lemmata 3.2 and 3.4 ensure that the steps
at lines 1 and 3 are effectively computable. The correctness of the CEGAR semi-

CEGAR (A, Init, Bad, Py, Pathlnv)

Input: fifo system A = (Q, M, n, A), recognizable subsets Init, Bad of Q x
(M™)™, partition map Py : Q — P ((M*)"), procedure Pathlnv

1 while [A]% is (ap(Init), ap(Bad))-unsafe

2 pick a simple abstract counterexample 7* in [[.A]]ﬁP

3 if 7 is a feasible abstract counterexample

4 return

5 else

6 write 7 as the abstract path (go,po) log I (qn,pn)
7 (Lo, ..., Ln) < Pathlnv (Im't,Bad7 7ru)

8 foreach i € {0,...,h}

P(gi) — (P(g:) \{p:i}) U ({p: " Li, ps N Li } \ {0})

10 return v

©

algorithm is expressed by the following proposition, which directly follows from
Proposition 3.3 and from the definition of feasible abstract counterexamples.

Proposition 5.1. For any terminating execution of CEGAR (A, Init, Bad, Py,
Pathlinv), if the execution returns v' (resp. 4) then [A] is (Init, Bad)-safe (resp.
(Init, Bad)-unsafe).

Termination of the CEGAR semi-algorithm cannot be assured as otherwise
it would solve the reachability problem known to be undecidable for fifo sys-
tems [BZ83]. However, (Init, Bad)-unsafety is semi-decidable for fifo systems
by forward or backward symbolic exploration when Init and Bad are recogniz-
able [BG99]. Moreover, this problem obviously becomes decidable for fifo systems
having a finite reachability set from Init.

We investigate in this section the termination of the CEGAR semi-algorithm
when A is (Init, Bad)-unsafe or has a finite reachability set from Init. On the
contrary to other approaches where abstractions are refined globally (e.g., pred-
icate abstraction [GS97]), partition abstractions [CGJT03] are refined locally by
splitting abstract configurations along the abstract counterexample (viz. lines 8
—9 of the CEGAR semi-algorithm). The abstract transition relation only needs to
be refined around the abstract configurations that have been split, and hence its
refinement can be computed efficiently. However, this local nature of refinement
complicates the analysis of the algorithm. We fix an extrapolation V and we
focus on the path invariant generation procedure UPInv presented in Section 4.

Proposition 5.2. For any breadth-first execution of CEGAR (A, Init, Bad, Py,
UPInv (V)), if the execution does not terminate then the sequence (hg)gcy of
lengths of counterexamples picked at line 2 is nondecreasing and diverges.

Corollary 5.3. If [A] is (Init, Bad)-unsafe then any breadth-first execution of
CEGAR (A, Init, Bad, Py, UPInv (V)) terminates.

11

It would also be desirable to obtain termination of the CEGAR semi-algorithm
when A has a finite reachability set from Init. However, as demonstrated by
the example in Appendix D, this condition is not sufficient to guarantee that
CEGAR (A, Init, Bad, Py, UPInv (V)) has a terminating execution. It turns out
that termination can be guaranteed for fifo systems with a finite reachability set
when Vi has a finite image for every k € N. This apparently strong requirement,
formally specified in Definition 5.4, is satisfied by the extrapolations of [BHV04]
and [LGJJ06], which are based on state equivalences up to a certain depth.

Definition 5.4. An extrapolation V is restricted if for every k € N, the set
{Vi(L) | L € Rec ((M*)™)} is finite.

Remark that if V is restricted then for any execution of CEGAR (A, Init, Bad,
Py, UPInv (V)), the execution terminates if and only if the number of iterations
of the while-loop of the algorithm UPInv is bounded. As shown by the following
proposition, if moreover [A] has a finite reachability set from Init then the
execution necessarily terminates.

Proposition 5.5. Assume that V is restricted. If [A] has a finite reachabil-
ity set from Init, then any execution of CEGAR (A, Init, Bad, Py, UPInv(V))
terminates.

6 Experimentation and Perspectives

Our prototypical tool MCSCM that implements the previous algorithms is written
in OcAML and relies on a library by Le Gall and Jeannet [Scm)] for the classical
regular language operations, the fifo operations, and the colored bisimulation-
based extrapolation.

Colored Bisimulation-based Extrapolation. Our underlying extrapolation is the
bisimulation-based construction of [LGJJ06]. In a nutshell, abstractions of finite
automata are easily given by a congruence on the automata’s states. The au-
thors of [LGJJ06] present a congruence relation based on a colored bisimulation
equivalence, i.e., two states are equal if they have the same color (regarding an
a priori given partition of the state space) and are bisimulation equivalent, ergo,
behave “equally”. A discussion that favors this extrapolation for the verification
of fifo systems is presented in [LGJJ06] whereas their focus remains on applying
this extrapolation as widening in an abstract interpretation based approach.

Benchmarks. Our implementation includes the two path invariant generation al-
gorithms UPInv and APInv of Section 4. We actually implemented a “single split”
backward variant of APInv, reminiscent of the classical CEGAR implementation
[CGJT03] (analogous to APInv but applying the split solely to the “failure” ab-
stract configuration). Therefore our implemented variant APInv’ leads to more
CEGAR loops than would be obtained with APInv, and this explains in part why
UPInv globally outperforms APInv'. Several pluggable subroutines can be used
to search for counterexamples (depth-first or breadth-first exploration).

12

We tested the prototype on a suite of protocols that includes the classical
alternating bit protocol ABP [AJ96], a simplified version of TCP — also in the
setting of one server with two clients that share their channels, as well as pro-
tocols for leader election due to Peterson and token passing in a ring topology.
Further, we provide certain touchstones for our approach, for example, an en-
hancement of the c¢/d protocol with nested loops and a protocol with strictly
non-regular configurations. A detailed presentation of the protocols is provided
in Appendix A. Except for the ¢/d protocol, which is unsafe, all other examples
are safe.

|protocol |states/trans. |refmnt.| time [s]| mem [MiB]| loops|states /trans?| expl.|
ApP 16/64 ﬁgl?c g:g 214'233 18647 332???28 Eﬁi
T T i e W
T T A A
s 807058
R A AR AL
T I N
token ring 625/4500 ﬁillr:\//’ (;ig) 481 | 104 | 857/5807 | bis
oo [| B | B B8 st

The above table gives a summary of the results, obtained by McSCM on an
off-the-shelf computer (2.4Ghz Intel Core 2 Duo). The last column indicates the
graph search used to find abstract counterexamples. All examples are analyzed
with UPInv in a few seconds, and memory is not a limitation.

We compared McoscM with TRex [TRe], the (publicly available) tool closest
to ours regarding the verification of unbounded channel systems but which fo-
cuses lossy channel semantics. As TReX has an efficient implementation based
on simple regular expressions (and not general QDDs as we do), it needs in most
cases less than 1 second to build the reachability set. However, TReX assumes a
lossy fifo semantics, and therefore is not able to verify all reliable fifo protocols
correctly (e.g., when omitting the disconnect messages in the c¢/d protocol,
TReX is still able to reach Bad due to the possible loss of messages, albeit the
protocol is safe). Furthermore, TReX suffers (as would also LAsH [Las]) from the
main drawback of acceleration techniques, which in general cannot cope with
nested loops, whereas this is no drawback for our tool (viz. nested loop protocol
on which TRex did not finish after 1 hour). McscM can also handle a sim-
ple non-regular protocol (with a counting loop) that is beyond the QDD-based
approaches [BG99], as the representation of the reachability set would require
recognizable languages equipped with Presburger formulas (CQDDs [BH99]).

Conclusion and Perspectives. Our prototypical implementation confirms our ex-
pectations that the proposed CEGAR framework with extrapolation-based path

13

invariants is a promising alternative approach to the automatic verification of
fifo systems. The framework developped in this paper is actually not specific to
fifo systems, and we intend to investigate its practical relevance to other infinite-
state models. Future work also includes the safety verification of more complex
fifo systems that would allow the exchange of numerical data over the queues
(e.g., the sliding window protocols). Several decidable classes of fifo systems
have emerged in the literature (in particular lossy fifo systems) and we intend to
investigate termination of our CEGAR semi-algorithm (equipped with the path
invariant generation procedure UPInv (V)) for these classes.

References

[AJ96]
[Ber79]
(BGYY]
[BH99]
[BHVO04]

[BRO1]

[BZ83]

[CGJT03]

[FIS03]

[FKK™'07]

[GS97]

[HIMS02]

[JRS6]

[Las]

P. A. Abdulla and B. Jonsson. Verifying Programs with Unreliable Chan-
nels. Information and Computation, 127(2):91-101, 1996.

J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.
B. Boigelot and P. Godefroid. Symbolic Verification of Communication
Protocols with Infinite State Spaces using QDDs. Formal Methods in Sys-
tem Design, 14(3):237-255, 1999.

A. Bouajjani and P. Habermehl. Symbolic Reachability Analysis of FIFO-
Channel Systems with Nonregular Sets of Configurations. Theoretical
Computer Science, 221(1-2):211-250, 1999.

A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model
Checking. In Proc. Computer Aided Verification 2004, volume 3114 of
LNCS, pages 372-386. Springer, 2004.

T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety
Properties of Interfaces. In Proc. Model Checking Software, SPIN Work-
shop 2001, volume 2057 of LNCS, pages 103—122. Springer, 2001.

D. Brand and P. Zafiropulo. On Communicating Finite-State Machines.
Journal of the ACM, 30(2):323-342, 1983.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided Abstraction Refinement for Symbolic Model Checking. Journal of
the ACM, 50(5):752-794, 2003.

A. Finkel, S. P. Iyer, and G. Sutre. Well-Abstracted Transition Systems:
Application to FIFO Automata. Information and Computation, 181(1):1—
31, 2003.

P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio, and N. Santoro. Leader
FElection and Sorting in Anonymous Asynchronous Rings 1, Nov. 2007.
(unpublished preprint).

S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS.
In Proc. Computer Aided Verification 1997, volume 1245 of LNCS, pages
72-83, 1997.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
In Proc. Symposium on Principles of Programming Languages 2002, pages
58-70. ACM, 2002.

C. Jard and M. Raynal. De la nécessité de spécifier des propriétés pour la
verification des algorithmes distribués. Rapports de Recherche 590, IRISA
Rennes, December 1986.

Lash. Tool homepage.
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/.

14

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

[LGJJ06]

[McS]

[Pet82]

[Scm]

[TRe]
[YBCIOS]

T. Le Gall, B. Jeannet, and T. Jéron. Verification of Communication Pro-
tocols using Abstract Interpretation of FIFO queues. In Proc. Conference
on Algebraic Methodology and Software Technology 2006, volume 4019 of
LNCS, pages 204-219. Springer, July 2006.

Tool homepage. McScM — Model Checker for Systems of Communicating
Fifo Machines http://www.labri.fr/~heussner/mcscm/.

G. L. Peterson. An O(n log n) Unidirectional Algorithm for the Circular
Extrema Problem. ACM Transactions on Programming Languages and
Systems, 4(4):758-762, 1982.

Tools and libraries for static analysis and verification.
http://gforge.inria.fr/projects/bjeannet/.

TReX. Tool homepage. http://www.liafa.jussieu.fr/~sighirea/trex.
F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic String Verification:
An Automata-Based Approach. In Proc. Model Checking Software, SPIN
Workshop 2008, volume 5156 of LNCS, pages 306—-324, 2008.

15

http://www.labri.fr/~heussner/mcscm/
http://gforge.inria.fr/projects/bjeannet/
http://www.liafa.jussieu.fr/~sighirea/trex

A Protocols of the Experimental Evaluation (Section 6)

We present in this section the suite of protocols (except for the c¢/d protocol
which was already introduced in Section 2) on which we tested our prototype
McscoMm. Each protocol is specified as a system of communicating processes. In
each case, the resulting fifo system is the asynchronous product of the processes.
The queues are initially empty, and each process has a single initial state that
is graphically indicated by an arrow with no source state. We provide with each
protocol the set of bad configurations used in our experimental evaluation.

A.1 Alternating Bit Protocol

This is the classical example protocol for automatic verification for communi-
cating fifo systems in the formalization of Le Gall et al. [LGJJ06]. The two
participating peers exchange control data over the channels 0 and 1 as well as
data over channel 2.

Starting from the initial states with empty queues, we check whether a config-
uration is reachable which has more than one message on a queue (i.e., in which
the control data is ignored when sending data). This can be encoded purely in
control states due to the protocols acknowledgement mechanisms.

010 071
N le 070
27M 27M
ch.1
<—O 171
2IM 110
ch.2
070

Fig. 3: Alternating Bit Protocol

Remark A.1. Regarding our prototype McSCM, single-split refinement methods
are not able to terminate in reasonable time compared in contrast to path in-
variant (UPInv) based refinement.

A.2 Nested Loop Protocol

Systems with nested loops overburden standard acceleration techniques, which
rely on the analysis of simple loops and cannot accelerate nested loops. We
extended the connection-disconnection protocol with a simple loop for sending a

16

data token m over the channel. Our CEGAR method was able to prove (at least)
the following safety property: “a message m cannot be received when the session
is closed on the server-side” (state 0).

CLIENT — — SERVER
ch.1

lo le|?7d 70 ?c|ld

ch. 2

'm m

Fig. /: Extending the Connection/Disconnection Protocol with Nested Loops

A.3 Non-Regular Protocol

This is a simple example where the reachability set is non-recognizable. Indeed,
the set of reachable queue contents in control state 00 is {(g,a™,e,b™) | m € N}
which is not recognizable. The safety property is given explicitly by the control
state 02, which should not be reachable.

— —
@ 1la 47d 27¢ 4ld @
& S
2lc 3lb

Fig. 5: Non-Regular Protocol using Channels 1,3 like Stacks

Remark A.2. Even though we only utilize recognizable subsets to compute in-
variants, our approach is able to verify the safety property. Other techniques that
are based on recognizable subsets, but that rely on an exhaustive exploration of
the state space, like the acceleration with QDDs [BG99], are not able to handle
non-recognizable systems at all. One may argue that our technique is limited to
safety properties that can be proved with recognizable invariants.

A.4 Simplified TCP

Based on the underlying state transition of the TCP protocol and by ignoring
all the additional timing constraints as well as the sophisticated data transport

17

(sliding windows etc.), we modeled the three-way handshake of TCP as well as
the passive/active close with respect to a simple client-server-setting with one
bidirectional channel.

The diagram in Figure 6 depicts the client which can open a connection to
a server that is waiting for it. We only utilize the messages s(yn), a(ck), £(in),
d(ata) and depict the client which opens a connection by sending s to the server
which mirrors the behavior.

We simply verified that the connection establishment and termination work
by checking whether one of the peers remains in the closed state whereas the
other assumes the connection to be established.

3-way
handshake

?7s 7a

simplified

la data-transfer ch. 0

td C(establ.) "D 'd
passive active ch.1

close close SERVER
la '?ﬁa
; £ ! ﬂ?a)\ 7f
7a 3 la

Fig. 6: Simplified Transmission Control Protocol

A.5 Server with Two Clients

This is a simple extension of the (simplified) TCP protocol, where we verify the
correctnes of connection establishment and termination in the case of a second
client that tries to interfere with the server on the same channels as the original
client.

A.6 Ring Protocol

This is an example of a token passing protocol, where n identical processes, set
in a ring architecture, can pass some tokens. At the beginning, each process has

18

0 or 1 token (control states 0 or 1). A process is in a “bad” configuration b when
it has two tokens. Therefore, it sends an alert message a before sending a token
t. When a process receives an alert message, it ignores it (if it has no token) or
sends immediately its token to the following process, without an alert message.
This is the reason why the only outgoing transition of control state 3 is to send
a token.

Fig. 7: Single Peer of Token Ring Protocol

A.7 Peterson’s Leader Election

This is a translation of Peterson’s leader election algorithm [Pet82] (viz. Fig-
ure 8 for pseudocode taken from [FKK™07]) into a fifo system. The algorithm is
modeled as a set of finite state automata which are executed distributively (and
asynchronously) in a ring topology. We check whether more than one process
asserts that he is the leader. In our case, the number of peers is fixed to 3 (we
do not perform parametrized model checking).

// assume each pear has fix UID
VirtualID = UID Peer
Mode = Active
while (TRUE) {
if (Mode == Relay):
tempid = receive()
send (tempid)
else {

N send (VirtuallD)
input uid2 = receive() output
if (VirtuallD == id2):

announce("I’m the leader of the ring.")
else:

send(id2);

uid3 = receive();

if (id2 > max{VirtuallD,id3}):
VirtuallD = id2;

else:
Mode = Relay;

Fig. 8: Leader Election in an Asynchronous Ring following Peterson

19

B Proofs

C.1 Proofs of Section 3

Lemma 3.2. For any fifo system A and partition map P : Q — P (M*)"), [A]*
is effectively computable. For any recognizable subset C C C, a(C) is effectively
computable.

Proof. The lemma follows from (1) closure under intersection, complement and
post (or pre) of recognizable subsets of (M*)™, and (2) decidability of emptiness
for recognizable subsets of (M*)™. O

Proposition 3.3. Consider a fifo system A and a safety condition (Init, Bad)
for [A]. For any partition abstraction [A]* of [A], if [A]" is (a(Init), a(Bad))-
safe then [A] is (Init, Bad)-safe.

Proof. If [A] is (Init, Bad)-unsafe then there is a path 7 in [A] from Init to
Bad, and hence a(r) is an abstract path from a(Init) to a(Bad) in [A]*. O

Lemma 3.4. For any fifo system A, partition map P : Q — P((M*)"), and
any safety condition (Init, Bad) for [A], feasibility of abstract counterezamples
1s effectively decidable.

. L
Proof. Given an abstract counterexample 7% = (qo, po) LN (Gn,pn),

we deduce from the definition of feasibility that =® is feasible iff the subset
L C (M*)™ defined below is non-empty:

L = ppNpost(lp—1,(ph—1 N---Npost(ly,p1 N post(ly,po N Init))---)) N Bad
Since L is an effectively computable recognizable subset of (M*)", we may ef-
fectively decide whether L is non-empty, which concludes the proof. ad
C.2 Proofs of Section 4

Proposition 4.2. Consider a partition map P and a simple spurious counterex-
I
ample 7t = (go,po) log | Inord (qn,pn). Given a path invariant Lo, ..., Ly

for 7t the partition map P defined below is a refinement of P that rules out 7*:

P(q) = (P@\{pi i@} U | {pinLipinTi}\ {0}

i€l(q)
where I(q) ={i | 0 <i < h,q; = q} for each control state q € Q.

Proof. For any control sate ¢ € @, since 7 is simple, we have p; = pj=>1i=]
for every i,7 € I(q). The function P defined in the proposition is therefore a
partition map that refines P by definition. We need to show that P rules out 7*.

20

~ Uh ~
By contradiction, assume there exists a path 7r§3 = (g0, P0) fo, .. 2, (gn, pn)

from ap(Init) to ap(Bad) in [[A]]ﬁ5 satisfying p; C p; for all 0 < i < h.

We first show that p; € {pi NL;,p;N E} for every 0 < ¢ < h. Consider any
integer ¢ with 0 < ¢ < h. Observe that ¢ € I(g;). If p; € P(g;) then p; = p; as
pi C pi. Hence, p; & (P(q:) \ {p; | j € I(q:)}). Since p; € P(g:), we obtain that
pi € {p;NL;,p;NL;} for some j € I(q;). Let us prove that i = j. Remark
that ¢; = ¢; as j € I(g;). Moreover, we get p; C pj, and hence p; C p; N p;.
Therefore p; = p; since p; and p; are classes of the same partition P(g;). We
come to (gi,p;) = (gj,p;) which implies that i = j since 7* is simple. We have
thus shown that p; € {pi NL;,p;N E} for every 0 < < h.

Recall that Ly, ..., Ly is a path invariant for 7. We prove by induction on
i that p; = p; N L; for every 0 < i < h. For the basis, we derive from item (i) of
Definition 4.1 that {go} x (poNLo) is disjoint from Init. Since (go, po) € ap(Init),
we get that {qo} x po intersects Init. Therefore py # po N Lo, and hence py =
po N Lg. For the induction step, assume that p; = p; N L; for some 0 < i < h. We
have post(l;,p;) € L;y+1 according to item (ii) of Definition 4.1. Therefore, we

get that pi1 N Lizy is disjoint from post(ls, 5;)- Since (qi i) 2 (qiv1,Pis1) i
an abstract transition in [[Aﬂ%, we get that p; 1 intersects post(l;, p;). Therefore
Pit1 7 Pi+1 N Liy1, and hence piy1 = pip1 N Lig1.

We thus obtain that p, = pp N Ly, and we derive from item (iii) of Defini-
tion 4.1 that {gn} x py is disjoint from Bad, which contradicts the assumption
that (gn,pn) € ap(Bad). O

Proposition 4.4. For any spurious abstract counterexample wﬁp, the execution

of UPInv(V, Init, Bad, 7751)) terminates and returns a path invariant for 7r§3.

. . L
Proof. Consider a spurious counterexample 7r§3 = (g0, po) LR (Gn,n)-

Let us define the sequence Ry, ..., Ry of subsets of (M*)" by Ry = po N
{w|(go,w) € Init} and R; = post(l;—1,L;—1 Np;—1) for all 1 < i < h. Notice
that ({gn} x Rp) N Bad = (since 7TﬁP is spurious. According to Definition 4.3,
there exists kg € N such that Vi (R;) = R; for every 0 <4 < h. Consequently,
the while-loop of algorithm UPInv (lines 2-11) is re-iterated at most kg times.
Indeed, if & = kgr at some iteration of the while-loop, then for this iteration
we have L; = R; for each 0 <4 < h and therefore ({gn} x Ly) N Bad = 0. We

conlude that the execution of UPInv (V, Init, Bad, wfp) terminates.

Let (Lo, - ..,lx) denote the value returned by UPInv (V, Init, Bad, wga). It ob-
vioulsy holds that ({g} x Ln)NBad = 0. Recall that according to Definition 4.3,
we have L C V(L) for every L € Rec ((M*)") and k € N. We deduce from the
definition of the while-loop (lines 2-11) that Ly 2 po N{w | (g0, w) € Init} and
L; D post(l;—1,L;—1 Np;—1) for all 1 <4 < h. We conlude that (Log,...,l;) is a
path invariant. O

21

Lemma 4.5. For any two recognizable subsets Lo, L1 of (M*)™, if LoN Ly =0
then Split (V, Lo, L1) terminates and returns a recognizable subset L of (M*)"
that satisfies Lo C L C L.

Proof. Consider any two disjoint recognizable subsets Lo, L1 of (M™*)™. Accord-
ing to Definition 4.3, we have L = V(L) for some k;, € N, and therefore
Split (V, Lo, L1) terminates. There exists k € N such that the returned value L
satisfies L = Vy(Lo) and Vi(Lo) N Ly = 0. Since Ly C Vi (Lo) from Defini-
tion 4.3, we obtain that Ly C L C L. O

Proposition 4.6. For any spurious abstract counterexample wﬁp, the execution
#

of APInv(V, Init, Bad, ﬂ'gj) terminates and returns a path invariant for 7.
Proof (Sketch). The algorithm terminates as Split terminates. Further, assume
the result is (Lo, ..., Lp). We have to consider two cases: (a) that the backward
reachability search of lines 1-5 reaches py or (b) that it finds a p; that is not
pre-reachable from p; N B;.

Let us consider (a): lines 7 assure requirement (i); further, we deduce from
Lemma 4.5 with line 12 that (iii) and (ii) hold. Now, we can show that also
for case (b) the result is a path invariant: requirements (iii) and (i) are analo-
gous to case (a), (ii) is guaranteed by Lo,...,L; = (M*)™ and for L;y1,..., Ly
analogous to case (a) above. O

C.3 Proofs of Section 5

We first introduce some new notations. For any set L of subsets of (M*)", we

denote by W(L) the set of equivalence classes of the equivalence relation ~, on
(M*)™ defined by: w ~, w’ if for every L € L, we have w € L if and only if
w’ € L. Intuitively, ¥(£) is the partition “generated” by L. Recall that if £ is
finite then so is ¥(L).

Given an execution of CEGAR (A, I'nit, Bad, Py, Pathlnv), and for each itera-
tion 6 € N of the while-loop, we take a “snaphot” between lines 7 and 8, and
remember the current partition map as Py, the simple abstract counterexample
as Wg and its length as hg, and the path invariant as (L9, . .., LZQ). Moreover we
shortly write [[.Aﬂg, Cg and «ay instead of [[.A]Hpg, Cgps and ap,, respectively. We
also define Im'tg = ag(Init) and Badg = ap(Bad). For any bound b € N, we
let Reachegb denote the set of abstract configurations (g,p) € Cg such that there
exists in [[.Aﬂg a path of length at most b from Im'tg to (q,p).

Lemma C.1. Consider any execution of CEGAR (A, Init, Bad, Py, Pathlnv). For
any iteration 6 and for any (q,p) € Cg, we have p € U(Ly(q)) where:

Lo(g) = Polg) U{L} |0<n <0 and0<i<hy,}

Proof. We prove the lemma by induction on 6. The basis is trivial, since p € Py(q)
for every (q,p) € Cg. Assume that the lemma holds for the iteration 6 and let us

22

show that the lemma also holds for the iteration 6+1. Let (¢, p) € Cgﬂ. If (¢,p) €

Cg, then we get that p € ¥(Ly(q)). Since Ly(q) C Lo+1(q), we obtain that p €
U(Ly+1(q)). Assume now that (q,p) & Cg. Since p € Py11(q) \ Po(q), we get that
p was added to P(q) during the iteration € at line 9. We deduce from line 9 that
pe{p’NL,p'NL} for some (¢,p') € Cg and L € {LY | 0 < i < hg}. We deduce
from the induction hypothesis p’ € W(Ly(q)) and therefore p € ¥(Lg41(q)). O

Proposition C.2. For any non-terminating execution of CEGAR (A, Init, Bad,
Py, Pathlnv), the set {Lf | feNand0<i< he} s infinite.

Proof. Consider a non-terminating execution and let us show that the set £ =
{Lf | feN0<i< he} is infinite. We get from Lemma C.1 that for every ¢ € @
and 6 € N, we have Py(q) C ¥(Po(q) U L). According to line 9 of the CEGAR
semi-algorithm, Py, refines Py for every 6§ € N, and moreover Pyy; # Py since
Py 1 rules out wg. We deduce that there exists ¢ € @ such that the nondecreasing
sequence (|Pp(q)|)gey diverges. Since Py(q) is finite and Pp(q) € ¥(Po(q) U L),
we conclude that £ is infinite. a

Lemma C.3. Consider any breadth-first execution of CEGAR (A, Init, Bad, Py,
Pathlnv). For any iteration 8 > 1 and for any (¢,p) € Initg\lm'tgfl, there exists
po € Py_1(q) such that p=po N LY and ({g} x po) N Init = ({q} x p) N Init.

Proof. Consider an iteration 6 + 1 (with 6 € N) and let (q,p) be any abstract
configuration in Im'thr1 \Im'tg. Observe that ({¢} x p) N Init is non-empty,
and therefore (g,p) ¢ Cg since otherwise we would have (g,p) € Im'tg. Since

p € Pypy1(q) \ Po(q), we get that p was added to P(q) during the iteration 6§ at

In_
line 9. Let us write Wg as wg = (g0, o) b, .. oy (qn,pn). We deduce from

line 9 that p € {pio ﬂLfo,piO ﬂLfO} for some 0 < ip < h such that ¢ = ¢;,.

Observe that (gi,,pi,) € Im'tg since we have p C p;, and ({¢q} x p) N Init # (.
We come to 79 = 0 since the abstract counterexample ﬂg is among the shortest
ones. Hence, we get that ¢ = qp and p € {po N LY, po ﬂfg}. Since (L§,...,L%)
is a path invariant for Fg, we have ({qo} % po) N Init C {qo} x L§ and hence
{q0} x (po ﬂfg) is disjoint from Init. We deduce that p = po N LY and moreover
we get that ({g} x po) N Init = ({¢} x p) N Init. O

Lemma C.4. Consider any breadth-first exzecution of CEGAR (A, Init, Bad, Py,
Pathinv). For any iteration 0, for any b € N and for any (¢q,p) € Reachegb, we
have p € ¥ (LY (q)) where:

Lh(q) = Po(q) U{LY |0<n<6,i<hg andi <b}

Proof. For any iteration 6 and for any b € N, let use denote by (H, g) the property:

for any (q,p) € Cg, if there exists in [[A]]g a path of length at most b from Im'tg
to (g, p), then p € u'/(ﬁg (q)) We prove by double induction on § and b that (H})
holds for any iteration # and for any b € N.

23

Let us prove the basis Vb (H}) of the induction on #. Observe that £4(q) =
Py(q) for every ¢ € Q. Therefore p € Py(q) = ¥(Py(q)) for any (¢,p) € Cg,
and we conclude that the basis obviously holds. We now prove the induction
step VO (Vb (H)) = Vb(H},,)) of the induction on §. Consider an iteration
0 + 1 (with @ € N) and assume that (HY) holds for every b € N. We prove
by induction on b that (HJ,,) holds for any b € N. Observe that the basis
(Heo +1) may equivalently be rephrased as: for any (¢,p) € I m’tg 41> We have
p € V(L)) Let (¢.p) € Im'tgH. If (¢,p) € Initg then we deduce from (HJ)
that p € ¥(L§). Since £ C L), we obtain that p € (L),). Otherwise, we
obtain from Lemma C.3 that p = py N L§ for some py € Py(q). We deduce from
(HJ) that py € W(ﬁg) and therefore p € W(Eg_H). We therefore have proved
that the basis (H, ;) of the induction on b holds.

Let us now show the induction step Vb ((Hp,) = (Hgﬂ)) of the induction
on b. Consider any bound b € N and assume that (Hj_ ;) holds. Recall that (H{)
holds for every ¢ € N. Let (q,p) be any abstract configuration in Cg 41 such that
there is in [[.A]]gJrl a path 7% of length at most b+1 from Im'thrl to (q, p). We show
that p € !P([,gfl(q)). Recall that Py refines Py and define p = [p]p,, i.e. p is
the class in Py that contains p. Observe that (g, p) is an abstract configuration
in Cg. The “lift” of 7* to Py yields a path of length at most b+ 1 in [[.A]]g from
Im'tg to (q,p). We deduce from (H,™) that p € (L5 (g)). Since Ly C Egill
we obtain that p € W(CZill). If pe Py(q) thenp=p € W(Cg“(q)). Otherwise,
p € Poy1(q) \ Po(q) and we get that p was added to P(q) during the iteration 6
at line 9. Let us write 772 as Wg = (g0, P0) o, .. I, (qn,pn). We deduce from
line 9 that p € {pio ﬂLfo,piO OLT?O} for some 0 < 99 < h such that ¢ = ¢,,.
Moreover p;, = p since p;, and p both contain p. Remark that we may replace
in 71'5 the prefix (go,po) o, ... Loy, (¢iy, D) With the “lift” of 7* to Py. The
resulting abstract path is also an abstract counterexample in [[.A]]g, and its length
is h—1ig+ (b+1). Since ﬂg is among the shortest ones, we get that ig < b+ 1.
Asp,,=p¢€ Ll'/(ﬁngl(q))7 we conclude that p € ¥(L5(q)). O
Lemma C.5. Consider any breadth-first exzecution of CEGAR (A, Init, Bad, Py,
Pathlnv), and define Iy = {pﬂ {w] (¢, w) € Init} ‘ (¢,p) € Im'tﬁe} for any it-
eration 0. It holds that Iy C Zy_1 for any iteration 6 > 1.

Proof. Consider an iteration 6 > 1 and let L € Zy. There exists (¢,p) € Initg
such that L = pN{w | (¢, w) € Init}. Notice that {¢} x L = ({¢} x p)NInit # (.
If (¢,p) € Initgfl then L € Zy_,. Otherwise, we obtain from Lemma C.3 that
({q} x po) N Init = ({q} x p) N Init for some py € Py_1(q). We thus come to
L =pon{w|(¢q,w) € Init}. Since L # 0, we get that (¢,po) € Im'tg_1 and we
conclude that L € Zy_;. a

The following proposition shows that for any bound b, there is an iteration
after which the abstract configurations that are reachable from I nitt by a path

24

of length at most b are never split, or, put differently, the “reachability set up
to depth b” of the abstraction remains constant.

Proposition C.6. For any b € N and for any non-terminating breadth-first
execution of CEGAR (A, Init, Bad, Py, UPInv), the two following sets are finite:

| Reach® and {L?]| 6 €N,i<hy and i < b}
0eN

Proof. We prove the proposition by induction on b. Let us first show the ba-
sis. For any 8 € N, define 7y as in Lemma C.5. We infer from Lemma C.5
that Ty C Zy. We derive from the definition of the algorithm UPinv that for
any iteration # € N, there exists (¢,p) € Im'tg and k € N such that LY =
Vi (pN{w|(q,w) € Init}), and therefore L = V(L) for some L € Zy. Recall
that according to Definition 4.3, the set {V(L) | k¥ € N} is finite for any recog-
nizable subset L of (M*)™. Since 7 is finite, we obtain that {V(L) | L € Zy, k € N}
is finite. Consequently, the set {Lg ’ 0 eN } is finite. Moreover, according to
Lemma C.4, we have p € W(Po(q) U {Lg | 0 e N}) for every (¢,p) € Reach?o.
We deduce that (Jyey Reachego is finite.

Let us now show the induction step. Assume that the proposition holds for

some bound b € N. Let us define H = {LZ Np ‘ 0 e N,b< hy,(qp) € Reach?b}.

The sets yey Reachagb and {LZ | 0 eNb< hg} are both finite according to
the induction hypothesis, and therefore H is finite. We derive from the defi-
nition of the algorithm UPinv that for any iteration § € N with hy > b+ 1,
if LZH is non-empty then there exists (¢,p) € Reachegb, le Yand k € N
such that LY | = Vj (post(l,L§ Np)), and therefore L), | = V} (post(l, L)) for
some L € H. Recall that according to Definition 4.3, the set {Vj (L) | k € N}
is finite for any subset L of (M*)™. Since H and X are both finite, we ob-
tain that {Vy (post(l,L)) |l € X,L € H,k € N} is finite. We deduce that the
set {L),, |0 €N,b+1<hg} is finite, and we get from the induction hypoth-
esis that {Lf } 0eN,i<hgi<b+ 1} is also finite. Moreover, according to
Lemma C.4, we have p € W(Po(q) u {Lf | 0eN,i<hgi<b+ 1}) for every
(¢,p) € Reach?bﬂ. We deduce that (Jycy Reachegb+1 is finite. O

Proposition 5.2. For any breadth-first execution of CEGAR (A, Init, Bad, Py,
UPInv (V)), if the execution does not terminate then the sequence (hg)ycy of
lengths of counterexamples picked at line 2 is nondecreasing and diverges.

Proof. Consider a non-terminating breadth-first execution and let us show that
the sequence (hg)ycy is nondecreasing and diverges. Let 1,6 € N such that n < 0,

and observe that the partition map Py refines F,,. The “lift” of wg to P, yields

a counterexample in [[.A]]g7 Since w% is a counterexample in [[A]]E] among the
shortest ones, we get that its length h, statisfies h,, < hg. This concludes the
proof that (hg),.y is nondecreasing.

By contradiction, assume that there exists b,0; € N such that hg = b for
every ¢ > ;. We obtain from Proposition C.6 that (Jycy Reachegb is finite.

25

Therefore, there exists 5 > 0y such that Reachéb = Reachéﬁl. Let us write

7Tg2 as Tl'gz = (qo,Po) fo, L2y (v, pp)- Observe that (g;,p;) € Reachéb+1 for

every 0 <7 < b. We deduce that 7T22 is also a counterexample in [[.A]]g2 41> Which

contradicts the fact that Py,;; is a refinement of Py, that rules out 7r22. We
conclude that (hg),cy diverges. O

Corollary 5.3. If [A] is (Init, Bad)-unsafe then any breadth-first execution of
CEGAR (A, Init, Bad, Py, UPInv (V)) terminates.

Proof. Assume that there exists in [A] a path 7 from Init to Bad and let b
denote the length of 7. Consider any breadth-first execution of CEGAR (A, Init,
Bad, Py, UPInv (V)). Observe that for any iteration 6, ay(m) is an abstract coun-
terexample of length b in [[.A]]g. Hence, we have hy < b for every iteration 6 € N,
and we conclude with Proposition 5.2 that the execution terminates. a

Proposition 5.5. Assume that V is restricted. If [A] has a finite reachabil-
ity set from Init, then any execution of CEGAR (A, Init, Bad, Py, UPInv(V))
terminates.

Proof. Assume that [A] has a finite reachability set from Init, and consider
any execution of CEGAR (A, Init, Bad, Py, UPInv (V)). For each ¢ € Q, let us
write RS(q) the finite set of w € (M™*)™ such that there is a path in [A] from
Init to (q,w). Define £ = J, o 2S(g) and remark that £ is finite. Recall that
according to Definition 4.3, for any recognizable subset L of (M*)™, there exists
k1, € N such that L = V(L) for every k > k. Since L is finite, we infer that
there exists K € N such that L = V(L) for every k > K and L C L. Let us
define H = (L) U{Vi(L) | k < K,L € Rec((M*)™)}. Observe that H is finite
since V is restricted.

We show that Lf € 'H for any iteration € and for any 0 < i < hy. Consider

ln—
an iteration 0, and let us write Wg as wg = (go,P0) LN i N (gn, pn), with

h = hg. Notice that (g;—1,l;—1,¢;) is a transition rule in A for each 1 < ¢ < h.
Let us define Ry = pg N {w|(qo,w) € Init} and R; = post(l;_1, L | Np;_1)
for every 1 < ¢ < h. We derive from the definition of the algorithm UPinv that
there exists k € N such that: LY = V(Rg), and L; = 0 or L; = Vi(R;) for every
1 <i<h. If k < K then we get that Lf € H for every 0 < ¢ < h. Otherwise, we
have k > K and therefore L; = R; for every 0 < ¢ < h. An immediate induction
on i shows that R; C RS(g;) for every 0 < i < h. We deduce that LY C £ and
hence L! € H for every 0 < i < h.

‘We obtain that {L;9 ‘ feNand 0 << hg} C 'H. Since H is finite, we con-
clude with Proposition C.2 that the execution terminates. a

26

1la @
—

17a 1la
C 1la

Fig. 9: Fifo system of Example D.1 showing non-termination of CEGAR.
D Non-Termination of CEGAR for Finite Fifo Systems

The following example shows that the CEGAR semi-algorithm may not terminate
in general for fifo systems with a finite reachability set.

Example D.1. Consider the fifo system A depicted in Figure 9. This fifo system
has a single message a and a single queue. The safety condition (Init, Bad) is de-
fined by the recognizable subsets Init = {(0,¢)} and Bad = {0} x ({a} - {aa}*).
Notice that the reachability set from Init is equal to Init, which is finite, and
hence [A] is (Init, Bad)-safe. Define the initial partition map Py by Py(q) =
{{a}*}. We consider the extrapolation V defined by Vo({e}) = {¢,aa} and
Vi(L)=Lif k> 0or L # {e}. Let us detail the first iterations of an execution
of CEGAR (A, Init, Bad, Py, UPInv (V)).

0. @ is the empty path (0,{a}*) and the path invariant is ({e, aa})

-t = (0, fe,aa}) = (1,{a}*) = (2,{a}*) =5 (3,{a}*) = (0,{c, aa}),
and the path 1nvar1ant is ({e, aa} {a}, {aa}, {a3} {a*}).

2. 7 = (0, {5 aa}) = (1 {a}) = (2 {aa}) % (3,{a%}) = (0,{a’}) =
(1 {a}) % (2, {aa}) % (3, {a3}) % (0,{e,aa,a*}), and the path invari-
ant is (¢, aa}, {a}, {a?}, {a®}, {a'}. 0}, {a*}. {a"}. {a}).

These first iterations suggest that the execution may not terminate, and we
can actually prove that it necessarily does not terminate. Consider any execu-
tion of CEGAR (A, Init, Bad, Py, UPInv (V)). For any iteration 6, the path in-
variant (L§,..., L}) computed by UPInv (V) satisfies L§ = {e,aa} and Lf, =
{a* - a®=V} for any 1 < i < . We deduce that, for each iteration 6, there
exists a finite subset Fy of {a}* such that {{e,aa}, Fy} C Py(0). Observe that
(0,{g,aa}) € Im'tg and (0, Fy) € Badg. Moreover, for every i > 1, there is a
concrete path in [A] from (0,aa) to (0,a?"). Hence, there is an abstract path
in [A]4 from (0, {€,aa}) to (0, Fy). We obtain that [A]} is (Init*, Bad*)-unsafe
for every iteration 6, which, combined with Proposition 5.1, implies that the
execution does not terminate since [A] is (Init, Bad)-safe. O

27

