
C. Stephanidis (Ed.): Universal Access in HCI, Part I, HCII 2009, LNCS 5614, pp. 525–534, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Inclusive Design for Ordinary Users in Extraordinary
Circumstances

Simeon Keates

IT University of Copenhagen
Rued Langgaards Vej 7, DK-2300 Copenhagen S

skea@itu.dk

Abstract. Universal access is commonly interpreted as focusing on designing
for users with atypical requirements – specifically users with disabilities or
older adults. However, universal access is also about providing access to users
in all situations and circumstances, including those that place extraordinary
burdens on the users. This paper examines the design of a user interface (UI) for
use in an airport environment and explains how the lessons learned from de-
signing for users with disabilities in particular have been applied in this new
context. The paper further describes a series of experiments that were per-
formed to demonstrate the usability of the new interface and also compare the
efficacy of three different input strategies developed for the new UI. The most
efficient method of input was a strategy of combined keyboard shortcuts offer-
ing access to the full functionality of the UI.

1 Introduction

A quick look through the technical programmes of many conferences addressing the
thematic area of universal access shows that historically the overwhelming majority
of papers address design for disabled users or design for older adults [4]. However, it
has long been claimed that the techniques developed to design for such extraordinary
users in ordinary circumstances could also be applied to ordinary users in extraordi-
nary circumstances [3]. Indeed, many funding applications often feature this very
claim.

Recently, more research has been performed on examining the role of innovative
circumstances, or contexts, of use. For example, designing for ambient intelligence is
one such area that has received much attention in the past few years [1].

This paper describes the development of a new user interface (UI) for use in an air-
port environment. The specific application was a Departure Control System (DCS).

Airports are very challenging environments in which to use computers, especially
since many computers there are often old and, most importantly, do not have mice.
While many UIs exist for use without mice, such as traditional command-line inter-
faces, the DCS UI was developed as part of an overall suite of applications that re-
quired a coherent branded appearance. Many of the other applications were to be used
in a more typical office environment and needed to support typical mouse and key-
board input and resemble a traditional graphical user interface (GUI).

526 S. Keates

Thus the DCS UI needed to have the look and feel of a typical GUI application and
support mouse input, but actually be optimized for keyboard-only access. These de-
sign requirements represented an interesting challenge for the design team; a chal-
lenge that was resolved by examining design techniques used for users who cannot
use a mouse, specifically blind users and those with severe motor impairments. In
other words, methods developed for designing for “extraordinary” users were applied
to a UI for “ordinary” users in “extraordinary” circumstances [3].

1.1 The Airport Environment

The airport environment itself is a very demanding one. Airports are often very noisy
places, crowded and with unequal and often poor lighting. Airline staff are under
constant time pressure to process passengers as swiftly as possible. In the event of a
last minute cancellation or other service disruption, the members of airline staff need
to have accurate and reliable information made available to them in a timely fashion
to keep passengers informed and defuse any potential confrontation.

Airlines often do not have any control over the computer equipment available to
them. While most airlines may invest in purchasing their own equipment for their
major hubs, smaller airports will almost certainly use common use platforms. These
are computer facilities that are provided by a subcontractor through the airport to the
airlines.

The common use platform machines are typically Linux or Windows NT based and
often support only 1024×768 CRT displays. Some are equipped with hand-scanners
for processing 1-D and 2-D barcodes, but those scanners are notoriously unreliable.

Most crucially, they often are not equipped with mice.

1.2 The Departure Control System

Airline operations within an airport are very complex and diverse. The most obvious
features to most people are those that they interact with as passengers – specifically
check-in and boarding. While these are, in themselves, large design spaces, they rep-
resent only a fraction of what is often going on. A complete Departure Control Sys-
tem (DCS) needs to include the following functionality:

• Check in – identify passengers and whether they are travelling as part of a group,
ensure that the passengers are correctly ticketed and have the necessary documen-
tation to be eligible to travel, assign the passengers to seats or to the standby list,
process their baggage (see below), collect any outstanding payments and issue
boarding passes

• Boarding – prepare the flight for departure, perform all necessary security checks,
ensure that all passengers that are eligible to fly board the aircraft and that all tick-
eted passengers that are denied boarding (for a variety of possible reasons) are
found seats on alternative flights

• Baggage handling and tracking – ensure that all bags are correctly entered into the
system, have tags issued and are tracked correctly, especially for lost luggage
claims

