
C. Stephanidis (Ed.): Universal Access in HCI, Part II, HCII 2009, LNCS 5615, pp. 168–177, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Middleware for Ambient Intelligence Environments:
Reviewing Requirements and Communication

Technologies

Yannis Georgalis1, Dimitris Grammenos1, and Constantine Stephanidis1,2

1 Institute of Computer Science, Foundation for Research and Technology – Hellas
(FORTH), GR-70013 Heraklion, Crete, Greece

2 Computer Science Department, University of Crete, Greece
{jgeorgal,gramenos,cs}@ics.forth.gr

Abstract. Ambient Intelligence is an emerging research field that aims to make
many of the everyday activities of people easier and more efficient. This new
paradigm gives rise to opportunities for novel, more efficient interactions with
computing systems. At a technical level, the vision of Ambient Intelligence is
realized by the seamless confluence of diverse computing platforms. In this
context, a software framework (middleware) is essential to enable heterogene-
ous computing systems to interoperate. In this paper we first consider the basic
requirements of a middleware that can effectively support the construction of
Ambient Intelligence environments. Subsequently, we present a brief survey of
existing, general-purpose middleware systems and evaluate them in terms of
their suitability for serving as the low-level communication platform of an Am-
bient Intelligence middleware. Finally, we argue that an Object-Oriented mid-
dleware such as the Common Request Broker Architecture (CORBA) is most
suited for basing a middleware for Ambient Intelligence environments.

1 Introduction

1.1 Ambient Intelligence

The term Ambient Intelligence (AmI) describes those environments that enclose a
plethora of diverse computing systems, embedded to, and indistinguishable from, the
environment in which they operate [1]. An AmI infrastructure aims to support users in
carrying out their everyday life activities by offering them an easy and natural way for
interacting with the digital services that are provided by the hidden interconnected
computing systems. In this respect, AmI environments provide the means to sense and
construe the actions that serve the needs of their users in order to offer a personalized,
context-sensitive and efficient interaction platform.

1.2 Distributed Services

In an environment where interactions are realized by the confluence of different inter-
connected computing systems, the organization of the overall system architecture to a
well-defined set of distributed software entities is crucial. The alternative centralized

 Middleware for Ambient Intelligence Environments 169

approach where all software entities run on a monolithic computing platform, despite
being the easiest to implement, is neither scalable nor flexible. On the contrary, a dis-
tributed approach allows for (a) flexible, dynamic extension of the overall system
with novel functionality, (b) enhanced system scalability, by sharing computation
demands among different computers, (c) enhanced robustness, by isolating potential
failures of individual software entities, and (d) unambiguous and straightforward
modularization of the system’s architecture.

Therefore, we consider an AmI infrastructure as a collection of interconnected dis-
tributed services; i.e., a collection of software entities that run on different machines,
and are able to communicate with each other in order to provide to the infrastructure
all the required functionality for sensing, drawing conclusions, and responding to the
needs of its users.

2 Basic Requirements for an Ambient Intelligence Middleware

2.1 Role of the Middleware

Despite being an overloaded term [2], middleware is a commonly used word in the
context of distributed computing systems. In general, middleware is a set of pro-
gramming libraries and programs (services) that constitute an indivisible platform
which offers a comprehensible abstraction over the complexities and potential hetero-
geneity of the target problem domain.

Different communication middleware platforms support different programming
and communication models. Three of the most popular paradigms are the object-
based middleware, the event-based middleware and the message oriented middleware
(MOM). In object-based middleware platforms, applications are structured into dis-
tributed objects that interact via location-transparent method invocation. Those plat-
forms typically utilize the “request/response” communication style. On the other
hand, event- and message- based systems mainly employ single-shot message ex-
change. Event-based middleware is particularly suited to the construction of non-
centralized distributed applications that ultimately monitor and react to changes in
their environment.

In an inherently distributed environment such as AmI, the communication middle-
ware should abstract over the intricacies of the underlying communication technolo-
gies, machine architectures and operating systems. Moreover, it should hide the
distribution of the different parts that comprise the system and enable programs writ-
ten in different programming languages to communicate seamlessly. Higher-level
core functionality of an AmI infrastructure, e.g. context awareness, authentication,
etc., basically comprises a set of appropriate services that depend on the middleware.

