Sequential Encodings
from Max-CSP into Partial Max-SAT*

Josep Argelich!, Alba Cabiscol?, Inés Lynce®, and Felip Manya*

! INESC-ID, Lisbon, Portugal
2 Computer Science Department, Universitat de Lleida, Spain
3 IST/INESC-ID, and Technical University of Lisbon, Portugal
4 Artificial Intelligence Research Institute (ITIA, CSIC), Spain

Abstract. We define new encodings from Max-CSP into Partial Max-
SAT which are obtained by modelling the at-most-one condition with the
sequential SAT encoding of the cardinality constraint < 1(z1,...,Zn).
They have fewer clauses than the existing encodings, and the experimen-
tal results indicate that they have a better performance profile.

1 Introduction

We describe, following our previous results in [2-4], novel encodings from Max-
CSP into Partial Max-SAT. In [2, 3], we defined a new encoding from CSP into
SAT, called minimal support encoding, and defined the extensions from Max-CSP
into Partial Max-SAT of the direct and support encodings from CSP into SAT, as
well as the extension of the minimal support encoding. The experimental results
for Partial Max-SAT provide evidence that, in general, the minimal support
encoding outperforms the other encodings on both pure random [2, 3] and more
structured, realistic instances [4]. In the sequel, when we say direct, support and
minimal support encodings we refer to the corresponding encodings from Max-
CSP into Partial Max-SAT. We also refer to them as the standard encodings.
Recently [4], we have defined new variants of the standard encodings, called
regular direct, reqular support and reqular minimal support encodings. They are
obtained by modelling the at-least-one (ALO) and at-most-one (AMO) condi-
tions of the corresponding standard encodings using a regular signed encod-
ing [1]. This way, we get encodings with a more compact set of hard clauses,
but we need to introduce auxiliary variables. Fortunately, it is sufficient to limit
branching to non-auxiliary variables [4]. From a practical point of view, the
regular encodings usually outperform the corresponding standard encodings.
In this paper we define new encodings —sequential direct, sequential support
and sequential minimal support —, which are obtained by modelling the ALO

* Research funded by European project Mancoosi (FP7-ICT-214898), FCT projects
Bsolo (PTDC/EIA/76572/2006) and SHIPs (PTDC/EIA/64164/2006), and the
Ministerio de Ciencia e Innovacion projects CONSOLIDER CSD2007-0022, INGE-
NIO 2010, TIN2006-15662-C02-02, and TIN2007-68005-C04-04.

2 Josep Argelich, Alba Cabiscol, Inés Lynce, Felip Manya

condition as in the standard encoding, and the AMO condition with the sequen-
tial SAT encoding of the cardinality constraint < 1(z1,...,zy) [6]. They have
fewer clauses than the existing encodings, and the experimental results indicate
that they have a better performance profile. In our experiments we solve both
pure random and more structured, realistic instances. We refer to [2—4] for basic
definitions of Max-SAT and Max-CSP.

2 Encodings from Max-CSP into Partial Max-SAT

2.1 Standard Encodings

We associate a Boolean variable x; with each value i of the CSP variable X.
If X has a domain d(X) of size m, the ALO clause of X is 1 V -+ V &y,
and ensures that X is given a value. The AMO clauses are the set of clauses
{Z: VT;li,j € d(X),i < j}, and ensure that X takes no more than one value.

Definition 1. The direct encoding (dir) of a Max-CSP instance (X,D,C) is
the Partial Maz-SAT instance that contains as hard clauses the above ALO and
AMO clauses for every CSP variable in X, and a soft clause T; V'Y, for every
nogood (X =1,Y = j) of every constraint of C with scope {X,Y}.

In the support encoding from CSP into SAT, besides the ALO and AMO
clauses, there are clauses that encode the support for a value instead of encoding
conflicts. The support for a value j of a CSP variable X across a binary constraint
with scope {X,Y} is the set of values of Y which allow X = j. If vy, va,..., vk
are the supporting values of variable Y for X = j, we add the clause T; V y,, V
Yoy V o+ V yy, (called support clause). There is one support clause for each pair
of variables X,Y involved in a constraint, and for each value in the domain of
X. In the standard support encoding, a clause in each direction is used: one for
the pair X,Y and one for Y, X [7].

In [2], we defined the minimal support encoding: it is like the support encoding
except for the fact that, for every constraint Cj with scope {X,Y}, we only add
either the support clauses for all the domain values of the CSP variable X or
the support clauses for all the domain values of the CSP variable Y.

Definition 2. The minimal support encoding of a Maz-CSP instance (X, D,C)
is the Partial Max-SAT instance that contains as hard clauses the corresponding
ALO and AMO clauses for every CSP wvariable in X, and as soft clauses the
support clauses of the minimal support encoding from CSP into SAT.

The support encoding is the Partial Max-SAT instance that contains as hard
clauses the corresponding ALO and AMO clauses for every CSP variable in X,
and contains, for every constraint Cj, € C with scope {X,Y}, a soft clause of
the form Sx—; V ci, for every support clause Sx—; encoding the support for the
value j of the CSP variable X, where ci is an auxiliary variable, and contains a
soft clause of the form Sy—p, V ¢ for every support clause Sy —,, encoding the
support for the value m of the CSP variable Y.

Sequential Encodings from Max-CSP into Partial Max-SAT 3

Ezample 1. The direct encoding for the Max-CSP instance (X,D,C) =
{X, Y} {d(X)={1,2,3},d(Y) ={1,2,3}},{X <Y} is as follows:

ALO [.131 \Y i) V .233] [yl \Y Y2 vV yg]
AMO [T1V Ta] [T1 VT3] [T2 VT3] [Y1 VTs] [U1 VT3] [VT3]
conflict clauses (T2 V7;) (T3 V7Yy) (T3 VYsy)

We get the minimal support encoding if we replace the conflict clauses with
(T2 Vy2 Vys), (Ts V ys), and get the support encoding if we replace the conflict
clauses with (Ta Vy2 VysVer), (T Vo1 Ve), (TsVys Ver), Ty VI Vas V).

In the experiments we used the support encoding (supxy), and two variants of
the minimal support encoding (supl and supc): supl is the encoding containing,
for each constraint, the support clauses for the variable that produces a smaller
total number of literals; and supc is the encoding containing, for each constraint,
the support clauses for the variable that produces smaller size clauses; we give
a score of 16 to unit clauses, a score of 4 to binary clauses and a score of 1 to
ternary clauses, and choose the variable with higher sum of scores.

2.2 Regular Encodings

The regular encodings differ in the fact that they encode the ALO and AMO
conditions using a regular signed encoding [1]. To this end, for every CSP variable
X, we associate a Boolean variable z; with each value ¢ that can be assigned
to the CSP variable X in such a way that x; is true if X = i. Moreover, we

associate a Boolean variable x? with each value ¢ of the domain of X such that
22 is true if X > . Then, the regular encoding of the ALO and AMO conditions

(2

for a variable X with d(X) = {1,...,n} is formed by the following clauses [1]:

> > =2
Ty 7 Tp_1 L1 <> T3
> > >\ a2
Lp_1 7 Tp_o L2 Ty NI3
> > > >
5 — 23 T = xF AT, (1)
> >
x2 —) xl ;- ...
Tp_1 <> T 1 A a:,%
Ty x%

The clauses on the left encode the relationship among the different regular literals
of a variable while the clauses on the right link the variables of the form x; with
the variables of the form x?

Definition 3. The regular direct, support, and minimal support encodings are,
respectively, the standard direct, support, and minimal support encodings from
Maz-CSP into Partial Max-SAT but using the regular encoding of the ALO and
AMO conditions.

In [4] we proved that when solving a Max-CSP instance with a regular en-
coding and a Davis-Logemann-Loveland (DLL) style branch and bound solver,
if branching is performed only on non-auxiliary variables, then the solver finds
an optimal solution. We assume this kind of branching in the rest of the paper.

4 Josep Argelich, Alba Cabiscol, Inés Lynce, Felip Manya

3 Sequential Encodings

Our new encodings model the ALO condition as in the standard encoding, and
the AMO condition using the following SAT encoding, based on sequential coun-
ters, of the cardinality constraint < 1(z1,...,zy,)[6]:

(fl \Y 81) A\ (fn \/gn—l) /\ ((f7 \Y 81') A (51'_1 \Y 57) A (f7 \/31'_1)),

where s;, 1 <i < n—1, are auxiliary variables. We refer to such an encoding as
the sequential encoding of the AMO condition.

Definition 4. The sequential direct, support, and minimal support encodings
are, respectively, the standard direct, support, and minimal support encodings
from Maz-CSP into Partial Maz-SAT but using the sequential encoding of the
AMO condition.

Example 2. A sequential minimal support encoding for the Max-CSP problem of
the CSP instance from Example 1 is formed by the following clauses:

hard clauses [x1 Va2 Vas] [y1 V2 Vys]
TV sq] @3 Vs3] [F2Vsy] [STVsy] [F2VE]]
7y V si] T3 V 55 2 Vs3] [5{ Vs3] [, V5]]
support clauses (Ta V y2 V ys3) (T3 V y3)

We get the sequential support encoding if we replace the previous support clauses
with (fg VyaVysV 01), (yl VzV 51), (fg Vysz V 01), @2 VxyVzeV 51). Finally,
we get the sequential direct encoding if we replace the previous support clauses
with (EQ \/gl)a (53 \/gl)a (53 \ yQ)

In the sequential encodings, the number of clauses for modelling the ALO and
AMO conditions for a CSP variable X with domain d(X) is on O(d(X)). Observe
that, for large domains, there are fewer clauses in the sequential encodings than
in the regular and standard encodings.

Proposition 1. When solving a Maz-CSP instance with a sequential encoding
and a DLL style branch and bound solver, if branching is performed only on
non-auxiliary variables, then the solver finds an optimal solution.

4 Experimental Results

We conducted experiments on a cluster with 2 GHz AMD Opteron 248 Proces-
sors, 1 GB of memory. The benchmarks are random binary Max-CSP instances
as the ones solved in [3], as well as the instances of clique trees with different
constraint tightness (Kbtree 10-90) and warehouse location solved in [4], which
are more structured and realistic. We used the solver WMaxSatz [5] because its
code is available, and we had to modify it for implementing a branching scheme

Sequential Encodings from Max-CSP into Partial Max-SAT 5

s—supl s—dir S-supc S_supxy
Kbtree (t) || # nb b nb b nb b nb b
10 50 0.05(50)| 0.10(50)] 0.03(50)| 15.01(50) 0.05(50)| 1.24(50)| 34.27(50)|89.18(44)
30 50 0.78(50)| 46.02(50)| 0.86(50)|345.30(49) 0.70(50)| 57.07(50)|682.66(36)] 0.00(0)
30 50 3.97(50) |559.65(38)| 2.92(50)]1440.02(2) 3.78(50) |562.56(40) 0.00(0)| 0.00(0)
10 50| 20.19(50)|1175.17(3)| 31.258(50) 0.00(0)] 21.92(50)|1063.29(4) 0.00(0)] _0.00(0)
50 50| 55.31(50) 0.00(0)] 96.69(50) 0.00(0)] 48.80(50) 0.00(0) 0.00(0)] 0.00(0)
60 50|233.63(50) 0.00(0)| 549.40(50) 0.00(0)| 345.89(50) 0.00(0) 0.00(0)] 0.00(0)
70 50|586.40(44) 0.00(0)]| 892.17(30) 0.00(0)|1072.85(17) 0.00(0) 0.00(0)] _0.00(0)
80 50 0.00(0) 0.00(0)]1252.77(6) 0.00(0) 0.00(0) 0.00(0) 0.00(0)] 0.00(0)
90 50 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)] _0.00(0)
Solved 450 344 141 336 101 317 144 86 44
s_supl s—dir S_supc S_supxy
‘Warehouse # nb b nb b nb b nb b
warehouse 2 0.09(1) 2.37(1) 0.08(1) 2.35(1) 0.09(1) 2.36(1) 0.26(1)| 1.34(1)
Solved 2 1 1 1 1 1 1 1 1
Table 1. Comparison between branching schemes
URBCSP <15, 5, 90, p> URBCSP <15, 5, 90, p>
[- - - - —] P - - - - —
3 1000 standard * T 1000 [s-Supxy // <
S sequential - - S S-SuUpC —* i
2 / x 2
8 , g - -
3 / 3z - .
€ 100} p i B o
g g 100 ¢ ~ o k|
& e & - g
£ - £
< P < // *
£ 10 e q £ - x
5 L 5
2 i 2 wf i 1
s} e [} "
E T E —
i} i} e
= 1t 1 =
. 1
10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 24
P P

Fig. 1. Results for Random Max-CSP instances

that ignores auxiliary variables. The sequential versions of the encodings dir,
supc, supl and supxy are denoted by s-dir, s-supc, s-supl and s-supxy.

In all the solved benchmarks, we observed that it is better to perform branch-
ing only on non-auxiliary variables. Table 1 compares this branching (nb) with
the normal branching (b) for the instances in [4]. The gains of the new branching
scheme are clear; for example, we solve up to 3 times more instances of clique
trees using the sequential direct encoding s-dir. For the warehouse instances,
the new branching scheme reduces the time needed to solve one instance. In
the rest of experiments we assume that the branching is performed only on
non-auxiliary variables. In all the tables, the cutoff time is of 30 minutes.

The left plot of Figure 1 compares standard, regular, and sequential encod-
ings of Random Max-CSP instances with the minimal support encoding supc.
We display encoding supc because it is the best performing encoding for this
benchmark. The instances were obtained with a generator of uniform random bi-
nary CSPs that implements the so-called model B: in the class (n, d, p1, p2) with
n variables of domain size d, we choose a random subset of exactly pin(n—1)/2
constraints (rounded to the nearest integer), each with exactly pad? conflicts
(rounded to the nearest integer); p; may be thought of as the density of the
problem and ps as the tightness of constraints. The difficulty of the instances
depends on the selected values for n,d,p; and ps. We selected values that al-
lowed to solve the instances in a reasonable amount of time. We observe that

6 Josep Argelich, Alba Cabiscol, Inés Lynce, Felip Manya

supc supl Jir Supxy
Kbtree () #| sequential | regular |sequential| regular |sequential| regular |sequential| regular

10 50 1.24(50)] 0.36(50)| 0.10(50)| 0.07(50)| 15.01(50)| 1.58(50)] 89.18(44)|150.22(47)
20 50| 57.07(50)] 70.91(50)]46.02(50)| 57.12(50)]345.30(49)|375.07(48)| _ 0.00(0) 0.00(0)
30 50[562.56(40) |627.38(36) |559.65(38) |664.75(35) | 1440.02(2) 0.00(0)[_0.00(0) 0.00(0)
10 50]1063.29(4) [1341.48(2)|1175.17(3) | 1714.93(2) 0.00(0) 0.00(0)[__ 0.00(0) 0.00(0)
Solved 450 144 138 141 137 101 98 a4 a7

Supc supl Jir Supxy

Warchouses 7| sequential | regular |sequential| regular |sequential| regular |sequential| regular

warehouse 2 2.36(1) 2.43(1) 2.38(1) 2.46(1) 2.35(1) 2.43(1)] 1.34(1)] 1.44(1)
Solved instances|| 2 1 1 1 1 1 1 1 1

Table 2. Comparison between sequential encodings and regular encodings

the sequential encoding is up to one order of magnitude faster than the standard
and regular encodings. The right plot compares the different sequential encod-
ings (direct, minimal and support) defined in this paper. We observe that the
minimal encoding is the best performing except for large values of p, where the
support encoding dominates. For lower values of p, there is a big gap between
the minimal and support encodings. It is also remarkable the superiority of the
minimal encoding wrt the direct encoding.

Table 2 compares sequential encodings with regular encodings on the in-
stances used in [4]. Standard encodings are not included because they are worse
than regular encodings [4]. We see that, in general, the sequential encodings
outperform the regular encodings on both the time needed to solve an instance
and the number of solved instances. We also see that the minimal encodings are
the best performing encodings.

Finally, we notice that our encodings may be easily extended with weigths
because there is exactly one violated clause for every violated constraint, as well
as that the direct encoding may incorporate non-binary constraints. As future
work, we plan to investigate structural properties of encodings that may be useful
to predict their performance.

References

1. C. Ansétegui and F. Manya. Mapping problems with finite-domain variables into
problems with Boolean variables. In SAT-2004, pages 1-15. Springer 3542, 2004.

2. J. Argelich, A. Cabiscol, I. Lynce, and F. Manya. Encoding Max-CSP into Partial
Max-SAT. In ISMVL-2008. 2008.

3. J. Argelich, A. Cabiscol, I. Lynce, and F. Manya. Modelling Max-CSP as Partial
Max-SAT. In SAT-2008, pages 1-14. Springer LNCS 4996, 2008.

4. J. Argelich, A. Cabiscol, I. Lynce, and F. Manya. Regular encodings from Max-CSP
into Partial Max-SAT. In ISMVL-2009. 2009.

5. J. Argelich, C. M. Li, and F. Manya. An improved exact solver for Partial Max-SAT.
In NCP-2007, pages 230-231, 2007.

6. C. Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In
CP-2005, pages 827-831. Springer LNCS 3709, 2005.

7. T. Walsh. SAT v CSP. In CP-2000, pages 441-456. Springer LNCS 1894, 2000.