 Inclusive Design for Ordinary Users in Extraordinary Circumstances 527

• Catering – ensure that the correct number and type of special meals are onboard
each aircraft

• Irregular operations – facilitate a smooth transfer of passengers from flights that
have experienced sudden difficulties (e.g. cancelled because of adverse weather
conditions) to other available flights

• Standbys and denied boardings – add or remove passengers from a particular flight
prior to boarding

• Special services – ensure that passengers with particular special service require-
ments, such as wheelchair, are correctly identified and that the appropriate service
is made available

• Flight manifests – ensure that the passenger and baggage manifests are complete
for customs and immigration clearance

1.3 Summary

In summary, the airline personnel have to use machines running old technology that
can be temperamental at times. They are under significant time constraints and need
to have a high productivity rate (throughput). These are issues that can be addressed
by traditional user-centred / usability design practices. The specific issue of interest
for this paper is the absence of computer mice. The hypothesis to be examined here is
that by drawing on the experiences of designing for users who cannot use a mouse
because of severe motor impairments, a better design for nominally able-bodied users
who do not have access to a mouse can be created.

2 The DCS Design Approach

As a whole, the DCS deign approach has followed an agile methodology. Rather than
developing a complete detailed design specification prior to the coding of the applica-
tion, the design and coding were both tackled at the same time. Thus, fast design
creation and iteration was required to ensure a mature enough design was available to
the coders in a just-in-time fashion.

To achieve the necessary design speed, it was important to establish a close work-
ing relationship with the client’s subject matter experts. Weekly brainstorming ses-
sions were set-up, supplemented by daily telephone conversations. Wireframe proto-
types were developed in PowerPoint as a rapid prototyping tool – the ability to add
“Action settings” to on-screen elements (hyperlinking to other slides in the deck)
allowed a good simulation of actual use of the interface in a very short development
time, without having to wait for the code-base to be fully developed and implemented.

The design of the UI had three principal goals within this overall approach:

1. To ensure that all of the necessary functionality was made available to the users
2. To ensure that the users could accomplish their daily tasks as time-efficiently as

possible
3. To minimise training requirements for airport employees (specifically less than one

day of training)

528 S. Keates

To achieve these goals, and the implicit sub-goals, within the development timeframe
required a clear design vision.

2.1 The Design Vision

The other applications in the overall product suite were developed very much as Web
2.0 applications, using typical Web 2.0 metaphors and features. These were appropri-
ate given the nature of the tasks.

The design of DCS was fundamentally different. For instance, forward and back
buttons are meaningless in a DCS context. When a user performs an action, for exam-
ple changing a passenger’s seat allocation, that action is committed immediately,
fundamentally changing the state of the DCS system. While it may be possible to
back out that action, it is not guaranteed. For example, the passenger’s original seat
may have been allocated to another passenger in the time taken for the check in agent
to undo the seat exchange. Close to the close of check-in for flight, this type of situa-
tion becomes increasingly common as the aeroplane is becoming full.

Consequently, the design had to support two correlated properties:

• Fast throughput for the users
• Minimised risk of user errors

An effective method for achieving both of these properties is to ensure that the users
feel confident in how the application will respond to their input commands. Before they
press a button, they should be sure what the outcome of that button press would be.

Thus, rather than considering the design of DCS as a typical Web application, the
metaphor used was that of an ATM. The analogy of an ATM was chosen because, for
example, not all actions offered by an ATM are easily countermanded and mice are
not typically used. The user has to feel totally in control of how the system is operat-
ing – otherwise they would not trust their money to it. Even the visual appearance
would be somewhat similar, with the need to keep pages lightweight (in size) and thus
comparatively simple.

Further, the process of interaction in DCS was modelled as a series of flows – the
check-in flow, the boarding flow, etc. – with self-contained, discrete modules of addi-
tional information (such as advanced passenger information, special service requests
or limited release baggage) added orthogonally to the main basic flows. Each flow
was modelled with its own progress bar / breadcrumb trail, clearly indicating the
current stage in the overall task flow.

Finally, the design needed to visually resemble a typical GUI application, but be
optimised for keyboard-only access.