2.2 AmI Middleware Basic Requirements

Enabling programs written in different programming languages to interoperate seam-
lessly is a key design goal in most middleware platforms. This is especially true in an
AmI environment, where the basic system is built using diverse technologies from
diverse research fields that traditionally utilize different programming languages.

170 Y. Georgalis, D. Grammenos, and C. Stephanidis

Synchronous communication is definitely essential for interacting with different
AmI services. Using synchronous calls a service or an application can give commands
to other services and query their internal state. However, the synchronous paradigm
alone is inadequate for modeling all the interactions that can happen in an AmI envi-
ronment. For this reason, asynchronous, event-based communication support is also
needed in order to enable AmI services to notify interested parties about changes in
their internal state, or to communicate the occurrence of an external (expected or un-
expected) event. Event-based communication is also traditionally regarded as a
mechanism for constructing loosely-coupled software components that need only
know the format of the exchanged events without requiring any knowledge of the
internal structure, implementation, or semantics of the entity that produced the event.
Consequently, we consider both synchronous and asynchronous communication styles
essential for an AmI middleware platform.

Arguably, one of the most important and extensively researched properties of dis-
tributed systems is fault tolerance. Fault tolerance, in this context, refers to the prop-
erty that enables an AmI infrastructure to continue to function properly even in the
event of failures. Apparently, the failure of an AmI service that serves a specific func-
tion within an infrastructure should not, in any case, affect the other services that do
not depend or use this failing service. On the other hand, services and applications
that depend on a failing service, should handle gracefully its failure by continuing
functioning with (potentially) reduced functionality. Ensuring that a failing service
will not affect independent services is definitely the job of the middleware. However,
the graceful handling of the failure of a dependent service cannot entirely be handled
at the middleware level. The failback techniques ultimately depend on the semantics
of the high-level task at hand. Therefore, we regard fault tolerance, in the context of
an AmI communication middleware, as the set of functionality that supports the fol-
lowing: (a) isolates failures, (b) eliminates single points of failure within the core
middleware infrastructure, (c) is able to restart failing services before the clients that
use those services are affected, and (d) provides mechanisms for notifying higher
level entities about the irreparable failure of a specific service.

Another important requirement of an AmI middleware is security. Apparently, se-
curity, in order to be effective, should be considered throughout all the layers of an
AmI infrastructure. In this context, however, we view security as the ability of the
middleware to prevent malicious code from eavesdropping and exploiting the data
exchanged through the network channels that enable services to communicate with
each other.

Orthogonally to the aforementioned requirements, a key property of the middle-
ware that we consider absolutely essential is that it should be easy for developers to
program with. Developing AmI components should feel natural to the programmer of
all supported languages, who should be able to use distributed services as if they were
local objects or functions of the source language. Going one step further, the middle-
ware should limit, or even eliminate entirely, “boilerplate” (i.e. extraneous) code in
order to enable the construction and usage of distributed services.

An overview of the aforementioned requirements for an AmI middleware is
presented in Table 1.

 Middleware for Ambient Intelligence Environments 171

Table 1. Basic requirements of an AmI middleware

Heterogeneity Support for multiple languages and computing platforms
Communication Synchronous and asynchronous (event-based) communication
Resilience Replication; isolation and graceful handling of failures
Security Secure communication among distributed services
Ease of use Natural and intuitive usage for each target language

3 Communication Technologies

Implementing a middleware that is able to satisfy all the aforementioned requirements
requires substantial development effort. Fortunately, many existing communication
technologies can be re-used towards this goal.

In the following subsections, we will present the primary communication tech-
nologies that we have evaluated with respect to their appropriateness as the basis for a
communication platform for an AmI middleware.

