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Abstract. When we encounter an English word that we do not understand, we 
can look it up in a dictionary. However, when an American Sign Language 
(ASL) user encounters an unknown sign, looking up the meaning of that sign is 
not a straightforward process. It has been recently proposed that  this problem 
can be addressed using a computer vision system that helps users look up the 
meaning of a sign. In that approach, sign lookup can be treated as a video data-
base retrieval problem. When the user encounters an unknown sign, the user 
provides a video example of that sign as a query, so as to retrieve the most simi-
lar signs in the database. A necessary component of such a sign lookup system 
is a similarity measure for comparing sign videos. Given a query video of a 
specific sign, the similarity measure should assign high similarity values to vid-
eos from the same sign, and low similarity values to videos from other signs. 
This paper evaluates a state-of-the-art video-based similarity measure called 
Dynamic Space-Time Warping (DSTW) for the purposes of sign retrieval.  
The paper also discusses how to specifically adapt DSTW so as to tolerate  
differences in translation and scale. 

Keywords: Gesture recognition, sign language recognition, American Sign 
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1   Introduction 

When we encounter an English word that we do not understand, we can look it up in a 
dictionary. However, when an American Sign Language (ASL) user encounters an 
unknown sign, looking up the meaning of that sign is not a straightforward process. A 
recent approach for facilitating sign lookup is to develop a computer vision system 
that, given a sign as a query, computes the similarity between the query sign and 
every sign in a large database, and outputs the most similar matches to the query [2]. 

In this paper, as in [2], a video database is utilized that contains one or more video 
examples for each sign, for a large number of signs (close to 1000 in our current ex-
periments). When the user encounters an unknown sign, the user provides a video ex-
ample of that sign as a query, so as to retrieve the most similar signs in the database. 
The query video can be either extracted from a pre-existing video sequence, or it can 
be recorded directly by the user, who can perform the sign of interest in front of a 
camera. 
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A necessary component of such a sign lookup system is a similarity measure for 
comparing sign videos. Given a query video of a specific sign, the similarity measure 
should assign high similarity values to videos from the same sign, and low similarity 
values to videos from other signs. Also, the similarity measure should tolerate differ-
ences in translation and scale, and should also tolerate motion and clutter in the back-
ground. In this paper we evaluate a state-of-the-art video-based similarity measure 
called Dynamic Space-Time Warping (DSTW) [1] for the purposes of sign recogni-
tion. We also discuss how to specifically adapt DSTW so as to tolerate differences in 
translation and scale. 

DSTW is an extension of the popular Dynamic Time Warping (DTW) similarity 
measure for time series [7], [11]. A key limitation of DTW when applied to gesture 
recognition is that DTW requires knowledge of the location of the gesturing hands in 
both the database videos and the query video. In contrast, DSTW only requires known 
hand locations for the database videos. Since the database videos are known a priori, 
hand locations in those videos can be specified manually, incurring a one-time pre-
processing cost that does not affect the user experience. Given a query video, instead 
of requiring the hand locations to be specified (as DTW does), DSTW makes the 
much milder assumption that a hand detection module has produced a relatively short 
list of candidate hand locations. The ability to handle multiple candidate hand loca-
tions allows DSTW to be seamlessly integrated with existing imperfect hand  
detectors. As a result, DSTW-based systems can be readily deployed for gesture  
recognition in challenging real-world environments. 

While DSTW is explicitly designed to tolerate imperfect hand detection and clut-
tered backgrounds, DSTW is not inherently invariant to translation and scale. In this 
paper we discuss specific strategies for tolerating significant differences in translation 
and scale. To tolerate translation differences, the location of the face is used to map 
each video's image coordinates to a canonical coordinate system. To tolerate differ-
ences in scale, multiple scaling factors are applied to the query video, so as to identify 
the scaling parameters that optimize the similarity score with each database video. 

We perform experiments using a video database containing 933 sign videos from 
921 distinct sign classes, and a test set of 193 sign videos. The experiments are per-
formed in a user-independent fashion: the signers performing the test signs are differ-
ent from the signer performing the database signs. All signers are native ASL signers. 

The results that we obtain illustrate the promise of the approach, but also the sig-
nificant challenges that remain in order to produce a system ready to be deployed in 
the real world. As an example, for 33% of the query signs, the system ranks the cor-
rect class within the top 1% of all database classes. For a dictionary containing 3000 
signs (such as the Gallaudet Dictionary of American Sign Language), 1% of all signs 
would correspond to 30 signs. In such a dictionary, if the correct sign is ranked in the 
top 1%, the user would have the browse at most 30 signs in order to identify the sign 
of interest. 

2   Related Work 

In most dynamic gesture recognition systems information flows bottom-up: the video 
is input into the analysis module, which estimates the hand pose and shape model pa-
rameters, and these parameters are in turn fed into the recognition module, which 
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classifies the gesture. In a bottom-up framework, tracking and recognition typically 
fail in the absence of perfect hand segmentation. DSTW does not suffer from the bot-
tom-up approach drawbacks, as it does not place unrealistic requirements upon the 
low-level task of hand detection: creating a relatively short list of candidate hand  
locations is sufficient, as long as the correct location is included in that list. Hand  
detection does not have to precisely identify the left and right hand at each frame. 

DSTW is an extension of Dynamic Time Warping (DTW). DTW was originally in-
tended to recognize spoken words of small vocabulary [11]. It was also applied suc-
cessfully to recognize a small vocabulary of gestures [5], [7]. The DTW algorithm 
temporally aligns two sequences, a query sequence and a model sequence, and com-
putes a matching score, which is used for classifying the query sequence. In DTW, it 
is assumed that a feature vector can be reliably extracted from each query frame. 
However, this assumption is often hard to satisfy in vision-based systems, where the 
gesturing hand cannot be located with absolute confidence. In contrast, DSTW can 
take as input a list of several candidate hand regions per frame, a requirement that is 
easier to satisfy in complex real-world scenes. 

With respect to recognition of signs and sign languages, a number of approaches 
have been proposed in the literature (see [13] for a recent review). Many approaches 
are not vision-based, but instead use input from magnetic trackers and sensor gloves, 
e.g., [9], [12], [16], [20], [21], [23]. Such methods achieve good recognition results on 
continuous Chinese Sign Language with vocabularies of about 5,000 signs [9], [21], 
[23]. On the other hand, vision-based methods, e.g., [3], [6], [8], [10], [17], [22] use 
smaller vocabularies (20-300 signs) and often rely on color markers, e.g., [3]. The ap-
proach described in this paper is a step towards developing vision-based methods that 
can handle a more comprehensive vocabulary. 

3   The Dataset 

The dataset used in this paper is the ASL Lexicon Video Dataset [2]. Here we briefly 
summarize the main features of that dataset. The goal in the ASL Lexicon Video 
Dataset is to eventually contain examples of  almost all of the 3,000 signs contained 
in the Gallaudet dictionary [18]. Each sign is performed by a native signer. The video 
sequences for this dataset are captured simultaneously from four different cameras, 
providing a side view, two frontal views, and a view zoomed in on the face of the 
signer. Out of the four camera views recorded, only a single 60fps, 640x480 frontal 
view is used in our experiments. 

Due to the large number of signs, we can only collect a small number of exemplars 
for each sign. The lack of a large number of training examples per sign renders sev-
eral model-based recognition methods inapplicable, e.g., Hidden Markov Models 
[14], [19]. At the same time, exemplar-based methods are readily applicable in cases 
with a small number of examples per class. In an exemplar-based method, processing 
a query involves identifying the most similar matches of the query in a database of 
training examples. 

In our experiments, the database contains 933 examples of signs, corresponding to 
921 unique sign classes. Experiments are performed in a user-independent manner, 
where the people performing signs in the query videos do not appear in the database 
videos.  
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Fig. 1. Examples of sign videos from the ASL lexicon video dataset [2]. For each sign, we 
show, from left to right, the first frame, a middle frame, and the last frame. First row: an exam-
ple of the sign DIRTY. Second row: an example of the sign EMBARRASED. Third row: an 
example of the sign COME-ON. Fourth row: an example of the sign DISAPPEAR. 

The dataset includes manually annotated hand locations for all frames of the data-
set. In our experiments, we use these manual annotations so that the system knows the 
hand location in every frame of every database video. However, these manual annota-
tions (although available) are not used for the queries. Hand detection and feature ex-
traction is performed on the queries as described in Section 4. 

Figure [1] shows sample frames from four videos from this dataset.  

4   Feature Extraction 

DSTW has been designed to accommodate multiple hypotheses for the hand location 
in each frame. Therefore, we can afford to use a relatively simple and efficient hand 
detection scheme. In our implementation we combine two visual cues, i.e., color and 
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motion; both requiring only a few operations per pixel. Skin color detection is compu-
tationally efficient, since it involves only a histogram lookup per pixel. Similarly,  
motion detection, which is based on frame differencing, involves a small number of 
operations per pixel. 

The skin detector computes for every image pixel a skin likelihood term, given the 
skin color model that was built based on the results of face detection. The motion  
detector computes a mask by thresholding the result of frame differencing (frame dif-
ferencing is the operation of computing, for every pixel, the absolute value of the  
difference in intensity between the current frame and the previous frame). If there is 
significant motion between the previous and current frame the motion mask is applied 
to the skin likelihood image to obtain the hand likelihood image. We compute for 
every subwindow of some predetermined size the sum of pixel likelihoods in that 
subwindow. Then we extract the K subwindows with the highest sum, such that none 
of the K subwindows may include the center of another of the K subwindows. If there 
is no significant motion between the previous and current frame, then the previous K 
subwindows are copied over to the current frame. 

A distinguishing feature of our hand detection algorithm compared to most existing 
methods [4] is that we do not use connected component analysis to find the largest 
component (discounting the face), and associate it with the gesturing hand. The con-
nected component algorithm may group the hand with the arm (if the user is wearing 
a shirt with short sleeves), or with the face, or with any other skin-colored objects 
with which the hand may overlap. As a result the hand location, which is typically 
represented by the largest component's centroid, will be incorrectly estimated. In con-
trast, our hand detection algorithm maintains for every frame of the sequence multiple 
subwindows, some of which may occupy different parts of the same connected com-
ponent. The gesturing hand is typically covered by one or more of these subwindows. 

As described above, for every frame j of the query sequence, the hand detector 
identifies K candidate hand regions. For every candidate k in frame j a 2D feature 
vector Qjk = (xjk, yjk) is extracted. The 2D position (x,y) is the region centroid.  

5   Dynamic Space Time Warping 

In this section we briefly summarize the Dynamic Space Time Warping (DSTW) 
method described in [1]. 

For the database video sequence, since we are given the position of the dominant hand 
in each frame, each sign video is naturally represented as a 2D time series ((x1, y1), …, 
(xn, yn)), where n is the number of frames in the video, and each (xi, yi) represents the 
pixel coordinates of the centroid of the hand in the i-th frame. We use notation M = (M1, 
…, Mm) for the model sequence, where each Mi is a feature vector (xi, yi).  

Let Q = (Q1, …, Qn) be a query sequence. In DSTW, Qj is a set of feature vectors: 
Qj =  {Qj1, …, QjK}, where each Qjk, for k = {1, …, K}, is a candidate feature vector. 
K is the number of feature vectors extracted from each query frame. In our algorithm 
we assume K is fixed, but in principle K may vary from frame to frame. 

A warping path W in DSTW defines an alignment between M and Q. Each element 
of W is a triple: W=((w1,1, w1,2, w1,3), …, (w|W|,1, w|W|,2, w|W|,3)). Triple (wi,1, wi,2, wi,3) 
specifies a correspondence between frame wi,1 of Q and frame wi,2 of X,  but also 
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specifies that, out of the multiple candidate hand locations in the wi,1-th frame of Q, 
the candidate hand location indexed by wi,3 is the one that optimizes the similarity 
score between query and model sequence. 

The cost C(W) of warping path W that we use is the sum of the Euclidean dis-
tances between the |W| pairs of corresponding feature vectors defined by W. In 
matching Q with M, the number of possible warping paths for DSTW is exponential 
to |Q| and to |M|. Despite the exponential number of possible warping paths for 
DSTW, it is shown in [1] that the optimal warping path can still be found efficiently, 
in polynomial time, using dynamic programming. The DSTW distance between Q and 
M is defined as the cost of the optimal (min-cost) warping path between Q and M. 

6   Multiscale Search 

Since the only information we use in measuring sign similarity is hand position, and 
hand position is not translation invariant or scale invariant, we need to take additional 
steps to ensure that the matching algorithm tolerates differences in translation and 
scale between two examples of the same sign. 

We address differences in translation by normalizing all hand position coordinates 
based on the location of the face in each frame. Face detection is a relatively easy task 
in our setting, since we can assume that the signer's face is oriented upright and to-
wards the camera. In our experiments, the face location in database sequences is 
manually annotated, whereas for query sequences we use the publicly available face 
detector developed by Rowley, et al. at CMU [15]. 

Differences in scale can also cause problems, as a small difference in scale can lead 
to large differences in hand positions, and consequently to large DSTW distances. 
Our approach for tolerating differences in scale is to artificially enlarge the database, 
by creating for each database sign multiple copies, each copy corresponding to differ-
ent scaling parameters.  

In particular, for each time series corresponding to a database sign video,  we gen-
erate 441 scaled copies. Each scaled copy is produced by choosing two scaling pa-
rameters Sx and Sy, that determine respectively how to scale along the x axis and the 
y axis. Each Sx and Sy can take 21 different values, spaced uniformly between 0.9 
and 1.1, thus leading to a total of 212 = 441 possible values for each (Sx, Sy) pair. 

7   Experiments 

The query and database videos for these experiments have been obtained from the 
ASL Lexicon Video Dataset [2]. The test set consists of 193 sign videos, with all 
signs performed by two native ASL signers. The video database contains 933 sign 
videos, corresponding to 921 unique sign classes (we had two videos for a few of the 
sign classes). The database signs were performed also by a native ASL signer, who 
was different from the signers performing in the test videos. From the original data-
base of 933 time series we created an extended database of 411,453 time series, by 
creating multiple scaled copies of each original time series, as described in Section 6.  
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In the database, 612 of the 921 signs are two-handed, meaning that they are per-
formed with both hands, and 309 signs are one-handed. Among the queries, 109 are 
two-handed and 84 are one-handed. We only use the right (dominant) hand locations 
for the purposes of matching signs. All signers in the dataset we used are right-
handed. We assume that the system knows if a query sign is one-handed or two-
handed, since such information can easily be input by the user. Database signs that do 
not match the number of hands used in the query sign are not considered during 
search. 

Performance is evaluated using P-percentile accuracy, which is defined as the frac-
tion of test queries for which the correct class is among the top P-percentile of classes, 
as ranked by the retrieval system. Parameter P can vary depending on the experiment. 
In order to compute P-percentile accuracy, we look at the similarity scores produced 
by comparing the query to every video in the database, and we choose for each class 
its highest-ranking exemplar. We then rank classes according to the score of the high-
est-ranking exemplar for each class. For example, suppose that the top three database 
matches come from class A, the fourth and fifth match come from class B, the sixth 
match comes from class C, and the seventh match comes from class A again. Then, A 
is the highest-ranking class, B is the second highest-ranking class, and C is the third 
highest-ranking class.  

Table 1 shows the results obtained on our dataset using DSTW. For DSTW, pa-
rameter K was set to 7, i.e., 7 candidate hand locations were identified for each frame 
in the query videos. For comparison purposes, we have also included results obtained 
using the classical DTW algorithm. We should note that, to use DTW, we simply use 
as hand location the top-ranked candidate hand location at each query frame. That  
 

Table 1. P-percentile accuracy statistics for DSTW and DTW. The first column specifies val-
ues of P. For each such value of P, for each method, we show the percentage of test signs for 
which the correct sign class was ranked in the highest P-percentile among all 921 classes. For 
example, using DSTW, for 32.6% of the queries the correct class was ranked in the top 1% of 
all classes, i.e., in the top 9 out of all 921 classes. 

Percentage of queries Percentile of rank 
of correct class DSTW DTW 

0.5 21.2 18.1 
1.0 32.6 26.4 
2.0 37.3 31.1 
3.0 45.6 34.7 
4.0 51.3 40.9 
5.0 54.4 47.15 

10.0 65.3 60.1 
20.0 76.2 73.6 
30.0 88.1 87.6 
40.0 93.3 92.2 
50.0 99.0 96.7 
60.0 100.0 100.0 
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location is oftentimes wrong, and that causes DTW to yield less accurate results than 
DSTW. At the same time, the background in our query videos is relatively simple, 
with no clutter or skin-colored objects, and that allows our simple hand detection 
module to work relatively well: in the majority of the video frames, the highest ranked 
candidate hand location is the correct hand location. We expect the difference in accu-
racy between DSTW and DTW to be more pronounced in videos with more compli-
cated background, especially in scenes including clutter and other moving humans in 
addition to the person performing the sign. 

8   Discussion 

Our experimental results, while demonstrating that DSTW is more accurate than 
DTW, also show that it remains a challenge to obtain retrieval accuracy that would be 
sufficiently high for real-world deployment. We note that for about 30% of the query 
signs the correct class was not included even in the top 100 matches.  

At the same time, using the DSTW approach,  for about 33% of the queries we get 
the correct sign ranked in the top 9, out of 921 sign classes. We believe that visually 
inspecting 9 signs can be an acceptable load for users of the system, especially given 
the current lack of alternative efficient methods for looking up the meaning of a sign. 
Furthermore, we need to take into account that these results were obtained using only 
hand location features. Incorporating hand appearance as well as additional body part 
detection modules (such as a forearm detector) can bring significant improvements to 
retrieval accuracy, and these topics are the focus of our current work.We hope that in-
cluding more informative features will help increase the percentage of queries for 
which the system attains a satisfactory level of retrieval accuracy. 

Another interesting topic for future exploration is improving retrieval time, by 
eliminating the need for brute-force search of all database videos in order to find the 
best match for the query. Brute-force search was used in the current experiments, 
leading to a retrieval time of about 4 minutes per query. We are currently investigat-
ing methods for drastically reducing retrieval time, so as to make it acceptable for in-
teractive applications. 
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