3 Designing for Keyboard-Only Access

The standard approach to designing keyboard-accessible web pages is to follow the
Web Content Authoring Guidelines 1.0 (WCAG 1.0) from the Web Accessibility
Initiative (WAI) of the World-Wide Web Consortium (W3C) [5] - specifically
Guideline 9 – “Design for device-independence” has the following checkpoints:

 Inclusive Design for Ordinary Users in Extraordinary Circumstances 529

“9.4 Create a logical tab order through links, form controls, and objects. [Priority
3] For example, in HTML, specify tab order via the "tabindex" attribute or ensure a
logical page design.

…
9.5 Provide keyboard shortcuts to important links (including those in client-side

image maps), form controls, and groups of form controls.”

Further, WCAG 1.0 is due to be superseded by WCAG 2.0 [6], which states:

“Guideline 2.1 Keyboard Accessible: Make all functionality available from a key-

board.
2.1.1 Keyboard: All functionality of the content is operable through a keyboard in-

terface without requiring specific timings for individual keystrokes, except where the
underlying function requires input that depends on the path of the user's movement
and not just the endpoints. (Level A)

…
Note 2: This does not forbid and should not discourage providing mouse input or

other input methods in addition to keyboard operation.
2.1.2 No Keyboard Trap: If keyboard focus can be moved to a component of the

page using a keyboard interface, then focus can be moved away from that component
using only a keyboard interface, and, if it requires more than unmodified arrow or tab
keys or other standard exit methods, the user is advised of the method for moving
focus away. (Level A)”

Fig. 1. The check-in search page from DCS

Taking these as a starting point, it can be seen that TAB key navigation between
page elements should be supported wherever possible and keyboard shortcuts imple-
mented for commonly used features.

530 S. Keates

The first design approach for DCS was to consider that the TAB key could be used
to navigate between fields and keyboard shortcuts added to the buttons. This was the
approach adopted for the other applications in the overall software suite. However,
while such an approach yields a design that is accessible without the use of a mouse,
it would still not provide the levels of keyboard optimisation required in the airports.
More innovative thinking was required.

Looking at the initial search page for the DCS check-in application for finding a
passenger who wishes to check-in to a flight (Figure 1) there are 6 possible search
fields, some of which have multiple text entry fields. Using the TAB key, it would
take 11 TAB key presses to reach the first text entry field for a phone number search.
A faster method of navigation was required for the levels of throughput demanded in
an airport.

3.1 Optimising for Keyboard-Only Input – The DCS Solution

Clearly to obtain sufficiently high levels of throughput, more radical changes to the
keyboard input paradigm were required. A range of additions and changes were made
to the typical “keyboard-isation” of Web pages [2]. These included:

• Supporting the use of arrow keys between text entry boxes. In the case of
Figure 2, using the down arrow key would require 7 keystrokes to reach the tele-
phone search fields, rather than the 11 for the TAB key (a 36% reduction in key-
strokes). In DCS, all screens allowed the use of arrow keys to move between text
entry fields.

• Supporting the use of ALT+[number] to move to text entry boxes. Looking
closely at Figure 2, it can be seen that each main search field has been assigned a
number and that number is underlined – the standard labelling technique for ALT-
enabled keyboard shortcuts. In this case, pressing “ALT+6” jumps the focus from
the first text entry field to the country code entry field for telephone searches. Thus
the 11 TAB keystrokes required to reach this field can be accomplished by 1 com-
pound keystroke (a 91% reduction).

• Enabling direct selection of list items. On many pages within DCS, a list is pre-
sented from which items have to be selected. Common examples include a list of
passengers on the same booking, checked (i.e. hold) baggage and fees to be paid.
Using the TAB key would require the addition of check-boxes next to each list
item. The user would have to TAB to the check box and press either SPACE or
ENTER to change the check box state. In DCS, all items in such lists are either
numbered or lettered. Pressing the appropriate key (when keyboard focus is not in
a text entry field) toggles the selection/de-selection of the respective item. Thus
pressing “2” twice will select and then de-select the second item in an on-screen
list.

• Constraining the TAB key. If coded like a typical Web page, once the TAB key
has been used to move the keyboard focus to the “Number” text entry box in the
Telephone Number search field in Figure 2, then pressing the TAB key again will
move the focus to the buttons at the bottom of the screen. Continuing to press TAB
will move the focus to the menus at the top of the screen and through the different
tabs, adding approximately 11 TAB keystrokes to return to the first text entry box.

