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Abstract. The availability of video format sign language corpora limited. This 
leads to a desire for techniques which do not rely on large, fully-labelled 
datasets. This paper covers various methods for learning sign either from small 
data sets or from those without ground truth labels. To avoid non-trivial 
tracking issues; sign detection is investigated using volumetric spatio-temporal 
features. Following this the advantages of recognising the component parts of 
sign rather than the signs themselves is demonstrated and finally the idea of 
using a weakly labelled data set is considered and results shown for work in this 
area. 
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1   Introduction 

One of the limiting factors towards obtaining accurate, automatic Sign Language 
Recognition (SLR) is the lack of adequately-labelled, good-quality training data.   
However, several television networks broadcast inset signers with their programs, 
alongside subtitle text.  This offers a source of data containing many native signers, 
covering a wide variety of topics and regional accents.  In order to make use of this 
data, two problems need to be overcome, the first is the ability to work with low 
resolution data, since the signer typically occupies only a small section, superimposed 
on the broadcast which is often cluttered by the moving video stream in the 
background.  The second is to investigate ways of using weak linguistic labels rather 
than traditional frame by frame ground truth.  Subtitle-sign alignment in these 
broadcasts is rarely a one to one mapping and words do not always occur in the same 
order as the signs due to the differing grammars between spoken and signed 
languages 

Native signers typically sign at a rate which is far faster than that of most specially 
collected datasets. This combined with the low resolution makes tracking especially 
difficult, especially as SD broadcast footage is scan line interleaved which leaves fast 
moving objects (such as the hands) blurred and corrupted by interlacing artefacts. 
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Various alternatives to tracking have been proposed and this paper will present two 
approaches based upon spatio-temporal classifiers.  Along with a method for utilising 
the large corpus of data available via subtitled broadcasts. 

2   Previous Work 

Many of the previous solutions to SLR use data gloves to acquire an accurate 3D 
position and trajectory of the hands [1] which, while facilitating a large vocabulary 
are cumbersome to the user.  The majority of vision approaches are tracking based 
solutions with relatively small lexicons. Staner and Pentland [2] used colour to 
segment the hands for ease of tracking and reported classification results on a 40 sign 
lexicon.  More recently, scalability has been addressed by turning to sign linguistics to 
aid classification.  Vogler and Metaxas  [3] initial work operated on a lexicon of 53 
signs but later reported a scalable solution using parallel HMMs on both hand shape 
and motion to recognise a 22 sign lexicon. Kadir et al  [4] took this further by 
combining head, hand and torso position as well as hand shape to create a system that 
could be trained on five or fewer examples on a large lexicon of 164 signs. It is this 
work that we will make a direct comparison with as the dataset is available and allows 
our detection approach to be compared with the results of tracking.  

Detection/non-tracking based approaches have recently begun to emerge, Zahedi et 
al [5] apply skin segmentation combined with 5 types of differencing to each frame in 
a sequence which are then down sampled to get features.  Wong and Cippola  [6] use 
PCA on motion gradient images of a sequence to obtain their features. Blank et al 
used space-time correlation to identify activity [7] while Ke et al [8] employed 
boosted volumetric features in space-time to detect behaviour. All of these approaches 
are designed for gesture or behaviour recognition and typically only address a small 
number of gestures (< 10).  It is not obvious how these approaches could be extended 
to larger lexicons in a scalable way. 

In the genre of sign subtitle alignment there has been little work to date.  Farhadi 
and Forsyth perform word spotting on 31 different words over an 80000 frame 
children's film [9].  In their case the word order is similar in both the signs and the 
subtitles and there is usually one sign for each occurrence of the word in the subtitle.  
This is not always the case in sign languages, especially when the content of the video 
moves away from children’s stories and towards more complex concepts such as 
news. 

As the computer vision community looks towards the vast, freely-available data 
collections available on the internet; such as flickr photos and search engines offering 
image searches, methods are being developed to cope with the increase in size and the 
lack of ground truth data.  One of the methods which has been used with good results 
is data mining.  It has been implemented for object recognition by grouping together 
re-occurring spatial features [10], clustering similar images in large data sets [11] and 
action recognition by combining in videos  [12]. These uses demonstrate its efficiency 
at finding discriminate features in noisy data and the concept can be extended to 
finding re-occurring signs in video, ignoring the irrelevant noise around them. 
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Fig. 1. Examples of signing motion over time 

3   Volumetric Classifiers for Sign Detection 

Consider a video; time can be viewed as simply the third dimension, stack the frames 
one behind the other in temporal order and a volume is created.  Now instead of 
looking at sign recognition as being the transitions of positions between one frame 
and the next it can be viewed as object detection in a 3D block of video.   

Take the example of a wave; if the footage is processed with a skin segmentation 
algorithm then the temporal volume will show how the hands move through time, this 
is shown in the left hand image of Fig. 1, on the right is the result if a video is 
processed with a frame differencing algorithm.  There is a definite shape to the 
motion that can be detected. 

This first approach uses the volumetric description of space-time and an extension 
of the types of classifiers used in 2D detection problems, specifically the natural 
extension of Haar like features into the temporal domain.  These features are 
computed efficiently using an integral volume and are assembled into spatio-temporal 
classifiers using boosting.  Since the boosting creates a single classifier per word with 
only minimal pre-processing being done on the video (frame differencing or skin 
segmentation) the compound errors found when classifying tracking results are 
avoided. 

3.1   Integral Volume and Volumetric Features 

One of the more well known and robust 2D object detectors is the one used for face 
detection by Viola and Jones [13]. It uses weak classifiers based on simple block 
differences with a threshold, these weak classifiers are combined together using 
boosting.  One of the ideas that Viola and Jones introduced to the computer vision 
community is that of the integral image which allows block summations to be 
computed in constant time regardless of their size which enables their detector to 
work in real time.  This concept can be directly extended into the temporal domain to 
create volumetric representations of video.  In this any point in this integral volume IV 
will contain the sum of all points to its upper left plus those before it. This is shown in 
Fig. 2 and equation (1).  Where V is the volume or video to be converted and (x,y,z) 
and (x',y',z') are points referenced to the top front left corner (0,0,0).  Using this 
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volume any block summation can be calculated using only four subtractions and three 
additions. 

,ᇱݔሺܸܫ  ,ᇱݕ ᇱሻݖ ൌ ෍ ෍ ෍ ܸሺݔ, ,ݕ ሻ௭ᇲݖ
௭ୀ଴

௬ᇲ
௬ୀ଴

௫ᇲ
௫ୀ଴  (1) 

 

Fig. 2. The integral volume and the features associated with it 

Also shown in Fig. 2 are the features used as classifiers, they are calculated as the 
difference between the translucent block and the solid block, the classifier then 
responds in a binary manner by applying a threshold to this value.  Since sign 
language revolves around the signer it makes sense that the classifiers used should 
also be based around the signer.  As such the features shown are scaled and positioned 
relative to the signer.  The weak classifiers are then combined by boosting into a 
strong sign level classifier.   

3.2   Boosting 

Boosting works by picking the best classifiers from a large set of relatively weak 
classifiers, working on the basis of strength in numbers it iteratively selects the best 
classifiers each time until either it exhausts the supply of adequate weak classifiers or 
it manages to separate the training data.  This basic principle boosts the strength of 
any one weak classifier by combining it with others.  There are various flavours of 
boosting, the most common being AdaBoost which applies weights to the examples 
and at each iteration adapts these weights to encourage the boosting to pick weak 
classifiers which separate the more difficult to classify examples.  The weights are 
updated at each iteration based on how well the classifier works on them.  The 
equation for this is shown in (2).  Where wn;x is the weight at iteration n of example x, 
en is the error of the weak classifier selected in iteration n and xc is 0 if the example is 
correctly classified by that weak classifier and 1 otherwise 

௡ାଵ,௫ݓ  ൌ ௡,௫ݓ ൬ ݁௡1 െ ݁௡൰ଵି௫೎
 (2) 

Implementation considerations are discussed in [14] since the shift from a 2D 
representation to a 3D representation brings with it some memory and processing issues. 
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Fig. 3. The first 20 weak classifiers chosen by boosting for the two signs hello and friend 

3.3   Results and Conclusions 

Some examples of the classifiers built are shown in Fig. 3 As can be seen the features 
selected are the ones located around where the motion is taking place.  The classifiers 
built from these features can achieve recognition rates of around 90% with false 
recognition rates below 5%.  Further results and more details are available in [14] 

While this process proves the concept that it is possible to do sign language 
recognition without tracking, the results shown are over a small data set.  This 
solution lacks the ability to work with large lexicons since as each new word is 
encountered, a new classifier must be learnt.   

