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Abstract. Independent Active Appearance Model (AAM) has been widely used 
in face recognition, facial expression recognition, and iris recognition because 
of its good performance. It can also be used in real-time system application 
since its fitting speed is very fast. When the difference between the input image 
and the base appearance of AAM is small, the fitting is smooth. However, when 
the difference can be large because of illumination and/or pose variation in the 
input image, the fitting result is unsatisfactory. In this paper, we propose a ro-
bust AAM using multi-linear analysis, which can make an Eigen-mode within 
the tensor algebra framework. The Eigen-mode can represent the principal axes 
of variation across the order of tensor and it can apply to AAM for increasing 
robustness. In order to construct both of original AAM and the present AAM, 
we employ YALE data base, which consists of 10 subjects, 9 poses, and 64 Il-
lumination variations. The advantage of YALE data base is that we can use the 
coordinate of landmarks, which are marked for train-set, with ground truth. Be-
cause when the subject and the pose were same, the location of face isalso 
same. We present how we construct the AAM and results show that the  
proposed AAM outperforms the original AAM. 

Keywords: AAM, YALE data base, Multi-linear Analysis, Eigen-mode, Tensor. 

1   Introduction 

The Active Appearance Model (AAM) is a non-linear, generative, and parametric 
model for the certain visual phenomenon. And it is used for face modeling frequently 
as well as for other object modeling. The AAM is proposed in [1] firstly, and then 
improved in [2], which model shape and appearance separately. The AAM is com-
puted by train-set, which consists of pair of images and land marks, which is marked 
manually by hand.  

Generally the AAM fitting has performed successfully when error rate between in-
put image and base appearance of the AAM is low. However, when error rate  
becomes high when illumination and 3D pose are changing, and its fitting result is 
unsatisfactory. In this paper, we propose a new AAM which contains Eigen-mode 
based upon multi-linear analysis. The multi-linear analysis is extension of Singular 
Value Decomposition(SVD) or PCA, and offers a unifying mathematical framework 
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suitable for addressing a variety of computer vision problems. The multi-linear analy-
sis builds subspaces of orders of the tensor and a core tensor. The advantage of multi-
linear analysis is that the core tensor can transform subspace into Eigen-mode, which 
represent the principal axes of variation across the various mode (people, pose, illu-
mination, and etc)[9]. In contrast, PCA basis vectors represent only the principal axes 
of variation across images. In other words, Eigen-mode covers the variation of each 
mode but PCA vectors cover all variations. We can build the AAM which includes 
not only the principal axes of variation across images but also variation across the 
various modes. To include the variation across the various modes, the AAM can  
contain the variations for several modes. 

This paper is organized as follow. Section 2 and 3 explain AAM and multi-linear 
analysis. Then, in section 4, we describe the method how to apply multi-linear analy-
sis to AAM. Finally, we are going to show our experimental results and summarize 
our work in sections 5. 

2   Independent Active Appearance Models 

Independent AAM models the shape and appearance separately [2]. The Shape of 
AAMs is defined by a mesh located at a particular the vertex location. Because AAM 
allows a linear shape variation, we can define the shape as follow: ܛ ൌ ଴ܛ ൅ ෍ ௜௡ܛ௜݌

௜ୀଵ . (1) 

In equation (1), the coefficients ݌௜  indicate the shape parameters. ܛ଴  indicates a 
base shape, and ܛ௜  represent shape vectors. The shape vectors can be obtained  
by applying PCA to train-set after using Procrustes analysis in order to normalize 
the landmarks. The appearance of AAMs is defined within the base shape ܛ଴ .  
This mean that pixels in image lie inside the base shape ܛ଴ . AAMs allow a  
linear appearance variation. Therefore we can define the appearance as  
follow:  ࡭ሺܠሻ ൌ ሻܠ଴ሺ࡭ ൅ ෍ ሻ௠ܠ௜ሺ࡭௜ߣ

௜ୀଵ . (2) 

Where  indicate the appearance parameters, ࡭௜  represent the appearance vectors, 
and ࡭଴ is a base appearance. After finding both the shape parameters and the appear-
ance parameters, the AAMs instance can be generated by locating each pixel of ap-
pearance to the inner side of the current shape with piecewise affine warp. A model 
instance can be expressed as equation (3): ܯ൫܅ሺܠ; ሻ൯ܘ ൌ Aሺܠሻ (3) 

The parameters of both shape and appearance are obtained by a fitting algorithm. 

iλ



 Robust Active Appearance Model Based Upon Multi-linear Analysis 669 

 

Fig. 1. Unfolding a 3rd – order tensor of dimension 3ⅹ4ⅹ5 

3   Multi-linear Analysis 

3.1   Tensor Algebra 

Multi-linear analysis is based on higher-order tensor. The tensor, well-known as n-
way array or multidimensional matrix or n-mode matrix, is a higher order generaliza-
tion of a vector and matrix. A higher order tensor N is could be given by ࣛ ࣛ Թ୍భൈ୍మൈ…ൈ୍ొ. Therefore the order of vector, matrix, and tensorא א Թ୍భൈ୍మൈ…ൈ୍ొ  is 1st, 
2nd, and Nth , respectively. In order to manipulate the tensor easily, we should unfold 
the tensor to matrix Aሺ௡ሻ א Թ୍೙ൈሺ୍భ,୍మ,…୍೙షభ୍೙శభ,…୍ొሻ by stacking its mode-n vectors to 
column of the matrix. Figure.1 shows the unfolding process. 