 Inclusive Design for Ordinary Users in Extraordinary Circumstances 531

Since all of those other elements have their own keyboard shortcuts, the TAB order
can be constrained to just the text entry boxes, meaning just a single TAB key-
stroke will move the focus from the last text entry box on the page to the first.

• Using INS to toggle between direct selection mode and text entry mode. The
direct selection mode works only if the keyboard focus is not on a text entry box –
otherwise pressing a number puts that number into a text entry field rather than se-
lecting/de-selecting an item from a list. Moving into and out of a text entry field
can be achieved by simply TAB-ing. However, to streamline the process, DCS
supported the use of the INS key to jump immediately to the first text entry box on
the page, irrespective of where the TAB may be on the page.

• Adding function keys to the “flow” (breadcrumb trail). Typically breadcrumb
trails have to be traversed in full to reach a particular link. In DCS, each stage of
the “flow” (the specialised version of a standard breadcrumb trail) is associated to a
function key. Thus pressing the appropriate function key jumps straight to the stage
of the flow.

• Adding a default button to each page. While each button in DCS includes its
own ALT+[underlined_letter] shortcut, the button most likely to be used on that
page (most commonly the “Continue”-type button) is shaded in green and can be
operated by pressing ENTER, as well as ALT+C (in the “Continue” case). This is
very similar operation to Mac OSX button behaviour. This may look like a negligi-
ble performance improvement (a single keystroke instead of a compound one), but
proved to be very popular with users.

4 Evaluating the DCS Check in UI

The DCS check in user interface was the first component to be coded and evaluated.
A 2-stage evaluation process was adopted:

1. Ensure the functional completeness of the UI and its learnability
2. Evaluate the efficiency of the keyboard input paradigm.

4.1 Validating the Functionality of DCS

The DCS user interface was assessed through a series of user trials over 4 days with
10 experienced airport personnel. Each user was asked to perform 12 typical and
atypical check-ins. These ranged from domestic passengers with no bags, to a family
of four where one passenger gets called away on an emergency and even a passenger
that arrives at the airport for an international flight, only to discover that he cannot
find his passport. All of the users were given 20 minutes of training – consisting of:

• A brief overview of DCS and the keyboard navigation paradigm;
• A screen-by-screen overview of the UI; and,
• A sample check-in to perform.

All of the users were able to complete the tasks that they attempted (not all had
enough time to attempt all tasks) and found the keyboard navigation to be intuitive
and easy to learn and use. The only exception was the use of the INS key, which was

532 S. Keates

effective, but unpopular. While all of the users understood its use, they felt that it did
not feel quite right. The use of INS was removed and now TAB is used to move into
and out of text entry boxes.

The user comments were strongly favourable, with a unanimous acceptance that
the required functionality had been included and also that the taskflows implemented
were appropriate and complete.

4.2 Validating the Keyboard Input Paradigm

The second stage of DCS evaluation involved comparing the efficacy of the keyboard
input paradigm, specifically the time to complete typical check in tasks. Two tasks
were selected:

1. Search for a booking using the phone number associated with the booking
2. Complete a domestic check in for 2 passengers with 3 bags

Additionally, 3 input methods were chosen for comparison:
1. TAB key only (no mouse use)
2. Mouse (and keyboard for data entry)
3. All keyboard shortcuts (no mouse use)
4. Arrow keys (search task only)

All users performed the search task 4 times per input method. The domestic check in
was completed once per interaction method. 4 users, all familiar with the new DCS
UI, participated in the evaluation and the interaction methods were randomly pre-
sented to avoid any order effects. However, all users performed the search task first
and then the complete domestic check in task.

4.3 Search Task Results

The results for the search task are shown in Table 1.

Table 1. The mean times taken to complete the search task for the 4 different input methods.
Also shown is the % difference from the mouse time. Positive % means slower input, negative
% means faster.

Input method Mean time to complete (s) % difference from Mouse
TAB key 11.0 +8.8%

Arrow keys 11.5 +12.7%
Mouse 10.2 (-)

Shortcuts 8.3 -18.0%

It can be seen that using the TAB key only for navigation is 8.8% slower than us-

ing the mouse. Using the arrow keys is slower still, 12.7% slower than using the
mouse. This is somewhat surprising since the critical path (i.e. the shortest possible
route to complete the task) is 4 key presses fewer for the arrow keys than for the TAB
key (11 arrow key presses instead of 15 TAB key presses), since the two right hand
text entry boxes can be skipped using the down arrow key (see Figure 1). The most

 Inclusive Design for Ordinary Users in Extraordinary Circumstances 533

likely explanation for this difference is that use of the arrow keys for this type of
navigation is no longer common and is much more unfamiliar now to GUI users than
the use of the TAB key.

The fastest method of input was the full use of the shortcuts. The critical path
here was:

ALT+6, [country code], TAB or RIGHT ARROW, [area code],
TAB or RIGHT ARROW, [phone number], ENTER

This gives a total of 4 key presses that are non-data entry (cf. 13 and 11 respec-
tively for the TAB and ARROW keys). Here the unfamiliarity of the ALT key short-
cut is more than offset by the reduction in total number of key presses required.

4.4 Domestic Check in Results

Table 2 shows the results for the domestic check in results for the 3 different input
methods compared.

Table 2. The mean times taken to complete the domestic check in task for the 3 different input
methods. Also shown is the % difference from the mouse time. Positive % means slower input,
negative % means faster.

Input method Mean time to complete (s) % difference from Mouse
TAB key 111.8 +29.7%
Mouse 86.2 (-)

Shortcuts 58.2 -32.5%

Table 2 shows that using the TAB key is almost 30% slower that using the mouse,

whereas the use of the full range of keyboard shortcuts is over 30% faster. The differ-
ence between the TAB key input method and the full range of shortcuts is even larger
– with the TAB key taking almost twice as long to complete the task.

5 Conclusions

The results shown in Tables 1 and 2 clearly demonstrate that relying only on the TAB
key to provide principal keyboard-only navigation leads to interaction times that are
between 9 and 30% slower than using a mouse and keyboard combination. This result
is not unexpected, but shows that if designers take the easy route of only supporting
this and think that the final UI is “accessible” then they are not doing all that they can
for the users.

The benefits of taking a thorough user-centered, information architecture approach
to the design process can be seen from the overall time savings for the full range of
keyboard shortcuts. By supporting all the keyboard input techniques described in this
paper, it has been shown that keyboard only entry can be up to 32.5% faster than
using a mouse and keyboard combination. This is a significant improvement in per-
formance, allowing each check in agent to process almost 3 groups of passengers in

534 S. Keates

the time it would take to process 2 groups using the mouse. Such an improvement is
of great financial value to an airline.

The overall design approach of looking at techniques developed for designing for
accessibility (specifically designing for users with vision or motor impairments) was
effective in suggesting methods of enabling keyboard-only access. This case study
demonstrates that those methods can be applied when designing for ordinary users in
extraordinary circumstances.

References

1. Adams, R., Granic, A., Keates, S.: Are ambient intelligent applications universally accessi-
ble? In: Karwowski, W., Salvendy, G. (eds.) Proceedings of AHFE International, Las Ve-
gas, NV, July 14-17 (2008)

2. Keates, S.: Designing for accessibility: Extending to ordinary users in extraordinary circum-
stances. In: Karwowski, W., Salvendy, G. (eds.) Proceedings of AHFE International, Las
Vegas, NV, July 14-17 (2008)

3. Newell, A.F.: Extra-ordinary Human Computer Operation. In: Edwards, A.D.N. (ed.) Extra-
ordinary Human-Computer Interactions. Cambridge University Press, Cambridge (1995)

4. Stephanidis, C. (ed.) Proceedings of 4th International Conference on Universal Access and
Human computer Interaction, Beijing China, July 22-27 (2007)

5. W3C. Web Content Accessibility Guidelines 1.0 (1999),
http://www.w3.org/TR/WCAG10/ (accessed: February 20, 2009)

6. W3C. Web Content Accessibility Guidelines (WCAG) 2.0 (2009),
http://www.w3.org/TR/WCAG20/ (accessed: February 20, 2009)

	Inclusive Design for Ordinary Users in Extraordinary Circumstances
	Introduction
	The Airport Environment
	The Departure Control System
	Summary

	The DCS Design Approach
	Designing for Keyboard-Only Access
	Optimising for Keyboard-Only Input – The DCS Solution

	Evaluating the DCS Check in UI
	Validating the Functionality of DCS
	Validating the Keyboard Input Paradigm
	Search Task Results
	Domestic Check in Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