4   Large Lexicon Sign Detection 

Linguists use phonemes to describe a sign, each one covering a sub-unit of the sign 
itself e.g. motion, hand shape, location etc.  Phoneme-level detection offers the 
advantage of increasing the sign lexicon significantly without having to similarly 
increase the number of classifiers required and therefore the time taken to process 
data.  The benefits of sub word units in the form of phonemes  has been proven in the 
speech recognition community and can similarly be adopted with great effect in the 
SLR field.   

4.1   Stage I: Phoneme Level Features 

It has been demonstrated that tracking and some hard coded heuristics can provide 
suitable features for phonemes [4]; however as discussed in section 0 tracking hand 
positions for sign is non-trivial and as such this work uses an approach which is based 
on learnt phoneme detectors. 

Three types of phonemes are addressed: Tab; the location where the sign is 
happening in relation to the signers body, Sig; the motion the hands make and Ha; the 
hand arrangement.  All of these are learnt using boosting as described in section 0 but 
the features required for each one are different.  In the first instance the signer is skin 
segmented to provide the head and hands.  To describe Tab a grid is place over the  
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(a) (b) 

Fig. 4. The grid (a) and moment features (b) used to build phoneme detectors 

signer which is relative in size and scale to the signers face, see Fig. 4(a), this 
produces a group of features, cells of the grid, which fire 1 when they contain more 
than 50% skin pixels and 0 otherwise.  In the case of Ha phonemes, 4 different types 
of moments are taken for each frame: spatial, central, normalised central and Hu, this 
offers a good range of variance and invariance to various properties such as rotation 
and translation.  These values are threshold and boosted as with the volumetric 
features described previously.  Sig phonemes require temporal information to say 
what motion is occurring and to this end the features used are those that look for 
temporal changes in the moment features used by Ha.  These features are stored as 
binary patterns, a 1 for an increase in a moment’s value and a 0 for a decrease or no 
change.  This means that when looking for a motion such as ‘hands move apart’ the 
boosting would be able to pick binary patterns which show increases in moments 
linked to eccentricity and vice versa for ‘hands move together’. 

4.2   Stage II: Word Level Combination 

The boosted phoneme classifiers are combined to create a binary feature vector which 
is fed into a second stage.  In order to represent the temporal transitions which are 
indicative of a sign, a 1st order assumption is made and a Markov chain is constructed 
for each word in the lexicon. An ergodic model is used with a Look Up Table (LUT) 
to maintain as little of the chain as is required. The result is a sparse state transition 
matrix for each word giving a classification bank of Markov chains. 

During classification, the model bank is applied to incoming data in a similar 
fashion to HMMs.  The objective is to calculate the chain which best describes the 
incoming data i.e. has the highest probability that it produced the observation 
sequence.  

4.3   Results and Conclusions 

Whilst any one set of phonemes is unable to distinguish accurately between signs 
(see[15] for more in depth results) when combined together using the second stage 
classifier recognition rates reach 72.6% over a lexicon of 164 signs. This work was 
done in direct comparison with the previous work based on tracking [4] and over the 
same lexicon the perfectly tracked data could recognise 79.2%.  This means that basic 
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subtitle positions, the next (green) shows the ground truth positions of the sign and the 
main graph shows the response of the mining.  A more detailed version of these results 
as well as the method can be found in [18]. 

Having shown that it is possible to mine correlations and find signs using near 
perfect tracked data the next step is to return to a phoneme based representation with 
appearance based features to avoid the complexities of tracking and to cover more of 
the phonemes such as hand shape and orientation. 

6   Discussions 

It has been shown that when the need arises to work with low quality data, tracking is 
not necessary for sign recognition. This paradigm has then been extended to a 
phoneme level detection system which can be used with HMMs in much the same 
way as the comparable phonemic speech recognition systems. This advance increases 
the lexicon which can be detected and results in a need for data sets which contain 
more signs, since these are time consuming and non-trivial to create the use of freely 
available data has been investigated. By using the weak correspondences between 
subtitles and signs a new source of data is made available to the sign language 
recognition community. This new corpus is more realistic and therefore more 
complex than any previous data set; as such it opens up opportunities to focus on the 
intricacies of sign language and develop techniques which can be used by native 
signers. 
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