The mode-n product of a higher order tensor ࣛ א Թ୍భൈ୍మൈ…ൈ୍ొ  by a matrix M א Թ୍౤ൈ୎౤  is a tensor ࣜ א Թ୍భൈ୍మൈ…ൈ୍౤షభൈ୎౤ൈ୍౤శభൈ…ൈ୍ొ , which can be denoted by ࣜ ൌ ࣛ ൈ M௡ , and its entries are computed by  ሺࣛ ൈ M௡ ሻ௜భൈ…ൈ௜౤షభൈ௝೙ൈ௜౤శభൈ…ൈ௜ಿ ൌ ∑ ܽ௜భൈ…ൈ௜೙షభൈ௝೙ൈ௜౤శభൈ…ൈ௜ಿ ௝݉೙௜೙௜೙ . (4) 

This mode-n product of tensor and matrix can be represented in terms of unfolded 
matrices,  Bሺ௡ሻ ൌ MAሺ௡ሻ. (5) 

3.2   Tensor Decomposing 

In order to decompose the tensor, we employee Higher Order Singular Value Decom-
position (HOSVD). HOSVD is an extension of SVD that expresses the tensor as the 
mode-n product of N-orthogonal spaces 



670 G.-S. Jo, H.-J. Moon, and Y.-G. Kim 

ࣞ ൌ ࣴ ൈଵ Uଵ ൈଶ … ൈ௡ U௡ … ൈே Uே. (6) 

In equation (6), U௡ are mode matrix that contains the orthonormal vectors spanning 
the column space of the matrix Dሺ݊ሻ  which is result of unfolding tensor ࣞ . Tensor ࣴ , 
called the core tensor, is analogous to the diagonal singular value matrix of conven-
tional matrix SVD, but it is does not have a diagonal structure. The core tensor is in 
general a full tensor. The core tensor governs the interaction between the mode matrix U௡, where ݊ is 1, 2, …, N. Procedure of tensor decomposition using HOSVD can be 
expressed as follows 

• Compute the SVD of unfolded matrix Dሺ݊ሻ and set up matrix U௡ with left 
singular matrix of SVD. 

• Solve for the core tensor as follows ࣴ ൌ ࣞ ൈଵ Uଵ୘ ൈଶ … ൈ௡ U௡் … ൈே Tே் . (7) 

4   Applying Multi-linear Analysis to AAMs 

In section 2 and 3, we described AAMs and multi-linear analysis. Now, we explain 
how to apply multi-linear analysis to AAMs. Since, in independent AAMs, the ap-
pearance vectors of AAMs influence the fitting result poorly and the shape of AAMs 
is not influenced by changing illumination, we consider identify and pose for AAMs. 

 To build AAMs using multi-linear analysis, we construct a third-order tensor ࣞ א Թ୍ൈ୎ൈ୏ to represent identity, poses, and features. Using HOSVD, we can decom-
pose the tensor ࣞ into three factors as follows ࣞ ൌ ࣴ ൈଵ U௜ௗ ൈଶ U௣ ൈଷ U௙, (8) 

where ࣴ is the core tensor that governs the interaction among the three mode matric-
es(U௜ௗ , U௣, and U௙). Using core tensor and mode matrix U௙, we can build eigen-mode ܛ as ܛ ൌ ࣴ ൈଷ U௙. (9) 

Since the AAM add Eigen-mode, we rewrite equation (1) as follow: 

ܛ ൌ ଴ܛ ൅ ෍ ௜௡ܛ௜݌
௜ୀଵ ൅ ෍ ௝௠ܛ௝ݎ

௝ୀଵ , (10) 

where ݎ௝ are parameters of Eigen-mode.  
The advantage of the AAMs based upon Eigen-mode is that the shape is stable un-

der higher error rate between base appearance and input image, which can be hap-
pened by changing illumination and pose because each Eigen-mode considers only 
each mode, not all train-set. Figure 2 compares the fitting results between the present 
AAM and the traditional AAM. 
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Fig. 2. The fitting results of the present AAM(bottom) and traditional AAM(top). 

 
In Figure 2, the shape of traditional AAM(top) is not able to cover the darker re-

gion with the face. On the other hand, the shape of the present AAM(bottom) is cov-
ering the darker region very well with the face. 