3.1 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) [3] is a standard defined
by the Object Management Group (OMG) [4] that provides a stable model for distrib-
uted object-oriented systems. CORBA enables software components written in
multiple programming languages and running on multiple operating systems to work
seamlessly together. The abstractions provided by CORBA Object Request Brokers
(ORBs) allow for the creation and usage of distributed objects that look like typical
local objects of the target programming language. The CORBA standard also defines
a plethora of standard services that can be used to make the development of
distributed systems easier and more robust.

There are many advantages in using CORBA as a base for constructing a middle-
ware for AmI environments. First of all, CORBA separates the definition of interfaces
from their actual implementation using an interface definition language (IDL). The
standard specifies a “mapping” from IDL definitions to specific programming con-
structs of the target implementation language. This mapping process enables the type
safe invocation of the methods offered by distributed services, simplifies their imple-
mentation, and provides a comprehensive formal reference of the Application Pro-
gramming Interface (API) that a specific service supports.

CORBA is primarily designed for blocking request/response, synchronous type of
communication. However, using the standard Notification Service [5], CORBA con-
formant applications can use publish/subscribe channels to effectively emulate asyn-
chronous communication. Additionally, support for one-way method invocation,
allows callers to continue execution without waiting for any response from the server.

Fault tolerance in CORBA is not specifically addressed in earlier revisions of the
standard. However, it allows for a high degree of fault tolerance by: (a) having clear
invocation failure models (at-most-once and best effort delivery); (b) allowing clients
to obtain persistent references to services through the standard Implementation Re-
pository service [5]; (c) enabling object references to include multiple endpoints. Ad-
ditionally, CORBA allows client code to register functions to intercept exchanged

172 Y. Georgalis, D. Grammenos, and C. Stephanidis

messages, enabling the creation of more advanced fault tolerance methods, depending
on the target problem domain.

Concerning the “ease of use” requirement, CORBA is arguably difficult to use.
Nonetheless, having a versatile architecture, it allows for the construction of higher
level communication platforms on top of it. Despite having many obscure, esoteric
and obsolete features, a higher-level platform for AmI environments can definitely
use a well-defined subset of CORBA and abstract away its “idiosyncrasies”.

Furthermore, there are many high quality open source CORBA implementations
for many different programming languages (e.g. [6], [7], [8], [9]). All these imple-
mentations have liberal licenses allowing client applications to be distributed at their
authors’ own terms. Table 2 summarizes the key features of CORBA against the five
requirements set in section 2.2.

Table 2. Summary of CORBA features

Heterogeneity Supports multiple programming languages and computing platforms
Communication Synchronous request/response and asynchronous communication

through the standard Notification Service
Resilience Comprehensive invocation failure semantics, mechanisms for

supporting transparent replication
Security Ability to use encrypted communication channels
Ease of use Natural and intuitive usage for each target language

3.2 Internet Communications Engine (Ice)

The Internet Communications Engine (Ice) [10] is a true object-based domain-
independent middleware platform designed and implemented by ZeroC [11]. Ice de-
rives its main architecture from CORBA, but tries to improve on it by (a) eliminating
its unnecessary complexity, (b) providing better built-in security, (c) providing more
efficient protocols for reduced network bandwidth and CPU overhead, and (d) provid-
ing extra functionality that is either underspecified or absent from the CORBA stan-
dard and its implementations.

Slice, Ice’s equivalent of CORBA’s IDL, extends the latter by adding functionality
for supporting dictionary types and by providing support for exception inheritance.
Additionally, Slice allows the programmer to add directives describing the state of Ice
objects so that they can be subsequently stored and loaded automatically.

Ice offers many standard services including a service for propagating software up-
dates around the distributed infrastructure (IcePatch), a very efficient Notification
service (IceStorm), and a transparent proxy server that can be used for firewall tra-
versal and enhanced security (Glacier).

All in all, Ice succeeds in delivering a well-designed middleware that without try-
ing to reinvent the wheel, offers a robust and easy to use platform for distributed
computing1. That said, Ice’s disadvantages compared to CORBA implementations are
stemming from purely practical reasons. On one hand, Ice’s GPL [12] license requires
all the applications and services that use its libraries and generated code to be

1 It is worth noting that ZeroC comprises former CORBA implementers and a member of

OMG’s Architecture Board (Michi Henning).

