Skip to main content

Width-Based Restart Policies for Clause-Learning Satisfiability Solvers

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2009 (SAT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

Abstract

In this paper, we present a new class of restart policies, called width-based policies, for modern clause-learning SAT solvers. The new policies encourage the solvers to find refutation proofs with small widths by determining restarting points based on the sizes of conflict clauses learned rather than the number of conflicts experienced by the solvers. We show that width-based restart policies can outperform traditional restart policies on some special classes of SAT problems. We then propose different ways of adjusting the width parameter of the policies. Our experiment on industrial problems shows that width-based policies are competitive with the restart policy used by many state-of-the-art solvers. Moreover, we find that the combination of these two types of restart policies yields improvements on many classes of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Principles and Practice of Constraint Programming, pp. 121–135 (1997)

    Google Scholar 

  2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat solver. In: Proc. of DAC 2001, pp. 530–535 (2001)

    Google Scholar 

  3. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. In: DATE 2002, pp. 142–149 (2002)

    Google Scholar 

  5. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. of IJCAI 2007, pp. 2318–2323 (2007)

    Google Scholar 

  6. Biere, A.: Adaptive restart strategies for conflict driven sat solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Ryvchin, V., Strichman, O.: Local restarts. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. JAIR 22, 319–351 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple. J. ACM 48(2), 149–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis, Simon Fraser University (2004)

    Google Scholar 

  11. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based checker: Practical implementations and other applications. In: DATE 2003, pp. 880–885 (2003)

    Google Scholar 

  12. Galil, Z.: On resolution with clauses of bounded size. SIAM Journal on Computing 6(3), 444–459 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Annual IEEE Symposium on Foundations of Computer Science, p. 274 (1996)

    Google Scholar 

  14. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient sat solver. In: Proc. of SAT 2005, pp. 360–375 (2005)

    Google Scholar 

  15. Nadel, A., Gordon, M., Patti, A., Hanna, Z.: Eureka-2006 sat solver Solver description for SAT-Race 2006 (2006)

    Google Scholar 

  16. Biere, A.: Picosat essentials. JSAT, 75–97 (2008)

    Google Scholar 

  17. Huang, J.: A case for simple SAT solvers. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 839–846. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Technical Report D–153, Automated Reasoning Group, Computer Science Department, UCLA (2007)

    Google Scholar 

  19. Sörensson, N., Eén, N.: Minisat 2.1 and minisat++ 1.0–sat race 2008 editions (2008)

    Google Scholar 

  20. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like and general resolution. Combinatorica 24(4), 585–603 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Babić, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 371–383. Springer, Heidelberg (2007)

    Google Scholar 

  22. Babić, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In: Proc. of ICSE 2008, pp. 211–220 (2008)

    Google Scholar 

  23. Hertel, A., Urquhart, A.: Comments on eccc report tr06-133: The resolution width problem is exptime-complete. Technical Report TR09-003, ECCC (2009)

    Google Scholar 

  24. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learning, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990)

    Article  MathSciNet  Google Scholar 

  26. Bayardo, R.J., Miranker, D.P.: A complexity analysis of space-bounded learning algorithms for the constraint satisfaction problem. In: AAAI 1996, pp. 298–304 (1996)

    Google Scholar 

  27. Bayardo, R.J.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world SAT instances. In: Proc. of AAAI 1997, Providence, Rhode Island, pp. 203–208 (1997)

    Google Scholar 

  28. Nadel, A.: Backtrack search algorithms for propositional logic satisfiability: Review and innovations. Master’s thesis, The Hebrew University (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pipatsrisawat, K., Darwiche, A. (2009). Width-Based Restart Policies for Clause-Learning Satisfiability Solvers. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics