
Beyond CNF: A Circuit-Based QBF Solver

Alexandra Goultiaeva, Vicki Iverson, and Fahiem Bacchus

Department of Computer Science
University of Toronto

{alexia,viverson,fbacchus}@cs.toronto.edu

Abstract. State-of-the-art solvers for Quantified Boolean Formulas (QBF) have
employed many techniques from the field of Boolean Satisfiability (SAT) includ-
ing the use of Conjunctive Normal Form (CNF) in representing the QBF formula.
Although CNF has worked well for SAT solvers, recent work has pointed out
some inherent problems with using CNF in QBF solvers.

In this paper, we describe a QBF solver, called CirQit (Cir-Q-it) that utilizes
a circuit representation rather than CNF. The solver can exploit its circuit repre-
sentation to avoid many of the problems of CNF. For example, we show how this
approach generalizes some previously proposed techniques for overcoming the
disadvantages of CNF for QBF solvers. We also show how important techniques
like clause and cube learning can be made to work with a circuit representation.
Finally, we empirically compare the resulting solver against other state-of-the-art
QBF solvers, demonstrating that our approach can often outperform these solvers.

1 Introduction

QBF is a powerful generalization of SAT in which the variables can be universally
or existentially quantified. While any problem in NP can be encoded in SAT, QBF
allows us to encode any problem in PSPACE. This opens a much wider range of poten-
tial application areas for a QBF solver, including problems from areas like automated
planning (particularly conformant and conditional planning), non-monotonic reasoning,
electronic design automation, scheduling, model checking and verification, strategic de-
cision making, and multi-agent scenarios, see for, e.g., [1,2,3].

State-of-the-art QBF solvers have utilized a number of techniques inherited from
SAT solving technology. This has included the use of DPLL search augmented with
clause learning along with additional QBF-specific techniques like solution backtrack-
ing and cube learning. Besides DPLL the original Davis-Putnam SAT solving technique
[4] of ordered resolution has also been utilized [5], as well as methods involving the use
of Skolemization to convert the QBF formula to SAT [6]. One constant in almost all
of this work, however, has been the utilization of conjunctive normal form (CNF) in
representing the QBF formula.

It has long been noted that conversion to CNF can lead to losing structure that could
potentially be exploited computationally. As a result there has been some work on non-
CNF SAT solvers, e.g., [7,8]. This work has shown that non-clausal representations can
be effective for solving SAT. Nevertheless, the allure of CNF is that it can lead to very
high performance implementations since it is a very simple and uniform representation.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 412–426, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Beyond CNF: A Circuit-Based QBF Solver 413

Hence, the extra structure that can be exploited in a non-clausal representation has not
been able to significantly outweigh the practical advantages of CNF in SAT solvers, and
most SAT solvers continue to utilize CNF.

In QBF however the situation is different. In particular, for a similarly sized problem
the search space explored by a QBF solver tends to be much larger than that explored by
a SAT solver. Hence, there is much more potential for savings from exploiting the extra
structure contained in non-clausal representations. In fact, there have been a number of
papers that have identified various inadequacies of the CNF representation for QBF and
proposed alternate representations aimed at addressing these problems, e.g., [9,10].

One of the most general and structure laden non-clausal representations is a circuit
representation. Circuit representations have been used before in SAT solvers, e.g., [7,8],
and in this paper we explore the use of this representation in a QBF solver.

One advantage of circuits is that they are more compatible with real problems—
typically CNFs are generated from more structured representations like circuits. We
also investigate ways of exploiting within our solver some of the extra structural infor-
mation contained in the circuit. One particular example is the exploitation of don’t care
reasoning. We explain why don’t care reasoning has more potential for efficiency gains
when solving a QBF than when solving SAT. We also demonstrate how the essential
techniques of unit propagation, clause learning, and cube learning used in CNF solvers
can be adapted to a circuit representation. Finally, we explain how a circuit represen-
tation generalizes some of the key previously proposed techniques for addressing the
inadequacies of CNF in the context of QBF.

We have implemented a solver we call CirQit (pronounced Cir-Q-it) that is based
on our approach of utilizing a circuit representation. We are able to show empirically
that it is very competitive with current state-of-the-art QBF solvers, and that on some
problem suites it exhibits superior performance.

In the rest of the paper we first provide some essential background on QBF and the
circuit representation of a QBF. We present some of the details of our circuit-based
solver. Our solver utilizes a DPLL search procedure running on a circuit representation
rather than on a CNF representation. We describe how propagation can be performed,
and how clause and cube learning can be implemented. We discuss related work on QBF
solvers based on non-clausal representations. Finally, we present various experimental
results demonstrating the merit of our approach, and close with some conclusions.

2 Background

2.1 QBF

A QBF has the form Q.φ, where φ is an arbitrary propositional formula and Q is a
sequence of quantified variables (∀x or ∃x). We require that the set of variables in φ be
contained in Q so that Q.φ has no free variables, and that φ contain only the connectives
AND (∧), OR (∨), and NOT (¬).

A quantifier block qb of Q is a maximal contiguous subsequence of Q where every
variable in qb has the same quantifier type. The quantifier blocks are ordered by their
appearance in Q: qb1 ≤ qb2 iff qb1 is equal to or appears before qb2 in Q. Each variable

414 A. Goultiaeva, V. Iverson, and F. Bacchus

x in φ appears in some quantifier block qb(x). For two variables x and y we say that y
is downstream of x (x is upstream of y) if qb(y) > qb(x) (qb(x) < qb(y)). We also
say that x is universal (existential) if its quantifier in Q is ∀ (∃).

A QBF instance can be reduced by a literal � (i.e., an assignment to one of its vari-
ables). The reduction of a formula Q.φ by � is denoted by Q.φ|�. The reduction is the
new formula Q.φ′ where φ′ is φ with v replaced by the constant TRUE (if � = v) or
FALSE (if � = ¬v), and optionally simplified according to standard logical rules: e.g.,
for any formula ψ, FALSE ∧ψ is equivalent to FALSE and ∀x.ψ is equivalent to ψ if the
variable x does not appear in ψ. A specific example is ∀xz.∃y.(¬y ∨ (x ∧ z)) ∧ ¬(x ∨
z)|¬x which is equal to ∀xz.∃y.(¬y ∨ (FALSE ∧ z)) ∧ ¬(FALSE ∨ z) which simplifies
to ∀z.∃y.¬y ∧ ¬z.

Semantically, the truth or falsity of a QBF formula (with no free variables) can be de-
fined recursively: (1) ∀xQ.φ is true iff both Q.φ|x and Q.φ|¬x are true, and (2) ∃xQ.φ
is true iff at least one of Q.φ|x or Q.φ|¬x is true. By instantiating the quantified vari-
ables one by one, following the quantifier ordering, and substituting true or false into φ
we arrive at either a QBF where φ simplifies to FALSE (which is a false QBF) or a QBF
where φ simplifies to TRUE (which is a true QBF).

A circuit is a directed acyclic graph with a single sink where the nodes are logical
gates and the edges are signal lines connecting the gates. Each gate is either an AND,
OR, or NOT gate, has a single outgoing output line, and one or more incoming input
lines. The output line of the sink gate is the circuit output, and the lines that are not
outputs of any gate are the circuit inputs. A circuit representation Q.C for the QBF
formula Q.φ is a circuit C where the variables in Q are in 1-1 correspondence with the
circuit inputs. C can be constructed recursively as follows. If φ is a variable x, then C
has only one line labeled by the variable x and no gates. If φ = ¬ψ, then C consists of
the circuit representing ψ with the output of this circuit connected to the input of a NOT
gate. If φ = ψ1 ∧ · · · ∧ψi (ψ1 ∨ · · · ∨ψi), then C consists of the outputs of the circuits
representing ψ1 to ψi connected as inputs of an AND (OR) gate. One key feature of
the circuit representation is that duplicated sub-formulas in φ can be represented by a
single subcircuit—the output line of that subcircuit can be used as an input in all places
the sub-formula appears.

The lines of a circuit can take on the values TRUE or FALSE, and these values
can be propagated to other lines of the circuit using standard rules of Boolean logic.
For example, if an input line of an AND gate has value FALSE then FALSE can be
propagated to the output line of the gate. A circuit Q.C represents a formula Q.φ
when for any setting of the variables in φ, φ will simplify to TRUE (FALSE) if and
only if TRUE (FALSE) is propagated to the output of C given the same setting for its
corresponding input lines. The construction described above yields a circuit C that
represents φ.

Hence, we can evaluate a QBF formula Q.φ by constructing a circuit Q.C represent-
ing it, and then evaluating the previously given definition of truth for a QBF formula by
propagating values in C. That is, we can detect when φ simplifies to TRUE or FALSE by
detecting when TRUE or FALSE is propagated to the output line of C.

Beyond CNF: A Circuit-Based QBF Solver 415

3 A Circuit-Based Solver

Similar to previous circuit based SAT solvers, e.g., [7,8], our solver utilizes DPLL
search to determine the truth or falsity of the QBF Q.φ. Specifically, φ is represented
as a circuit C with the variables in Q being the inputs to C. During DPLL search, these
variables are branched on in an order respecting the quantifier ordering (i.e., if x is up-
stream of y then the search must branch on x before y). Each branch sets a variable
of φ and hence a corresponding input line of C. The input line values are propagated
throughC, and the search verifies that at least one side each existential branch and both
sides of each universal branch lead to a true circuit output (i.e., satisfies φ).

However, to make this process more efficient, e.g., to detect when certain input lines
must take on a particular value for the circuit output to be TRUE, the solver initially
sets the circuit output line to TRUE and propagates values backwards in the circuit as
well as forwards. Backwards propagation, like forward propagation, follows the rules
of Boolean logic, e.g., if an OR gate’s output line is set to FALSE then FALSE can be
propagated to all of its input lines. With backward propagation from a TRUE output
we can detect when φ is falsified (i.e., when a setting of the input lines would lead to
FALSE being propagated to the output line) by the occurrence of a conflict where both
TRUE and FALSE is propagated to some line in the circuit. Such conflicts also allow us
to employ 1UIP clause learning techniques on the circuit representation.

One negative aspect of fixing the circuit output line to TRUE, however, is that we can
no longer use the propagation of TRUE to the circuit output to detect when the formula
φ has become satisfied by the current setting of its variables—the output line always
has that value. We discuss below how this problem is resolved in our solver by utilizing
information gathered during don’t care propagation.

3.1 Propagation

Our implementation of forward and backward propagation in the circuit is based on a
previous circuit based SAT solver described in [7]. In that paper Thiffault et al. showed
that this kind of propagation in the circuit corresponds in a precise way to Unit Propa-
gation (UP) on an equivalent CNF encoding of the formula. In particular, if the circuit
was converted to CNF using the standard Tseitin encoding [11], then corresponding to
each circuit line l there would be a new variable v in the CNF encoding such that a value
would be propagated to the line l in the circuit if and only if UP in the CNF forces v
to take the same value. Besides this basic mechanism, however, our QBF solver differs
from previous circuit based SAT solvers in a number of ways.

Representing internal lines. The CNF encoding of a formula introduces additional vari-
ables that correspond to the sub-formulas of the formula. These additional variables are
very useful in a SAT solver as they can be branched on in a DPLL search (implicitly
positing a truth value for an entire sub-formula), and they can be included in learnt
clauses increasing the effectiveness of clause learning.

A key feature of our circuit based QBF solver is that it also utilizes the learning tech-
niques common in DPLL based QBF solvers that employ CNF [12] i.e., clause and cube
learning. Hence, to facilitate the power of the learnt clauses we introduce additional vari-
ables to label the internal lines of the circuit, as is done in circuit based SAT solvers. (The

416 A. Goultiaeva, V. Iverson, and F. Bacchus

input lines are all labeled with a variable of the original formula Q.φ). Formally, all of
these new variables are existential, and we place them as early in the quantifier ordering
as possible. Specifically, each internal line l in the circuit is the output line of a sub-circuit
c that has some set of input lines representing a set of variables V of φ. We place the new
variable representing l in the quantifier prefix immediately after the last variable of V in
the prefix. By placing these new variables as early as possible in the quantifier prefix we
enable more effective universal reduction during clause learning and propagation.

Note however that in QBF, unlike SAT, these new variables are never branched on
during the DPLL search. The DPLL search must respect the quantification order when
selecting variables to branch on, so by the time it can select a variable v representing
the output of sub-circuit c all of the inputs to c must have already been assigned, and
hence v would already be assigned by propagation.

Universal Reduction. In CNF represented QBF formulas universal reduction is a pow-
erful additional rule of inference that enables further unit propagation and conflict de-
tection. We say that a universal variable is tailing in a clause if it is downstream of all
existentials in the clause. Universal reduction is the rule of inference where all tailing
universals can be removed from a clause. It can be applied during search: when an ex-
istential in a clause is falsified and thus removed from the clause some universal in the
clause might become tailing and thus removable by universal reduction.

There are two cases where universal reduction can reduce DPLL search. First, it can
be used to infer a conflict when a clause contains only universal variables: by universal
reduction we can reduce any such clause to the empty clause. Second, it can be used to
infer unit clauses when a clause becomes unit after universal reduction. In this case it
must be that the clause contains a single existential variable e with all other variables in
the clause being universal and downstream of e.

Our solver can detect the same set of conflicts and unit propagants arising from
universal reduction as would be detected in CNF representation. Two additional prop-
agation rules are utilized to achieve this. The first rule is triggered whenever there is a
gate g such that (a) the output line of g has been assigned some value TF, (b) TF is not
entailed by g’s assigned input lines (e.g., if g is an OR gate, TF = TRUE, and none of
g’s assigned inputs are TRUE), and (c) all of g’s unassigned input lines are universally
quantified. In this case we have a conflict corresponding to the generation of a clause
containing only universals. The second rule is triggered whenever there is a gate g such
that conditions (a) and (b) as above hold, and (c) g’s unassigned input lines contain
only a single existential line e and all of the other unassigned lines, which are hence
universal, are downstream of e. In this case we can force e to take on a value that entails
TF. This corresponds to the generation of a unit clause after universal reduction. For
example, if g is an AND gate, TF = FALSE, and all of g’s other assigned inputs are
TRUE, then e is forced to be FALSE.

3.2 Don’t Care Propagation

An important way in which the circuit structure can be exploited is via don’t care rea-
soning. For example, when one input of an OR gate is set to TRUE, the other inputs
become irrelevant to its output value. By detecting the variables that have become ir-
relevant to all the gates they feed into, DPLL can avoid branching on them. Don’t care

Beyond CNF: A Circuit-Based QBF Solver 417

Fig. 1. Circuit and Equivalent CNF Encoding

propagation detects such variables and we implement don’t care propagation in our
solver using the techniques developed in [7].

Don’t care propagation can be useful in SAT, but it has even more potential to be
helpful in QBF due to repetitions caused by universal variables. To illustrate, consider
the circuit in Figure 1, where Q1X1...QkXk represents an arbitrary set of quantifiers
over the variables x1, ..., xm, and F is an arbitrarily complicated boolean circuit. It can
be seen that any variable assignment with at least one of a1, ..., an set to TRUE makes
the circuit output TRUE. In our solver, as soon as one of the variables ai is set to TRUE,
all xi variables can be recognized as irrelevant, so there is only one setting of a1, ...an

for which the solver actually branches on any xi variables.
A CNF based solver, on the other hand, would have the CNF representation shown in

Figure 1b, whereCNFF represents the clausal encoding of F . If any of the ai variables
are set TRUE, then out is also set to TRUE, and all clauses disappear except for those
in CNFF . The solver will then have to continue branching on the xi variables until
a solution is found that satisfies all clauses in CNFF , a potentially difficult task. Fur-
thermore, we see that the solver can unnecessarily try to satisfy the clauses in CNFF

2n−1 times. A solver exploiting learning might solve these repetitions more efficiently,
but can still perform many unnecessary branching operations. It is this repetition from
universal variables that makes don’t care reasoning more effective in QBF.

Don’t care propagation is achieved by detecting when gate outputs are justified. A
gate in the circuit is justified when its assigned inputs are sufficient to imply its output.
Once a gate is justified, its unassigned inputs have no effect, so they become irrelevant
with respect to that gate. If a line becomes irrelevant with respect to all of the gates it
is an input of, it becomes a don’t care, meaning its value has no effect on the circuit
output. Further, if the don’t care line is a gate output all of its unset inputs can in turn
be marked as irrelevant with respect to it, which might generate another round of don’t
care propagation. Since these don’t care variables have no effect on the circuit the DPLL
search engine need never branch on them. For example, in Figure 1 once one of the ai

inputs is set to TRUE, all remaining unassigned inputs to the final OR gate will be
marked as don’t care: they have all become irrelevant with respect to that gate and this
is the only gate they are an input to. Don’t cares can then be propagated back through
all of the sub-circuit F until all of the xi are marked as don’t care. After this, DPLL
can detect that it need not branch on any other variables as all remaining unassigned
variables (input lines and internal lines) have become don’t care.

418 A. Goultiaeva, V. Iverson, and F. Bacchus

3.3 Clause Learning

Following [7] we implement clause learning in our solver by computing a clausal rea-
son from the circuit structure for every line that is assigned by propagation. As DPLL
branches on variables that correspond to input lines of the circuit, propagation is used
to set other lines in the circuit. Since each circuit line is represented by an existential
variable, propagating a value to these lines corresponds to forcing a literal representing
the assignment of this value to the line’s corresponding variable. The logical structure
that allowed the value to be propagated can then be used to construct a clausal rea-
son for that forced literal. For example, if g is an AND gate with its output o set to
FALSE, all of its assigned inputs a1, . . . , ak, set to TRUE, and with unassigned inputs
e, u1, . . . , um where e is existential, the ui are universal, and e is upstream of all of the
ui, then propagation will set e to FALSE. In this case we can extract from the circuit
the clause (¬e, ¬u1, . . ., ¬um, ¬a1, . . ., ¬ak, o) as the clausal reason for ¬e. Hence,
on the trail of the DPLL search engine every forced literal can be given an associated
clausal reason. Note that these clausal reasons are like the clauses that a QBF solver
using a CNF representation would use to label its unit propagated literals.

In a similar way when conflicts are detected in the circuit a conflict clause can be con-
structed and returned to the DPLL search engine. For example, if g is an OR gate with
its output o set to TRUE, with assigned inputs a1, . . . , ak all set to FALSE, and unas-
signed inputs u1, . . . , um all of which are universal, then a conflict corresponding to
the detection of an all universal clause is detected. From this conflict the conflict clause
(¬o, a1, . . . , ak, u1, . . . , um) can be constructed and returned to the DPLL search en-
gine. With a CNF representation this is the clause that the current assignments would
have reduced to an all universal clause. The case where a line has both TRUE and FALSE

propagated to it can be handled in a similar fashion.
With conflict clauses to seed the process, and all forced literals on the trail la-

beled with clausal reasons, our solver can proceed to perform 1-UIP clause learning
in the manner standard to DPLL-based QBF solvers and to use these clauses to non-
chronologically backtrack the DPLL search. Finally, the solver can employ unit prop-
agation over the learnt clauses in conjunction with propagation in the circuit, using
literals forced by unit propagation to set lines and do further propagation in the circuit,
and using lines set in the circuit to initiate further unit propagation in the learnt clauses.

3.4 Cube Learning

As mentioned above, because the circuit outputO is initially set to TRUE we cannot use
the propagation of TRUE toO to detect that the formula has become satisfied by the cur-
rent set of variable assignments. Nevertheless, we can employ don’t care propagation to
detect circuit (formula) satisfaction. In particular, when all variables that are not marked
as being don’t care have been assigned and no conflicts have been generated, we know
that the circuit is satisfied by the current set of assignments. Say we had not initially set
the circuit output to TRUE. It can then be observed that whenever the assigned circuit
input lines suffice to propagate TRUE to the circuit output, all remaining unset lines in
the circuit (both internal and input lines) become don’t care. It can be further observed
that the don’t care propagation mechanism outlined above will successfully label these
unset lines as don’t care.

Beyond CNF: A Circuit-Based QBF Solver 419

Once the formula has been satisfied by the current variable assignments, we would
like to perform cube learning. This involves finding a subset of the current variable
assignments that are sufficient to satisfy the formula. Such a subset forms a base cube
that can then be stored in a cube database, triggered in other parts of the DPLL search,
and resolved with other cubes during search to generate more powerful cubes. A key
element in making cube learning effective is to be able to generate small base cubes.1

With CNF representations base cubes must contain at least one true literal from each
clause in the theory. With a circuit representation, however, finding a subset of vari-
able assignments sufficient to satisfy the formula corresponds to finding a subset of the
circuit inputs whose assigned values suffice to propagate TRUE to the circuit output.
Don’t care propagation helps in constructing small base cubes, as it eliminates from
consideration all circuit inputs marked as don’t care.

The algorithm we use in our solver is specified in Algorithm 1. The algorithm is ini-
tially called with the circuit’s output as its input argument, and it involves sweeping
through the circuit from the output to inputs picking a set of lines whose assigned val-
ues suffices to support the circuit output. Starting with the output gate, the algorithm
selects a set of input lines that support the gate output. Then it continues on to find sup-
ports for the selected input lines. For example, if the gate is an AND gate with output
set to FALSE then only one false input line is needed as support.

We note that we need not consider any don’t care lines, all of the gate output lines the
algorithm encounters have to be justified. To guide the selection of a supporting input, for
each gate output line we memorize the input line that was responsible for it first becoming
justified. For gate output line l we use l.justfiedReason to denote this input line.

This approach for selecting a supporting input for each gate output has two advan-
tages. First, it is very efficient to implement: the cube can be recovered in a single pass
of the circuit. Second, it favours adding the earliest-set variables to the base cube which
sometimes allows the solver to backtrack further.

In the algorithm specification we also use l.gateType to denote the gate type that
l is an output for. If l is an input line (and hence not associated with a gate) we let
l.gateType be equal to INPUT. Finally, let l.inputs denote input lines of the gate that l
is an output, and let l.val denote the value assigned to l.

4 Related Work

4.1 CCDNF

In [10] Zhang proposed adding to the CNF encoding of the QBF a redundant DNF
encoding, creating a Combined Conjunctive and Disjunctive Normal Form (CCDNF).
The aim of the DNF encoding was to overcome the inability of CNF to easily detect
when the formula becomes satisfied. The DNF allowed the resulting solver to detect
solutions earlier, without needing to assign all variables in the formula.

In some cases, our circuit based solver achieves similar early solution detection
through its don’t care propagation. In particular, once a partial assignment is sufficient
to imply the circuit output, all remaining variables will be marked as don’t care and

1 Other heuristic considerations come into play, but space precludes discussing them here.

420 A. Goultiaeva, V. Iverson, and F. Bacchus

Algorithm 1: RecoverCube—Construct a Base Cube from a Circuit

RecoverCube (l)1

// Return a set of supporting input lines
begin2

if l.gateType = INPUT then3

return {l}4

else if l.gateType = NOT then5

return RecoverCube (l.inputs)6

else if
((l.gateType = AND and l.val = TRUE)

or (l.gateType = OR and l.val = FALSE)

)
then

7

S = ∅ // Consider all children8

foreach c ∈ l.inputs do9

S = S∪ RecoverCube (c)10

end11

return S12

else13

// root is a False AND gate or a True OR gate
// Can select one child that is assigned the same

value
return RecoverCube (l.justfiedReason)14

end15

the search engine can immediately backtrack. However, when a solution is detected,
our solver must execute Algorithm 1 to extract a base cube—with the DNF encoding
this computation is not needed, the information contained in the base cube is already
encoded in the triggered DNF. Also the DNF encoding contains auxiliary variables that
can make the cubes more compact, and perhaps more powerful. In our solver all base
cubes contain input variables only.

However, the circuit representation has some advantages over IQTest. It preserves
more problem structure than the CCDNF encoding. Potentially, additional ways can be
discovered for further exploiting this structure. Also don’t care propagation allows us
to avoid branching on irrelevant variables. IQTest, on the other hand, has no way of
determining when a variable is irrelevant, and can still branch on such variables prior to
finding a solution. Thus, our solver can sometimes make fewer decisions during search.

Also, while making its conversion, IQTest creates two different sets of auxiliary vari-
ables: one set for the CNF, and another one for DNF representations. This limits the
amount of knowledge sharing between the two representations. The circuit representa-
tion has only one set of auxiliary variables (variables representing the internal lines), so
that the different modes of reasoning share the same representation.

Nevertheless, given that the circuit representation contains all of the information
used to generate the DNF encoding, it is possible that the computational advantages of
the DNF encoding can be captured directly from the circuit representation. We plan to
investigate this possibility in future work.

The empirical results in the next section show that while IQTest outperforms our
solver on some benchmarks, there are domains where the advantages of the circuit
representation are evident.

Beyond CNF: A Circuit-Based QBF Solver 421

4.2 Don’t Care Literals

In [13], the authors augment the CNF encoding by adding don’t care literals to clauses
so they can be marked as redundant when the don’t care literals become true. This is
effectively the same as our solver marking a circuit line as redundant, but as they point
out, they are unable to encode all don’t care conditions. By dynamically detecting don’t
care conditions as they occur, we are able to detect more don’t care variables during
search than their static method.

Fig. 2. Adversarial game encoding

4.3 Dual CNF and DNF

[9] created a dual CNF-DNF encoding geared towards addressing the inadequacies of
CNF when encoding adversarial games. Their approach is to encode the rules for the
universal player in a DNF. Then, if the universal player ever violates the rules, the DNF
portion is detected to be true, and the existential player is declared the winner.

The main benefit of their approach—determining when the universal player cheats—
is easily achieved in our solver by exploiting a circuit representation. Figure 2 shows
an example of a circuit encoding an arbitrary two player game with n turns [14]. A
box labeled L∃

i represents a sub-circuit encoding the rules for the existential player in
move i, while L∀

j encodes the rules for the universal player in move j. At any move, if
the universal player violates their rules, all remaining moves in the game become don’t
care, and the existential player is declared the winner (i.e., TRUE is propagated to the
circuit output).

4.4 Negation Normal Form

In [15] the authors discuss a solver qpro for formulas in Negation Normal Form (NNF).
The main focus of qpro is relaxing the restriction of a prenex form. This is orthogonal
to our approach, and the circuit solver can be extended in a similar manner.

However, even without explicitly dealing with non-prenex formulas, don’t care prop-
agation together with clause and cube learning can often achieve similar results, and
our solver is quite competitive with qpro even in the domains with very short but wide
quantifier trees. This is demonstrated in the experimental results.

The backtracking technique of qpro—relevance sets—involves the solver computing
the set of variables whose values determined the truth or falsity of the formula, and
allows the solver to backtrack non-chronologically over irrelevant variables. The idea
of identifying relevant sets underlies the notions of clause and cube learning. Learnt

422 A. Goultiaeva, V. Iverson, and F. Bacchus

cubes and clauses also allow a solver to backtrack non-chronologically over unrelated
variables, with the added benefit that the learnt cubes and clauses can be utilized in the
rest of the search. Since our solver implements cube and clause learning it does not
need to compute relevance sets.

5 Experimental Results

Our solver CirQit implements the ideas described in this paper. Its input is a circuit de-
scription in ISCAS-85 format using AND, OR and NOT gates, along with the quantifier
prefix. The solver first simplifies the circuit by merging identical subformulas. It then
solves the circuit using DPLL search running on the circuit representation as described
above.

Table 1. Comparison between CirQit and other state-of-the-art non-CNF non-Prenex solvers.
The largest number of instances solved is shown in bold, with ties broken by the time taken to
solve those instances.

Benchmark Families CirQit qpro pQBF
(number of instances) Solved Time Solved Time Solved Time

Seidl (150) 147 2,281 150 7 13 3,326
assertion (120) 3 1 1 0 0 0
consistency (10) 0 0 0 0 0 0
counter (45) 39 1,315 31 126 31 161
dme (11) 10 15 10 1,193 5 287
possibility (120) 10 1,707 0 0 0 0
ring (20) 15 60 9 397 9 158
semaphore (16) 16 7 16 91 16 726
Total (492) 240 5,389 217 1,816 74 4,660

We compared CirQit with state-of-the art CNF and non-CNF solvers on all the non-
Prenex, non-CNF benchmarks currently available from QBFLIB [16]. Unless otherwise
stated, all tests were run on a 2.8GHz machine with 12GB of RAM. The results display
the number of problems that each solver was able to solve within the time limit of 1200
CPU seconds per instance, and the total time taken for all the solved instances, rounded
down to the nearest second.

Table 1 shows the comparison against the two top solvers from the non-prenex non-
CNF track of the QBFEVAL’08 competition. One of the solvers is qpro (discussed
above), version of 29.02.08 available from the authors’ site. The other one is pQBF
[17].2 The benchmarks, originally in QBF1.0 format, were converted into ISCAS-85
format for CirQit and into pro format for qpro. Conversion time was negligible and was
not included in the results.

2 On some instances pQBF gave a parser stack overflow error. In a few cases, it proceeded to
return an answer. This happened on large instances in benchmark families for which pQBF
timed out on smaller problems. The answer returned under these circumstances was always
FALSE, and on at least one instance it was confirmed to be incorrect by multiple other solvers.
This led us to believe that this answer was returned in error. The results presented here consider
such instances as failure cases for pQBF.

Beyond CNF: A Circuit-Based QBF Solver 423

Table 2. Comparison between CirQit and other state-of-the-art CNF-based solvers. The largest
number of instances solved is shown in bold, with ties broken by the time taken to solve those
instances.

Benchmark Families CirQit sKizzo 2clsQ yquaffle quantor Qube
(number of instances) Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

Seidl (150) 147 2281 37 6,301 0 0 0 0 42 3,272 144 4,688
assertion (120) 3 1 14 796 49 7,035 23 114 119 8,736 3 0
consistency (10) 0 0 1 40 0 0 0 0 10 720 0 0
counter (45) 39 1,315 34 1,185 30 89 31 1,077 28 414 29 1225
dme (11) 10 15 0 0 0 0 0 0 0 0 6 75
possibility (120) 10 1,707 13 700 13 1,666 10 505 111 7,976 10 25
ring (20) 15 60 12 752 11 1,048 12 607 11 479 15 1,781
semaphore (16) 16 7 14 68 13 47 7 261 16 12 14 1,833

Total (492) 240 5,389 125 9,844 116 9,888 83 2,566 337 21,613 212 9,629

qpro outperforms CirQit on only the Seidl dataset (shown in Table 1). This dataset
contains problem instances that typically have short but wide quantifier trees, a structure
that qpro is particularly well suited to exploit. Although CirQit performs worse than
qpro on this dataset, we can see that it outperforms all the other solvers (including the
CNF-based solvers discussed below), and is one of only two solvers that come close to
qpro on this dataset.

Other than the Seidl dataset, CirQit dominates the other two non-CNF solvers: it was
able to solve all the problems that they solved, and also some additional ones.

Table 2 compares CirQit against a number of CNF-based solvers. In order to apply
the CNF-based solvers, the benchmarks were converted from QBF1.0 to qdimacs for-
mat using the translator available from QBFLIB webpage. Again, the conversion times
were not included.

The solvers tested were sKizzo (v0.8.2) [18], 2clsQ [19], yQuaffle (version 21006)
[12], quantor (version 3.0, with the recommended picosat back end) [5] and Qube (ver-
sion 6.1) [20]. These solvers are state-of-the-art QBF solvers as shown by QBFEVAL
competition results. The predecessors of solvers sKizzo and Quantor were the best
two solvers at QBFEVAL’05; 2clsQ and sKizzo took first and second places at QBFE-
VAL’06; Qube won QBFEVAL’07 with yQuaffle being the next-best standalone solver
(disregarding the solvers based on a portfolio approach), and Qube6.1 was the best
standalone solver at the QBFEVAL’08 competition– second only to a solver based on a
portfolio approach.

Comparing with the CNF solvers, we see that CirQit is quite competitive with them.
It outperforms all of the CNF solvers on a number of domains. For domains counter
and dme, CirQit is able to solve a number of problems that no CNF-based solver could
solve; for each of ring and semaphore domains, CirQit is tied with one CNF-based
solver (Qube and quantor, respectively) on the number of solved instances but wins
based on the time taken to solve them, and does notably better than the other solvers.

The domains on which CirQit does not outperform the CNF solvers are the asser-
tion, consistency and possibility domains, which are all part of the set BMC QBF 1.0.
Note that all of the non-CNF solvers perform badly on this benchmark set. On these
problems, Quantor is the clear winner. It also far outperforms all the other solvers on
these benchmarks. Quantor does not employ DPLL search, using instead a combination

424 A. Goultiaeva, V. Iverson, and F. Bacchus

0.1

1

10

100

1000

0.1 1 10 100 1000

IQTest

CirQit

Scholl dataset

♦
♦

♦

♦

♦♦

♦♦

♦ ♦

♦ ♦

♦♦

♦♦

♦♦

♦

♦♦

♦ ♦

♦♦♦

♦

♦♦

♦

♦

♦♦♦

♦

♦♦

♦
♦♦

♦

♦♦

♦
♦

♦

♦ ♦♦

♦ ♦
♦♦

♦
♦

♦♦

(a) Scholl dataset.

0.1

1

10

100

1000

0.1 1 10 100 1000

IQTest

CirQit

Seidl dataset

♦ ♦♦♦♦♦♦♦
♦

♦
♦

♦
♦♦♦
♦

♦
♦

♦♦♦
♦♦

♦♦♦♦
♦

♦ ♦♦♦
♦♦

♦

♦
♦

♦

♦♦
♦

♦♦♦♦♦
♦
♦

♦

♦♦♦♦♦ ♦♦ ♦♦♦♦♦♦♦
♦♦♦♦♦♦♦

♦
♦

♦♦
♦

♦
♦♦ ♦♦ ♦

♦♦ ♦
♦♦

♦
♦ ♦ ♦

♦♦
♦

♦♦

♦
♦♦ ♦

♦
♦

♦

♦
♦♦♦

♦♦♦♦♦ ♦♦
♦

♦
♦

♦
♦

♦ ♦♦♦♦
♦ ♦ ♦♦♦

♦
♦♦♦

♦♦♦
♦♦♦

♦♦ ♦ ♦♦♦

♦
♦♦ ♦♦ ♦

(b) Seidl dataset

Fig. 3. Time comparison between CirQit and IQTest on two benchmark sets

of resolution and universal quantification to reduce the formula. Clearly this approach
is better for these problems than any form of DPLL search.

Finally, we compared our solver with the previously discussed IQTest [10], which
uses both a CNF and an DNF encoding of the problem. We were not able to perform a
comprehensive comparison with IQTest due to the fact that IQTest is available only as
a Windows executable. We were, however, able to experiment with two datasets. The
first dataset is the Scholl dataset that was used to demonstrate IQTest in the paper [10].
The second dataset we tested is the Seidl dataset from QBFLIB.

A plot comparing the runtimes for the Scholl and Seidl datasets is shown in Figure 3.
The experiments were run on a 2.41GHz machines with 2GB of RAM. An instance is
plotted with the time CirQit took to solve it on the x-axis and IQTest on the y-axis.
So, an instance above the bisecting line is one on which our solver exhibited superior
performance, and an instance below the line is one where IQTest was superior. Timed
out instances are placed at the 1200 second mark on the graph.

On the first dataset, IQTest outperforms CirQit. There are eight problems that IQTest
was able to solve, sometimes fairly quickly, but CirQit was unable solve in the time
allotted. However, there were also a number of problems that CirQit was able to solve
a few orders of magnitude faster than IQTest. On the Seidl dataset, on the other hand,
CirQit confidently outperforms IQTest. The detailed results were that on Scholl, con-
taining 63 problems, CirQit solved 38 problems in 382 seconds, while IQTest solved
46 problems in 3,887 seconds. On the other hand, on Seidl, containing 150 problems,
CirQit solved 147 problems in 2,969 seconds, while IQTest solved 126 problems in
53,110 seconds.

Although this is not a complete analysis, these sets show that while IQTest is better
than CirQit on some problems, there are problem suites for which CirQit is better suited.

Finally, although we don’t show any results, we did experiment with CirQit turning
don’t care propagation on and off. Over a large number of problems we found that don’t
care propagation yielded on average almost a 40% speedup.

Beyond CNF: A Circuit-Based QBF Solver 425

6 Conclusions and Future Work

This paper demonstrates the effectiveness of exploiting structural information in QBF
solving. By skipping the last step of encoding QBF problems into CNF, the structure of
the problem can be maintained and used by a DPLL search engine. While other work
has been done in the past to overcome some of the limitations of the CNF representation,
our circuit based solver includes many of the benefits realized by these partial solutions.

We demonstrated that a solver using a circuit representation can be highly competi-
tive with state of the art solvers using both non-CNF and CNF representations.

The circuit representation is compact, and allows more powerful propagation. Many
more benefits could potentially be reaped from the circuit representation. The circuit
representation allows the solver to generate CNF clauses for clause learning on-the-fly.
We believe that it is possible to use the circuit in a similar way to extract DNF cubes on
the fly. We are investigating this approach.

Many orthogonal improvements, such as exploiting non-prenex structure or using
problem decomposition, can also be applied to the circuit solver.

In sum it seems that using a circuit representation is a very fruitful direction for
obtaining further advances in QBF solving.

References

1. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: Pro-
ceedings of the AAAI National Conference (AAAI), pp. 1045–1050 (2007)

2. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quanti-
fied boolean formulas. In: Proceedings of the AAAI National Conference (AAAI), pp. 417–
422. AAAI Press, Menlo Park (2000)

3. Mangassarian, H., Veneris, A.G., Safarpour, S., Benedetti, M., Smith, D.: A performance-
driven QBF-based iterative logic array representation with applications to verification, debug
and test. In: International Conference on Computer-Aided Design (ICCAD), pp. 240–245
(2007)

4. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7, 201–215 (1960)

5. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004, vol. 3542,
pp. 59–70. Springer, Heidelberg (2005)

6. Benedetti, M.: sKizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report TR04-11-03 (2004)

7. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In:
Proceedings of the International Conference on Theory and Applications of Satisfiability
Testing (SAT) (2004)

8. Wu, C.A., Lin, T.H., Lee, C.C., Huang, C.Y.: QuteSAT: a robust circuit-based SAT solver
for complex circuit structure. In: Design, Automation and Test in Europe Conference and
Exposition (DATE), pp. 1313–1318 (2007)

9. Sabharwal, A., Ansótegui, C., Gomes, C.P., Hart, J.W., Selman, B.: QBF modeling: Exploit-
ing player symmetry for simplicity and efficiency. In: Biere, A., Gomes, C.P. (eds.) SAT
2006. LNCS, vol. 4121, pp. 382–395. Springer, Heidelberg (2006)

10. Zhang, L.: Solving QBF with combined conjunctive and disjunctive normal form. In: Pro-
ceedings of the AAAI National Conference (AAAI) (2006)

426 A. Goultiaeva, V. Iverson, and F. Bacchus

11. Tseitin, G.: On the complexity of proofs in poropositional logics. In: Siekmann, J., Wright-
son, G. (eds.) Automation of Reasoning: Classical Papers in Computational Logic 1967–
1970, vol. 2. Springer, Heidelberg (1983); Originally published (1970)

12. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quanti-
fied boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002, vol. 2470, pp. 200–
215. Springer, Heidelberg (2002)

13. Tang, D., Malik, S.: Solving quantified boolean formulas with circuit observability don’t
cares. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 368–381. Springer,
Heidelberg (2006)

14. Benedetti, M., Lallouet, A., Vautard, J.: QCSP made practical by virtue of restricted quantifi-
cation. In: Veloso, M.M. (ed.) Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 38–43 (2007)

15. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Con-
straints 14(1), 38–79 (2009)

16. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability
library (QBFLIB) (2001), www.qbflib.org

17. Stéphan, I.: Boolean propagation based on literals for quantified boolean formulae. In: 17th
European Conference on Artificial Intelligence (2006)

18. Benedetti, M.: skizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE
2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

19. Samulowitz, H., Bacchus, F.: Dynamically partitioning for solving QBF. In: Marques-Silva,
J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 215–229. Springer, Heidelberg
(2007)

20. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding Quantified
Boolean Formulas satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS, vol. 2083, pp. 364–369. Springer, Heidelberg (2001)

www.qbflib.org

	Beyond CNF: A Circuit-Based QBF Solver
	Introduction
	Background
	QBF

	A Circuit-Based Solver
	Propagation
	Don't Care Propagation
	Clause Learning
	Cube Learning

	Related Work
	CCDNF
	Don't Care Literals
	Dual CNF and DNF
	Negation Normal Form

	Experimental Results
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