 Middleware for Ambient Intelligence Environments 173

distributed under the GPL – a requirement that we have considered as too restrictive.
On the other hand, the extra features offered by Ice were not deemed essential for the
implementation of an AmI middleware. Nonetheless, ZeroC, in addition to the GPL
license, offers proprietary licensing schemes for a fee. Consequently, should a pro-
prietary licensing scheme be a viable option, Ice is an ideal communication platform
for basing an AmI middleware. Table 3 summarizes the key features of Ice against the
five requirements set in section 2.2.

Table 3. Summary of Ice’s features

Heterogeneity Supports multiple programming languages and computing platforms
Communication Synchronous request/response and asynchronous communication

through the IceStorm service
Resilience Comprehensive invocation failure semantics, mechanisms for

supporting transparent replication
Security Ability to use encrypted communication channels, Glacier service
Ease of use Natural and intuitive usage for each target language

3.3 Web Services

Web services [13], being the new Internet standard for service provision, are widely
used in modern distributed systems. This technology uses a simple XML-based proto-
col to allow applications to exchange data across the Web. Services themselves are
defined in terms of the well-defined XML documents – modeling messages – that are
accepted and generated. Instead of providing a specification that offers high-level,
standardized language-specific constructs for mapping service interfaces and data
types, web service aware code, only needs to be able to generate and process the ex-
changed XML documents. The Simple Object Access Protocol (SOAP), that essen-
tially constitutes the core of the Web services architecture, only defines the format of
the exchanged messages, the marshaling rules for the data that appear in the mes-
sages, and a set of conventions for achieving Remote Procedure Call- (RPC) like
functionality.

Putting aside any performance considerations, especially in the context of contem-
porary high-speed networks, we found web services to be insufficient as a platform to
base an AmI middleware. The potential advantages offered by an approach based on
Web services such as universal firewall traversal, loose coupling of services and dy-
namic service composition, are outweighed by the disadvantages stemming from the
absence of high-level programming idioms and communication guarantees in the
specification.

In an object-based middleware, the implementation of a service is realized (in ob-
ject oriented languages) as the implementation of a class. Similarly, a remote call to a
service is realized as a method invocation on a local object that acts as a proxy to the
remote service. To the programmer, a service implementation or invocation is identi-
cal to the implementation and invocation of a local object of the target programming
language. Additionally, remote invocations (at least in CORBA) have well defined
failure semantics; at-most-once for blocking, synchronous calls and best effort
delivery for one-way non-blocking calls. On the other hand, in Web services, the

174 Y. Georgalis, D. Grammenos, and C. Stephanidis

programmer has to implement the dispatching of the received messages to the appro-
priate functions of the target language in order to implement a service and explicitly
construct and send a SOAP message in order to invoke a remote function. Moreover,
the SOAP specification omits the definition of invocation failure semantics. The lack
of natural programming abstractions is mitigated by the provision of additional librar-
ies and tools. However, such tools are not standard and are available only for just a
few programming languages.

While universal firewall traversal is very important for geographically distributed
services, it is not essential in the context of an AmI environment where the majority
of the deployed services are restricted within a Local Area Network (LAN). Appar-
ently, firewall traversal is also possible in CORBA by forcing a standard port to the
Object Request Broker (ORB) of those services that should be visible from systems
outside the basic infrastructure LAN and subsequently opening this port in the fire-
wall either manually or through Universal Plug and Play (UPnP) messages. Also, the
dynamic composition and invocation of Web services that need not know a priori the
functions that a specific service supports is also possible in CORBA through its stan-
dard Dynamic Invocation Interface (DII). Table 4 summarizes the key features of
Web Services against the five requirements set in section 2.2.

Table 4. Summary of Web Services features

Heterogeneity Support multiple programming languages and computing platforms
Communication Synchronous request/response. Asynchronous communication can be

achieved but is not standard
Resilience Depends on the underlying communication protocol and does not

provide any mechanisms for supporting the implementation of
resilience

Security Ability to use encrypted communication channels
Ease of use Explicit message construction and dispatching

3.4 Thrift

Thrift [14], used extensively in facebook [15], is a communication platform that em-
phasizes simplicity and efficiency in the delivery and invocation of distributed ser-
vices. Naturally, Thrift enables the creation and usage of distributed services in many
different programming languages. Using an Interface Definition Language (IDL)
much like CORBA’s IDL, Thrift effectively separates the description of a service
from its actual implementation while providing a natural object-oriented mapping for
using and implementing services in the supported languages. One particularly useful
feature that Thrift supports is the fine-grained service versioning. Thrift is able to dis-
tinguish and handle gracefully differences in the version of every field of complex
data structures and every parameter in a service function.

While Thrift is very well suited to the particular problem domain for which it was
developed it does not provide all the mechanics required for an AmI middleware.
Most importantly, it lacks the ability to use service references as first-class values and
does not implement core infrastructure services such as Naming and Notification. The

 Middleware for Ambient Intelligence Environments 175

absence of a Notification service makes it impossible for services to notify clients
asynchronously2 about the occurrence of an event. Overall, while Thrift supersedes
CORBA in terms of simplicity, efficiency and interface versioning, it lacks CORBA’s
large feature-set, flexibility, maturity and robustness. Table 5 summarizes the key
features of Thrift against the five requirements set in section 2.2.

Table 5. Summary of Thrift’s features

Heterogeneity Supports multiple programming languages
Communication Synchronous request/response. Asynchronous communication can be

achieved but is not standard
Resilience Depends on the underlying communication protocol and does not

provide any mechanisms for supporting the implementation of
resilience

Security Ability to use encrypted communication channels
Ease of use Natural and intuitive usage for each target language

3.5 Etch

Etch [16], which was originally derived from work on the Cisco Unified Application
Environment [17], is a cross-platform, language- and transport-independent frame-
work for building and consuming network services. Etch implements a Network Ser-
vice Description Language (NSDL) which separates the description of a service from
its actual implementation in the target language. The processing of an NSDL service
description, allows client code to implement and invoke a distributed service as if it
were a local object of the target language. However, like Thrift, Etch is not a pure
object-based middleware as it cannot use a service object as the return value or pa-
rameter of a method. Nevertheless, it offers support for two-way communication
between a service and its clients and simplifies security management by enabling con-
nection authorization directives to be specified in NDSL. By supporting two-way
communication, Etch is able to support effectively synchronous request/response and
asynchronous communication. As far as standardized services are concerned, Etch
currently provides a Naming Service for discovering deployed services and a Router
Service for fault-tolerance and load balancing.

The features that are planned for Etch provide all the functionality that we consider
essential for the implementation of an AmI middleware. However, in its present re-
lease (version 1.0), Etch is incomplete. Although it offers most of the aforementioned
functionality, it does so supporting only Java and .NET (C#) for implementing and
consuming services. When its specification is fully implemented, offering the planned
functionality for more programming languages, Etch will constitute an effective and
efficient platform for an AmI communication middleware. Table 6 summarizes the
key features of Etch against the five requirements set in section 2.2.

2
 Thrift’s async keyword for qualifying a service’s function is equivalent to the oneway quali-
fier in CORBA which essentially makes the call of the function non-blocking for the client
code (i.e. fire-and-forget).

176 Y. Georgalis, D. Grammenos, and C. Stephanidis

Table 6. Summary of Etch’s features

Heterogeneity Currently (version 1.0) supports only two languages with more to
come in subsequent versions

Communication Synchronous request/response; explicit support for asynchronous
type-safe communication

Resilience Provides a Router service that can be used for service replication
Security Ability to use encrypted communication channels and also provides

support for high-level authentication functions
Ease of use Natural and intuitive usage for each target language

4 Related Efforts

The Amigo project [18] uses the OSGi framework [19] for implementing services in
Java, and the .NET Web Services framework and tools for implementing services in
.NET. Hydra [20] uses a Web Services-based approach with custom peer-to-peer
(P2P) network technologies for creating and consuming services. The CHIL project
[21] uses Smartspace Dataflow [22] and ChilFlow [23] for the integration of auto-
nomic perceptual components and follows an agent-based approach for the implemen-
tation of high-level services using JADE [24]. Communication in JADE relies on Java
Remote Method Invocation (RMI) for Java-based agents and on CORBA for agents
running on different platforms. These efforts are still under development and support
only a narrow range of platforms, as they target mainly Java and .NET-based AmI
infrastructures.

5 Summary and Conclusions

In this paper, we presented the basic requirements for an AmI communication mid-
dleware. Against these requirements, we evaluated a set of general-purpose commu-
nication technologies. Among these communication technologies, we found the
Common Object Request Broker Architecture (CORBA) and the Internet Communi-
cations Engine (Ice) to be the most effective in providing the low-level building
blocks for implementing a middleware for AmI environments. Both CORBA and Ice,
provide a robust specification that has a very broad range of features that essentially
make them independent of the target problem domain. They are sufficiently low-level
so that specialized, high-level interaction patterns can be realized, and sufficiently
high-level so that the need for tedious communication management and marshaling
operations is alleviated.

Despite the fact that a versatile object-based middleware constitutes an effective
platform for an AmI communication middleware, it is apparent that request/response
communication is not always suitable. Most importantly, it is neither efficient nor
effective for streaming large amounts of continuous data, e.g. video or audio. Hence,
one final issue to note is that an AmI middleware should also utilize a separate MOM
communication platform (e.g., ChilFlow) for streaming data while maintaining an
object-based core for creating and controlling data streams.

 Middleware for Ambient Intelligence Environments 177

Acknowledgements. This work has been supported by the FORTH-ICS internal RTD
programme “AmI: Ambient Intelligence Environments”.

References

1. IST Advisory Group 2003. Ambient Intelligence: From Vision to Reality, ftp://
ftp.cordis.lu/pub/ist/docs/istag-ist2003_consolidated_

 report.pdf
2. Network Working Group. Request for Comments 2768, http://www.ietf.org/

rfc/rfc2768.txt
3. Object Management Group. The Common Object Request Broker: Architecture and Speci-

fication. Object Management Group, Framingham, Mass. (1998)
4. The Object Management Group (OMG), http://www.omg.org
5. Object Management Group. CORBAservices: Common Object Services Specification. Ob-

ject Management Group, Framingham, Mass. (1997)
6. The ACE ORB (TAO), http://www.cs.wustl.edu/~schmidt/TAO.html
7. JacORB, http://www.jacorb.org
8. IIOP.NET, http://iiop-net.sourceforge.net
9. omniORB, http://omniorb.sourceforge.net

10. Henning, M.: A new approach to object-oriented middleware. IEEE Internet Computing 8,
66–75 (2004)

11. ZeroC, http://www.zeroc.com
12. GNU General Public License, http://www.gnu.org/copyleft/gpl.html
13. Simple Object Access Protocol (SOAP), http://www.w3.org/TR/soap
14. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable Cross-Language Services Im-

plementation
15. facebook, http://www.facebook.com
16. Etch, http://cwiki.apache.org/ETCH
17. Cisco Unified Application Environment, http://www.cisco.com/web/

 developer/cuae
18. The Amigo project, http://www.hitech-projects.com/euprojects/amigo
19. OSGi Alliance. OSGi Service Platform Core Specification Release 4,
 http://www.osgi.org

20. The Hydra project, http://www.hydramiddleware.eu
21. The CHIL project, http://chil.server.de
22. The NIST Smart Space Project, http://www.nist.gov/smartspace
23. The ChilFlow System,

 http://www.ipd.uka.de/CHIL/projects/chilflow.php
24. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant agent framework

	Middleware for Ambient Intelligence Environments: Reviewing Requirements and Communication Technologies
	Introduction
	Ambient Intelligence
	Distributed Services

	Basic Requirements for an Ambient Intelligence Middleware
	Role of the Middleware
	AmI Middleware Basic Requirements

	Communication Technologies
	Common Object Request Broker Architecture (CORBA)
	Internet Communications Engine (Ice)
	Web Services
	Thrift
	Etch

	Related Efforts
	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

