Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

Abstract

Recent work has shown the value of using unsatisfiable cores to guide maximum satisfiability algorithms (Max-SAT) running on industrial instances [5,9,10,11]. We take this concept and generalize it, applying it to the problem of finding minimal correction sets (MCSes), which themselves are generalizations of Max-SAT solutions. With the technique’s success in Max-SAT for industrial instances, our development of a generalized approach is motivated by the industrial applications of MCSes in circuit debugging [12] and as a precursor to computing minimal unsatisfiable subsets (MUSes) in a hardware verification system [1]. Though the application of the technique to finding MCSes is straightforward, its correctness and completeness are not, and we prove both for our algorithm. Our empirical results show that our modified MCS algorithm performs better, often by orders of magnitude, than the existing algorithm, even in cases where the use of cores has a negative impact on the performance of Max-SAT algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Refinement strategies for verification methods based on datapath abstraction. In: Proceedings of the 2006 conference on Asia South Pacific design automation (ASP-DAC 2006), pp. 19–24 (2006)

    Google Scholar 

  2. Argelich, J., Li, C.M., Manyà, F., Planes, J.: Max-SAT evaluation (2008), http://www.maxsat.udl.es/08/

  3. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and behaviour. Journal of Experimental and Theoretical Artificial Intelligence 15, 25–46 (2003)

    Article  MATH  Google Scholar 

  4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liffiton, M.H., Sakallah, K.A.: Searching for autarkies to trim unsatisfiable clause sets. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 182–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. Computing Research Repository, abs/0712.1097 (December 2007)

    Google Scholar 

  11. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: Proceedings of the Conference on Design, Automation, and Test in Europe (DATE 2008) (March 2008)

    Google Scholar 

  12. Safarpour, S., Liffiton, M., Mangassarian, H., Veneris, A., Sakallah, K.: Improved design debugging using maximum satisfiability. In: Proceedings of the International Conference on Formal Methods in Computer-Aided Design (FMCAD 2007), November 2007, pp. 13–19 (2007)

    Google Scholar 

  13. Sinz, C.: SAT benchmarks from automotive product configuration, http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/

  14. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17(1), 75–97 (2003)

    Article  Google Scholar 

  15. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfiable cores to debug multiple design errors. In: Proceedings of the 18th ACM Great Lakes symposium on VLSI, pp. 77–82 (2008)

    Google Scholar 

  16. Velev, M.: Miroslav Velev’s SAT Benchmarks, http://www.miroslav-velev.com/sat_benchmarks.html

  17. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: The 6th International Conference on Theory and Applications of Satisfiability Testing (SAT 2003) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liffiton, M.H., Sakallah, K.A. (2009). Generalizing Core-Guided Max-SAT. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics