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Abstract. A Gals (Globally Asynchronous Locally Synchronous) sys-
tem typically consists of a collection of sequential, deterministic compo-
nents that execute concurrently and communicate using slow or unreli-
able channels. This paper proposes a general approach for modelling and
verifying Gals systems using a combination of synchronous languages
(for the sequential components) and process calculi (for communication
channels and asynchronous concurrency). This approach is illustrated
with an industrial case-study provided by Airbus: a Tftp/Udp commu-
nication protocol between a plane and the ground, which is modelled
using the Eclipse/TopCased workbench for model-driven engineering
and then analysed formally using the Cadp verification and performance
evaluation toolbox.

1 Introduction

In computer hardware, the design of synchronous circuits (i.e., circuits the logic
of which is governed by a central clock) has long been the prevalent approach. In
the world of software, synchronous languages [15] are based on similar concepts.
Whatever their concrete syntaxes (textual or graphical) and their programming
styles (data flow or automata-based), these languages share a common paradigm:
a synchronous program consists of components that evolve by discrete steps, and
there is a central clock ensuring that all components evolve simultaneously. Each
component is usually deterministic, as well as the composition of all components;
this assumption greatly simplifies the simulation, testing and verification of syn-
chronous systems.

During the two last decades, synchronous languages have gained industrial
acceptance and are being used for programming critical embedded real-time
systems, such as avionics, nuclear, and transportation systems. They have also
found applications in circuit design. Examples of synchronous languages are
Argos [22], Esterel [3], Lustre/Scade [14], and Signal/Sildex [1].

However, embedded systems do not always satisfy the assumptions under-
lying the semantics of synchronous languages. Recent approaches in embedded



systems (modular avionics, X-by-wire, etc.) introduce a growing amount of asyn-
chronism and nondeterminism. This situation has been known for long in the
world of hardware, where the term Gals (Globally Asynchronous, Locally Syn-
chronous) was coined to characterize circuits consisting of a set of components,
each governed by its own local clock, that evolve asynchronously. Clearly, these
evolutions challenge the established positions of synchronous languages in indus-
try.

There have been several attempts at pushing the limits of synchronous lan-
guages to model Gals systems. Following Milner’s result [25] that asynchro-
nism can be encoded in a synchronous process calculus, there have been ap-
proaches [16, 21, 26, 17] suggesting ways to describe Gals systems using syn-
chronous languages; for instance, nondeterminism is expressed by adding auxil-
iary input variables (oracles), the value of which is undefined; a main limitation
of these approaches is that asynchronism and nondeterminism are not recog-
nized as first-class concepts, so verification tools often lack optimizations spe-
cific to asynchronous concurrency (e.g. partial orders, compositional minimiza-
tion, etc.). Other approaches extend synchronous languages to allow a certain
degree of asynchrony, as in Crp [2], Crsm [28], or multiclock Esterel [4], but,
to our knowledge, such extensions are not (yet) used in industry. Finally, we
can mention approaches [13, 27] in which synchronous programs are compiled
and distributed automatically over a set of processors running asynchronously;
although these approaches allow the generation of Gals implementations, they
do not address the issue of modelling and verifying Gals systems.

A totally different approach would be to forget about synchronous languages
and adopt languages specifically designed to model asynchrony and nondeter-
minism, and equipped with powerful verification tools, namely process calculi
such as Csp [6], Lotos [19], or Promela [18]. Such a radical migration, how-
ever, would not be so easy for companies that invested massively in synchronous
languages and whose products have very long life-cycles calling for stability in
programming languages and development environments.

In this paper, we propose an intermediate approach that combines syn-
chronous languages and process calculi for modelling, verifying, and evaluating
the performance of Gals systems. Our approach tries to retain the best of both
worlds:

– We continue using synchronous languages to specify the components of Gals
systems, and possibly sets of components running together in synchronous
parallelism.

– We introduce process calculi to: (1) encapsulate those synchronous compo-
nents or sets of components; (2) model additional components whose behav-
ior is nondeterministic, a typical example being unreliable communication
channels that can lose, duplicate and/or reorder messages; (3) interconnect
all parts of a Gals systems that execute together according to asynchronous
concurrency. The resulting specification is asynchronous and can be analysed
using the tools available for the process calculus being considered.

As regards related work, we can mention [29], which translates Crsm [28] into
Promela and then uses the Spin model checker to verify properties expressed



as a set of distributed observers; our approach is different in the sense that it
can use synchronous languages just as they are, instead of introducing a new
synchronous/asynchronous language such as Crsm.

Closer to our approach is [9], which uses the Signal compiler to generate
C code from synchronous components written in Signal, embeds this C code
into Promela processes, abstracts hardware communication buses as Promela
finite Fifo channels, and finally uses Spin to verify temporal logic formulas. A
key difference between their approach and ours relies in the way locally syn-
chronous components are integrated into a globally asynchronous system. Their
approach is stateful in the sense that the C code generated for a synchronous
Signal component is a transition system with an internal state that does not
appear at the Promela level; thus, they must rely upon the “atomic” state-
ment of Promela to enforce the synchronous paradigm by merging each pair
of input and output events into one single event. To the contrary, our approach
is stateless in the sense that each synchronous component is translated into a
Mealy function without internal state; this allows a smoother integration within
any asynchronous process calculi that has types and functions, even if it does
not possess an “atomic” statement — which is the case of most process calculi.

We illustrate our approach with an industrial case study provided by Airbus
in the context of the TopCased3 project: a ground-plane communication proto-
col consisting of two Tftp (Trivial File Transfer Protocol) entities that execute
asynchronously and communicate using unreliable Udp (User Datagram Proto-
col) channels. For the synchronous language, we will consider Sam [8], a simple
synchronous language (similar to Argos [22]) that was designed by Airbus
and that is being used within this company. Software tools for Sam are available
within the TopCased open-source platform based on Eclipse. For the process
calculus, we will consider Lotos NT [7], a simplified version of the interna-
tional standard E-Lotos [20]. A translator exists that transforms Lotos NT
specifications into Lotos specifications, thus enabling the use of the Cadp tool-
box [12] to perform verification and performance evaluation on the generated
Lotos specifications.

This paper is organized as follows. Section 2 presents the main ideas of our
approach for analysing systems combining synchrony and asynchrony. Section 3
introduces the Tftp industrial case study. Section 4 gives insights into the for-
mal modelling of Tftp using our approach. Section 5 reports on state space
exploration and model checking verification of Tftp models. Section 6 addresses
performance evaluation of Tftp models by means of simulation. Finally, Sec-
tion 7 gives concluding remarks and discusses future work.

2 Proposed methodology

A synchronous program performs a sequence of steps. At each step, it receives
inputs from the environment, computes a reaction, and sends outputs to the
environment. It maintains its own internal state.

3 www.topcased.org



A synchronous program may be a synchronous composition of several syn-
chronous components. All these components react exactly in one step and may
communicate with each other (the output of one serving as input of another
one).

2.1 Modelling synchronous components as Mealy functions

A synchronous component has an internal state s. At each step, it receives a set
of m input values i1, . . . , im and computes (in zero time) a set of n output values
o1, . . . , on as well as its new state s′. That is to say, it is a function of the form:

(s′, o1 . . . on) = f(s, i1 . . . im)

This function corresponds to a (usually deterministic) Mealy machine [24] i.e.,
a 5-tuple (S, s0, I, O, T ) where:

– S is a finite set of states,
– s0 is the initial state,
– I is a finite input alphabet,
– O is a finite output alphabet,
– T is a transition function S ×I → S ×O mapping the current state and the

input alphabet to the next state and the output alphabet.

The function f , corresponding to a synchronous component, can either be gen-
erated directly in C using the compiler of the synchronous language (for this
purpose, there exists a common object code format for synchronous languages
named OC) or be programmed directly in a process calculus as a user-defined
function (we will follow this second approach).

The same applies to a synchronous composition of synchronous components
because this composition can also be modelled by a Mealy machine. This is a
property of synchronous parallelism.

2.2 The SAM language

To illustrate our approach, we consider the case of the synchronous language Sam
designed by Airbus. A synchronous component in Sam is an automaton has a
set of input and output ports, each port corresponding to a boolean variable.

A Sam component is very similar to a Mealy machine. The main difference
lies in the fact that a transition in Sam is a quintuple (s1, s2, F , G, P ), where
s1 and s2 is the source state of the transition, s2, the destination state of the
transition, where F is a boolean condition on the input variables, where G is
a set of output variables, and where P is a priority integer value. where P is a
priority index. If a set of input values enables more than one outgoing transition
from the current state, the transition with the smallest priority index is chosen.
For this reason, the priority indexes from transitions going out of the same state
must be pairwise distinct. The other difference is that every state has an implicit
outgoing transition leading to itself that is performed if no other transition can
be perfomed; it sets all the output ports to false.



Fig. 1 gives an example of a Sam automaton. An interrogation mark precedes
the condition F of each transition. An exclamation mark precedes the list G of
the output variables that are set to true when the transition is performed. If an
output variable is absent from that list, it is set to false when the transition is
performed. Priority indexes are attached to the base of the transitions.

Priority indexes are notational conveniences that can be eliminated as follows:
each transition (s1, s2, F, G, P ) must be replaced by (s1, s2, F

′, G, P ) where F ′ =
F ∧ ¬(F1 ∨ . . . ∨ Fn) such that F1, . . . , Fn are the conditions attached to the
outgoing transitions of state s1 with a priority index strictly lower than P .

s0

s1 s2

?B
!C

?A and B
!C,D

?A
!D

?B
!D

?A and not B
!C

1

2

1 2 1

Fig. 1. Example automaton in Sam

This Sam automaton can be encoded in Lotos NT as follows:

type State is

S0, S1, S2

end type

function transition (in CurrentState:State, in A:Bool, in B:Bool

out NextState:State, out C:Bool, out D:Bool) is

case CurrentState in

S0 ->

if A then

NextState := S1; C := false; D := true

else

NextState := CurrentState; C := false ; D := false

end if

| S1 ->

if A and B then

NextState := S0; C := true; D := true

elsif B then

NextState := S2; C := true ; D := false

else

NextState := CurrentState; C := false; D := false

endif

| S2 ->

if A and not (B) then

NextState := S2; C := true ; D := false

elsif B then

NextState := S0; C := false ; D := true



else

NextState := CurrentState; C := false ; D := false

end if

end case

end function

Sam supports the synchronous composition of automata. A global system in
Sam has input and output ports. It is composed of one or several Sam automata.
Communication between automata is expressed by drawing connections between
input and output ports, with the following rules:

– inputs of the system can connect to outputs of the system or inputs of
automata;

– outputs of automata can connect to inputs of other automata or outputs of
the system;

– cyclic dependencies are forbidden.

Because of the last rule, one can find a topological order for the dependencies
between automata. Thus, a Sam system can be encoded in Lotos NT as a
sequential composition of the Mealy functions of its individual Sam automata.

2.3 Wrapping Mealy functions into input/output processes

Transition
Functionextracting processingINPUT MESSAGE V1...Vn O1...On

values 
extracted 
from the 
message

inputs of the 
transition 
function

I1...In processing V'1...V'n

outputs of 
the transition 
function

next statecurrent state

values used to 
build the output 
message

assembling OUTPUT MESSAGE

values saved to be reused at next iteration

Fig. 2. The wrapper process in detail

In contrast with synchronous programs, components of asynchronous pro-
grams run concurrently, at their own pace, and synchronize with each other
through communications on gates or channels.

Our approach to modelling Gals systems in asynchronous languages builds
on encoding synchronous programs as a set of native types and functions in a
given process calculus.

This transition (or Mealy) function alone cannot interact with an asyn-
chronous environment. It needs to be wrapped into a process that handles the
communication with the environment. This wrapper transforms the Mealy func-
tion of a synchronous component into an Lts (Labelled Transition System). The
function of this process is illustrated by Fig. 2. Every time it receives a message,
it extracts values from it. These values can be directly mapped to the inputs
of the transition function or may be processed to produce these inputs. Then it
constructs a message from the outputs returned by the transition function (or



values processed from them) and makes the message available for sending. The
message is not actually sent right away; it is sent when the recipient process is
ready for synchronization. The process and the function, together act as a reac-
tive process. They react to a stimulation, the reception of a message, to produce
an answer, the output message.

The amount of processing a wrapper can do is arbitrary. It depends on the
Gals system being modeled. It can be very little, in which case the message
received could be an aggregation of the inputs of the transition function. It
can be significant: extraction of the inputs (of the transition function) from a
complex message, construction of a complex message from the ouputs, storing
outputs or values derived from them to be reused for the next stimulation.

2.4 Composing processes with asynchronous parallelism

Parallel composition of the wrapper and the environment with which we make it
interact can be achieved using the parallel operator of Lotos NT. This operator
defines on the channels (or gates) on which the wrapper and the environment
will communicate. The environment could be indifferently written in Lotos NT
or made of other synchronous programs wrapped into Lotos NT processes and
communicating asynchronously.

3 The TFTP case study

This case study was provided to us by Airbus. We first recall the principle of the
standard Tftp protocol then we present the custom adaptation made at Airbus
for plane/ground communications.

3.1 The standard TFTP protocol

Tftp [30] stands for Trivial File Transfer Protocol. It is a client/server protocol
in which the client can request to send (resp. receive) a file to (resp. from) server.
As it is designed to run over the Udp (User Datagram Protocol) protocol, the
Tftp protocol implements its own flow control mechanism.

In a typical case, a client initiates a transfer by sending a request to the
server, RRQ (Read ReQuest) for reading a file or WRQ (Write ReQuest) for writing
(i.e. sending) a file. The files are truncated into fragments of equal size, which
are transferred sequentially. The server replies to a read request by sending the
first data fragment of the requested file. A read request is answered by the first
data fragment (DATA) of the requested file and a write request is answered by an
acknowledgement (ACK). In addition to the data it carries, a data fragment also
contains an index value which is used to make sure that all the data fragments
are received consecutively. The last data fragment is characterized by a size
smaller than that of the other fragments. An acknowledgement carries the index
value of the data fragment it acknowledges. An acknowledgement numbered 0
answers a write request.



The protocol is designed to be robust. Any lost message can be retransmitted
after a timeout. Duplicate (resent because of a timeout) acknowledgements are
not replied to in order to avoid the Sorcerer’s Apprentice bug [5].

If an error (memory shortage, fatal error, etc.) occurs in one of the hosts, it
sends an error message (ERROR) to the other in order to abort the transfer.

A transfer ends when the acknowledgement of the last data fragment is re-
ceived. The host that sent this acknowledgement is encouraged to wait for a
while in order to resend the acknowledgement should the final data fragment be
resent by the other host. This is called dallying.

In order for the server to differentiate between clients, each incoming request
is served on a different Udp port.

3.2 The Airbus custom TFTP implementation

For the purpose of ground/plane communication, Airbus is experimenting with
a simplified version of the Tftp protocol. In the future protocol stack used by
Airbus, this simplified version of the Tftp protocol runs above the Udp layer
and below a layer of protocols dedicated to communications in avionics such
as ARINC 615. The Tftp protocol will carry the frames of these dedicated
protocols. For that reason, every host will have the ability to be both a client
and a server, depending on what that upper layer dictates. A static number of
Tftp hosts is instantiated. Whenever a plane docks, a Tftp host is assigned
to serve it. It means that at any given time a Tftp host (either from the plane
or in the airport) will only communicate with a single other Tftp host. This
removes the need for modelling the fact that a server can serve many different
clients on as many different Udp ports.

4 Modelling the TFTP architecture

Airbus was interested in verifying that these Tftp hosts would behave correctly
in a realistic environment in which messages sent from one host to the other
could be lost and reordered. For this purpose, we model a specification involving
two Tftp protocol entities connected by two media. As shown in Fig. 3, the
Tftp protocol entities are two instances of the same Lotos NT process whose
behaviour is dictated by the Mealy function of the Sam Tftp automaton while
the media are two instances of the same Lotos NT process that models the be-
haviour of the Udp protocol running over a wired network. We chose Lotos NT
rather than Lotos because Lotos NT functions are easier to use than Lotos
equations for representing the Mealy function of the Sam Tftp automaton and
for manipulating data in general.

4.1 Modelling the TFTP protocol entities

The behaviour of Airbus Tftp hosts is encoded as a Sam system consisting
of one Sam automaton. The automaton has 7 states, 39 transitions, 15 inputs
and 11 outputs. We translated this Sam automaton manually into 215 lines of
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Fig. 3. Asynchronous connection of two TFTP processes via unreliable media

Lotos NT(precisely, an enumerated type to encode the states and the Mealy
function of the automaton).

The Mealy function representing the behaviour of the Tftp protocol entity
must be encapsulated into a wrapper to communicate with the Udp media.
We defined two different Lotos NT wrapper processes: the “simplified Tftp
process” which was modelled according to Airbus recommendations, and the
“accurate Tftp process” which is closer to the standard Tftp protocol.
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send_ERROR
stop_timer
arm_timer
next_state

send_ACK
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Fig. 4. Simplified TFTP Process

The simplified Tftp process consists of a simple wrapper around the Mealy
function and does no processing on its own. The messages it receives are an
aggregation of the inputs of the Mealy function; it unmarshals them and passes
them on to the Mealy function, then it retrieves the outputs, marshals them and
sends the message thus obtained. It is as if the outputs of one Mealy function
in one Tftp protocol entity connect directly to the corresponding inputs of
the Mealy function in the other Tftp protocol entity. The files under transfer
are not modelled. A host can randomly send a read or write request (provided
that there is no ongoing transfer) and the transfer will continue until the sender
arbitrarily decides to send the last data fragment. The simplified Tftp process
and the types and functions that we had to define for the messages were written
in 260 lines of Lotos NT.



The simplicity of that design helped us writing properties for the verification
phase but limited us at the same time. For example, the Tftp automaton has
two outputs named send DATA and resend DATA and two inputs receive DATA
and receive old DATA. Connecting respectively send DATA and resend DATA to
receive DATA and receive old DATA might seem reasonable when considering
a perfect medium but prevents us from testing error cases in our design with
a lossy medium. Indeed, if a data fragment is sent from one host (send DATA)
and lost by the medium, it will be resent (resend DATA) after a timeout. If that
second message is received, its recipient should see it as a receive DATA whereas
in our simplified design the receive old DATA input of the Mealy function will
be erroneously set to true.

In order to suppress such limitations we improved our modelling and created
an accurate Tftp process that receives and sends real Tftp messages (as defined
in the standard Tftp protocol) and processes those messages in order to compute
the proper values for the inputs of the Mealy function. In this accurate Tftp
process, read and write requests carry the name of the requested file. This file
name is modelled as an integer. Both processes have a repository in which an
integer corresponds to a file. Files are modelled as sequences of characters, each
character being one fragment of the file. Data fragments carry three values, an
integer for the index value of the fragment, a character for the file fragment
and a boolean value indicating whether this is the last fragment of the file.
Acknowledgements carry the index value of the data fragment they acknowledge.
In order to fight state explosion in the latter phases we instantiate the processes
with a list of names of files to read (“read list”) and a list of names of files to
write (“write list”) instead of just letting the compiler generate every possible
file. Whenever there is no active transfer a process can randomly choose to send
a read request for the first file name in its read list or a write request for the first
file name in its write list. Besides the state of the automaton, additional values
must be kept in memory between two subsequent calls to the Mealy function: the
name of the file being transferred and the index value of the last data fragment
or acknowledgement received or sent, whether the last data fragment received is
the last one, etc. The accurate Tftp process and the types and functions that
we defined for the files, repositories and messages were written in 671 lines of
Lotos NT.

4.2 Modelling the UDP media

The medium Lotos NT process must reproduce the behaviour of the link be-
tween the plane and the ground: Udp protocol over an Ethernet network. Udp
is a connection-less protocol, so as regards our modelling it means that a process
writing on the medium will never block. Udp does not have any error recov-
ery mechanism so a problem that occured and was not corrected by the lower
networking layers will be propagated to any application using Udp. These er-
rors are message losses, message reordering, and message duplications. Message
losses can always happen. Modern routers use load-balancing software to send
all packets of the same stream through the same route. This reduces message
reordering to a certain extent but does not guarantee it will not happen. Message



duplications would have to come from bogus implementations of the lower level
networking layers so we discard the possibility that they can happen.

We chose to model the medium in two different ways, using two different
Lotos NT processes. Both processes allow messages to be lost and have a buffer
of fixed size in which the messages are stored upon reception, waiting for delivery.
The first process models the case where message reordering does not happen.
It uses a Fifo as a buffer: messages are delivered in the same order they were
received. The second process models the case where message reordering can hap-
pen. It uses a bag as a buffer: it does not guarantee that messages are delivered
in the same order they were received. We denote FIFO (n) (resp. BAG (n)) a
medium with a Fifo (resp. bag) buffer of size n. The Lotos NT processes for
the Fifo medium and the bag medium are respectively 24 and 27 lines long.

4.3 Asynchonous composition of TFTP entities and UDP media

To compose the Tftp protocol entities and the Udp media asynchronously, we
use the parallel operator of Lotos NT:

par

RECEIVE_A, SEND_A -> TFTP_WRAPPER [RECEIVE_A, SEND_A]

||

RECEIVE_B, SEND_B -> TFTP_WRAPPER [RECEIVE_B, SEND_B]

||

SEND_A, RECEIVE_B -> UDP_MEDIUM [SEND_A, RECEIVE_B]

||

SEND_B, RECEIVE_A -> UDP_MEDIUM [SEND_B, RECEIVE_A]

end par

As we have two different Tftp processes and two different medium processes
we obtain four specifications: simplified Tftp specification with bag media, sim-
plified Tftp specification with Fifo media, accurate Tftp specification with
bag media, and accurate Tftp specification with Fifo media.

5 Verifying functional correctness

In this section, we detail how we generate the state space for the specifications
and how we define correctness properties to ensure the proper behaviour of these
specifications. Then, we explain how we perform model checking using Cadp.

5.1 State space generation

An Lts (Labelled Transition System) representation of the specifications is pro-
duced by Cadp compilers. Lotos NT specifications are automatically trans-
lated into Lotos specifications, which are, in turn, compiled into an Lts by the
Cæsar [10] compiler.

One important issue in model checking is the problem of the state explosion.
For example if we try to compile the simplified Tftp specification with BAG
(2) media, it takes on a machine equipped with a dual-core processor running



at 3.17Ghz and 3 Gb of RAM, 8 hours and 25 minutes to obtain an Lts with
27,721,727 states and 216,183,185 transitions.

To fight this, we use compositional generation. It is a divide and conquer
approach, available in Cadp which consists in producing the Lts for each of
the processes involved in the specification, minimizing them using the Bcg Min
tool of Cadp and composing them together.

With this method, the aforementioned specification can be generated in 10
minutes and 34 seconds yielding an Lts of 6,552,898 states and 35,762,508 tran-
sitions.

Tab. 1 gives an insight into the influence of the buffer size on the whole
specification size. For every additional element in the buffer, the specification
increases around tenfold. Writing all those compositions and calling the tools

Medium
Medium Generation Specification Generation

States Transitions Time (s) States Transitions Time (s)
BAG (1) 31 150 2.45 66,227 271,710 19.98
BAG (2) 321 1,630 2.67 1,656,577 7,283,171 37.34
BAG (3) 2,366 11,930 3.77 18,923,839 93,350,943 435.07
BAG (4) 11,926 62,370 120.44 − (did not finish) − −
FIFO (1) 31 150 2.62 66,227 271,710 19.67
FIFO (2) 321 1,540 2.62 1,137,246 4,776,989 31.19
FIFO (3) 3,221 15,440 3.55 18,337,328 77,600,123 375.10
FIFO (4) 32,221 154,440 59.35 − − −

Table 1. Generation times for a client/server scenario with one file exchanged

manually to perform them is a demanding task. For this reason we have a script-
ing language named Svl in Cadp. It wraps the functionnalities of Cadp tools in
order to let the user write its processings (composition, reduction, verification,
bisimulations, etc.) in a readable and orderly fashion.

5.2 Temporal logic properties

Correctness properties must first be expressed in natural language and then
translated into temporal logic formulas. For example, we have a property which
states that the data fragments must be sent properly ordered. We chose to ensure
this by showing that any data fragment numbered x can not be followed by a
data fragment numbered y, where y < x, unless there has been a reinitialization
(transfer succeeded or aborted) in between. Evaluator 4.0 uses an extension
of the µ-calculus temporal logic that can manipulate data. In this logic, the
property can be expressed as follows:

[

true* .

{SEND_A !"DATA" ?x:Nat ...} .

not (REINIT_A)* .

{SEND_A !"DATA" ?y:Nat ...

where y < x}

] false



The formula states that there exists no sequence of transitions in the Lts that
leads to Tftp protocol entity 1 sending a data fragment numbered x then a data
fragment numbered y, where y < x, without the transfer succeeding or aborting
(REINIT A1).

We wrote 12 properties to be verified on both the simplified Tftp specifica-
tions and the accurate Tftp specifications. Another 17 were written exclusively
for the accurate Tftp specifications.

5.3 Model checking the specifications

To verify whether a property holds for a specification, we use the Evaluator
4.0 model checker [23]. We feed it one specification represented as an Lts and
one formula of temporal logic and it answers whether the property holds by
exhaustively exploring the transition system.

It is worth noting that Cadp allows one to perform on-the-fly verification,
letting the model checker drive the generation of the Lts as it verifies the prop-
erty. This is particularly useful when the Lts would not fit on the machine hard
drive disk. In our case, it is better to first generate the Lts, then verify all the
properties, reusing the same Lts for every property. We can do so because the
Ltss for our specifications are of reasonable size.

Several of the first batch of 12 properties did not hold on the simplified Tftp
specifications. This enabled us to find 11 errors in the Tftp automaton.

Verification of the accurate Tftp specifications requires constraining the files
that can be exchanged between the two Tftp protocol entities so as to reduce
the size of the Lts that is generated. For that purpose, we instantiate the Tftp
protocol entities with lists of names of files to read and write. To cover all the
possibilities, four scenarios were required:

1. Tftp protocol entity 1 and 2 both write one file;
2. Tftp protocol entity 1 writes one file and Tftp protocol entity 2 reads one

file;
3. Tftp protocol entity 1 and 2 both reads one file;
4. Tftp protocol entity 1 reads one file and Tftp protocol entity 2 writes one

file.

We limit the size of the files to 2 characters as it is sufficient to cover all the
transitions of the automaton. The verification of the first batch of 12 proper-
ties on the accurate Tftp specifications yielded the same results that we had
already obtained by verifying them on the simplified Tftp specifications. The
verification of the second batch of 17 properties especially written for the ac-
curate Tftp specifications led to the discovery of an additional 8 errors in the
Tftp automaton.

We tested the simplified and accurate Tftp specifications using BAG (1),
BAG (2), BAG (3), FIFO (1), FIFO (2), and FIFO (3) as media and always
obtained the same results.

In total, we found 19 errors on the Tftp case study. 11 errors were found on
the simplified Tftp specification and another 8 on the accurate Tftp specifica-
tion. They were reported to Airbus and were acknowledged as being actual errors



in the Tftp automaton. We also suggested changes in the Tftp automaton to
correct them. These errors do not occur in reality as the Tftp implementation
embedded in planes is even simpler than the one given to us for study. While
some of these errors could be found by a human after a careful study of the
automaton, some others are more subtle and would probably be missed by an
engineer. For example, if both Tftp entities send a request (RRQ or WRQ) at the
same time, they would ignore each other. This would be hard to detect when
looking at a Tftp automaton alone.

6 Performance evaluation by simulation

The model checking verification described in section 6 found errors but without
quantitative measurements. The presence of the errors we detected does not
prevent the existence of satisfying sequences of transitions leading to successful
transfers. It is always possible to finish the transfer and the errors in the Tftp
automaton apparently only cause extra timeouts and additional messages to be
sent.

To obtain quantitative information about the impact of the errors detected,
we turned to simulation as it allowed us to measure the seriousness of the errors.
There are several approaches to simulation, network of waiting lines (queuing
theory), models based on Markov chains (Interactive Markov Chains) [11] and
random simulation by generation of random traces for a given specification. In
our case, the last approach was the most adapted because Cadp allowed us to
reuse the accurate Tftp specification.

6.1 Simulation methodology with CADP

The specification we used for simulation is a slightly modified version of the ac-
curate Tftp specification with bag media. We also built several Tftp automata
in addition to the original one that Airbus gave us. First, we have an automaton
on which we corrected all the errors we found. Second, for each error, we built
an automaton that only exhibits that particular error. The idea is to be able to
quantify the loss in performances induced by each error individually and then
to quantify the loss caused by the errors altogether.

We made the following modifications to the specification: the file repository
is now generated randomly for every simulation and with an arbitrary number
of files, the Tftp protocol entities are instantiated with an arbitrary number of
files to read and write, the size of the media queue was raised to 6, and the queue
type was modified in order to give a higher priority to messages that arrived first.

The Executor tool, distributed with Cadp as a C source code file generates
a random execution trace of a specification (instead of the entire state space).
As its source code is available, we modified it in order to implement a system
of weights for the transitions. For each different automaton, we ran the same
number x of simulations in order to obtain x execution traces. For each of these
traces, we computed a time of execution based on the Tftp messages sent that
the trace exhibited. At the end we obtained a mean time of execution for each
one of the automata and we could compare them.



We defined two scenarios of simulation. The first one consisted of one Tftp
protocol entity acting like a server (with empty lists of files to read or write)
and the other one acting like a client, with files to read and files to write. This
scenario is a realistic model of Airbus deployment of their Tftp hosts. In the
second scenario, both protocol entities had lists of files to read and to write.
They competed for obtaining the right to start transfering their files. This is a
worst-case scenario that is unlikely to happen in Airbus deployment but Airbus
engineers recognized it ought to be tested as it can happen under heavy load
but is hard to reproduce in reality.

By default, the Executor tool will randomly choose the next transition if
there are several possibilities in the state it arrived to. We modified this be-
haviour by assigning weights to the transitions, a transition being more likely to
be chosen than another if its weight is higher. The idea is to give very low weight
values to error transitions such as the internal error or the reception of an invalid
packet. We used the following values: 1 for error cases (internal error, request
rejected, invalid packet), 100 for a timeout or a loss in the medium and 10000
for any other transition. The values for the error cases are totally arbitrary; we
tried to make them realistic but the truth is we cannot predict how reliable the
link or the hardware will be.

In order to compute the execution time, we gave our media some character-
istics. Their latency time would be 8 ms and their bandwidth would be 1 MB/s.
We also considered that the size of the Tftp data packets would be 32 kilobytes.
Receiving a read request (RRQ), a write request (WRQ), an acknowledgement (ACK)
or an error (ERROR) would take 2 ms (a quarter of the latency). Sending a read
request, a write request, an acknowledgement or an error would take also 2 ms.
Receiving or sending a data fragment would take 18ms (2ms plus half the time
required to send 32 kilobytes at 1MB/s).

For each automaton we used, we tried different values of timeout. The idea
was to ensure that for any timeout value, the results were consistent.

6.2 Simulation results
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Fig. 5. Simulation results for scenario 2.



Most of the errors that we found would have an effect only if both processes
were competing for transferring files. In the scenario 1, only one of the processes
was reading or writing files while the other acted as a server. Yet, the difference
in performances is around 10%, regardless of the timeout value we used. In a
typical usage the corrections we made induced a significant gain in performances.

Fig. 5 displays the results for the scenario 2. It clearly shows that the original
Tftp automaton from Airbus can not handle concurrency while the corrected
version can handle it without any noticeable loss in speed compared to scenario
1. Out of the 19 errors, only 6 seriously impact the performances and we chose
to display two of them on Fig. 5.

7 Conclusion

In this paper, we have proposed a novel approach for modelling and analysing
systems consisting of synchronous components interacting asynchronously, com-
monly referred to as Gals (Globally Asynchronous Locally Synchronous) in the
hardware design community.

Contrary to other approaches that stretch or extend the synchronous
paradigm to model asynchrony, our approach preserves the genuine semantics
of synchronous languages as well as the well-known semantics of asynchronous
concurrency. It allows to reuse without any modification the existing compilers
for synchronous languages together with the existing compilers and verification
tools for process calculi.

We have demonstrated the feasibility of our approach on an industrial case
study, the Tftp/Udp protocol for which we successfully performed model check-
ing verification and performance evaluation using the TopCased and Cadp
software tools. Although this case study was based on the Sam synchronous lan-
guage and the Lotos/Lotos NT process calculi, we believe that our approach
is general enough to be applicable to any synchronous language whose compiler
can translate synchronous components (or sets such components) into Mealy
machines — which is almost always the case — and to any process calculus
equiped with asynchronous concurrency and user-defined functions.

As regards future work, we received strong support from Airbus to apply the
proposed approach to more case studies and to generalize it to other languages
than Sam.
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