5   Experiments and Evaluation 

We employ YALE face data base B[8], which is consisted of 10 subjects, 9 poses, and 
64 Illuminations, for AAM training and experiment. In YALE face data base, when 
the subject and the pose are the same, the location of face is also same although there 
is changing illumination. This property allows that we use landmarks, marked for 
train-set, with ground truth, because the coordinates of landmarks is not changed in a 
category which is the same for the subject and the pose. 

In order to build both of AAMs, we have constructed train-set which consists of 
images in 9 subjects, 9 poses, and 1 illumination and meshes made by marking 64 
landmarks on each image. Ground truth was established by meshes for train-set and 
images have deferent subject and pose. Experiments were divided into two evalua-
tions: one was a test about how speedily each AAMs ran fitting algorithm, and anoth-
er was an evaluation about how correctly each model fitted for image. 

5.1   Efficiency Comparison 

The fitting speed of AAMs is important for applying AAM to real-time system. We 
have compared the fitting speed of both of AAMs, which is performed based on Quad 
core computer with CPU 2.4GHz and RAM 2GB. The fitting algorithm was run for 5 
iterations. We measured the spent time for running fitting algorithm per iteration  
and all iteration. The traditional AAM used 11 parameters (4 global transform parame-
ters and 7 local transform parameters), and our AAM used 18 parameters (4 global 
transform parameters, 7 local transform parameters, and 7 mode transform parameters).  
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Table 1. the speed of fitting algorithm for both AAMs 

 1 2 3 4 5 Avg. 

Traditional 

AAM 
7ms 6ms 6ms 6ms 7ms 6.4ms 

Present AAM 7ms 7ms 7ms 7ms 7ms 7ms 

 
Table 1 illustrates that the elapsed times are similar, although our AAM used more 

parameters than traditional AAM. 

5.2   Robustness Experiments 

We have evaluated about how our AAM correctly fits for images under higher error 
rate between base appearance and input image. Our evaluation procedure can be ex-
pressed as follows:  

• Dividing images into 4 categories. Each category consists of images which have 
the average pixel errors 40~49, 50~59, 60~69, and 70~79, respectively. 

• Fitting for images, and then we measure coordinate errors between the ground truth 
and the fitted shape, per iteration. 

  

  

Fig. 3. Fitting error of both of AAMs. Each graph represents shape error per iteration under 
pixels error 40~49(top left), 50~59(top right), 60~69(bottom left), and 70~79(bottom right). 
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We employed L1 norm for measuring coordinate errors. In Figure 3, each graph 
represents the fitting error per iteration for categories. When average pixels error is 
increasing, the fitting error of traditional AAMs is also increasing, but our AAM is 
not increasing the fitting error. 

6   Conclusion 

In this paper, we proposed a AAM based upon Eigen-mode. In order to establish that 
AAM, we have built the Eigen-mode using multi-linear analysis, that employs 
HOSVD to decompose the tensor. We have shown that the present AAM has ability 
to fit for image speedily, even though parameters are increased. And it can fit for 
image under higher error rate. Since the present AAM is fast in fitting diverse images, 
it could be applied to any real-time systems. We plan to apply out AAM to real-time 
system to recognize face and facial expression tasks. 

Acknowledgement 

This work was supported by the Seoul R&BD Program (10581). 

References 

1. Edwards, G.J., Taylor, C.J., Cootes, T.F.: Interpreting Face Images Using Active Appear-
ance Models. In: Proc. International Conference on Automatic Face and Gesture Recogni-
tion, pp. 300–305 (June 1998) 

2. Matthews, I., Baker, S.: Active Appearance Models revisited. International Journal of 
Computer Vision, 135–164 (2004) 

3. Cootes, T., Edwards, G., Taylor, C.: Active appearance Models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 23(6) (2001) 

4. Gross, R., Matthews, I., Baker, S.: Constructing and fitting active appearance models with 
occlusion. In: Proceedings of the IEEE Workshop on face processing in Video (June 2004) 

5. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Congitive Neuroscienc 3(1), 
71–86 (1991) 

6. De Lathauwer, L., De Moor, B., Vandewalle, J.: A Multilinear Singular Value Decomposi-
tion. SIAM Journal of Matrix Analysis and Applications 21(4) (2000) 

7. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: TensorFac-
es. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, 
vol. 2350, pp. 447–460. Springer, Heidelberg (2002) 

8. Georghiades, A.S., Belhumeur, P.N., Kriegman, K.J.: From Few to Many: Illumination 
Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern 
Analysis and Machine Intelligence 23(6), 643–660 (2001) 
 


	Robust Active Appearance Model Based Upon Multi-linear Analysis against Illumination Variation
	Introduction
	Independent Active Appearance Models
	Multi-linear Analysis
	Tensor Algebra
	Tensor Decomposing

	Applying Multi-linear Analysis to AAMs
	Experiments and Evaluation
	Efficiency Comparison
	Robustness Experiments

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




