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Abstract. We present a context-based machine-learning approach for identify-
ing difficult driving situations using sensor data that is readily available in 
commercial vehicles. The goal of this system is improve vehicle safety by alert-
ing drivers to potentially dangerous situations. The context-based approach is a 
two-step learning process by first performing unsupervised learning to discover 
meaningful regularities, or “contexts,” in the vehicle data and then performing 
supervised learning, mapping the current context to a measure of driving diffi-
culty. To validate the benefit of this approach, we collected driving data from a 
set of experiments involving both on-road and off-road driving tasks in unstruc-
tured environments. We demonstrate that context recognition greatly improves 
the performance of identifying difficult driving situations and show that the 
driving-difficulty system achieves a human level of performance on cross-
validation data. 

1   Introduction 

Cars are an essential means of transportation for much of the world. However, the 
widespread use of automobiles exacts a large toll in the form of property damage, 
injury, and death. The United States National Highway Traffic Safety Administration 
reports that “In 2005, there were an estimated 6,159,000 police-reported traffic 
crashes, in which 43,443 people were killed and 2,699,000 people were injured;” it is 
the leading cause of death of people aged 3 through 33 [1]. Naturalistic driving stud-
ies have shown that having a passenger in the vehicle reduces the odds-ratio of having 
a crash by 50% [2]. The goal of this research is not to automate driving, but to iden-
tify and mitigate potentially dangerous situations for the driver, similar to a “backseat 
driver,” improving safety. To this end, we have conducted a series of experiments in 
both on-road and off-road driving in unstructured environments. In these experiments, 
we have shown that our system identifies difficult driving situations with performance 
similar to that of a human backseat driver, and see significant improvements in the 
performance of drivers during the experimental conditions. Our driving-difficulty 
classifier system operates in real time in unstructured environments without human 
intervention, using sensors that are readily available on commercial vehicles without 
additional instrumentation. 
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Fig. 1. Data-flow diagram in the context-based difficulty classifier system 

We create the driving-difficulty detector using a two-step semi-supervised ma-
chine-learning approach [3]. The first step takes unlabeled data from the vehicle's data 
bus and automatically extracts the context by automatically identifying statistical 
regularities in the vehicle data. Our hypothesis is that the driver performing the under-
lying physical task - driving in the given conditions - induces observable regularities 
in the vehicle data and identifying these regularities, or “contexts,” is crucial in 
achieving a human-level of performance. For example, entering a high-speed roadway 
tends to result in a driver pressing down the accelerator pedal, entering a period of 
relatively high lateral acceleration, turning on a lane-change signal, and achieving a 
fast speed. In this example, the underlying physical task induces regularities in how 
the driver interacts with the vehicle. We are interested in automatically extracting 
contexts to determine when the driver is entering a potentially difficult situation. With 
the contexts identified, the system then maps these contexts onto a difficulty score 
using a supervised-learning machine-learning algorithm (Fig. 1). To validate the sys-
tem, we compare the performance of an actual human backseat driver with our auto-
mated system, both with and without context recognition, in identifying potentially 
dangerous driving conditions. 

2   Related Work 

For over twenty years, there has been interest in developing autonomous driving sys-
tems, with an early example being the NAVLAB project [4] and research is ongoing 
[5]. Autonomous driving systems have recently gained widespread attention in the 
research community and mainstream media, due in large part to the DARPA Grand 
Challenge [6] and the follow-on DARPA Urban Grand Challenge. While computer 
systems and robots may one day replace humans as the main users of the world's 
highways, it is likely that humans will continue to be the primary drivers of motor 
vehicles for the near future. This will continue the trend of over 40,000 fatalities per 
year in the United States alone, coupled with incalculable related damages [1]. The 
100-car naturalistic driving study [2] recorded almost 10,000 crashes, near crashes, 
and “crash-relevant conflicts” over the course of about one year. This averages to 
about seven incidents per subject per month. One bright spot is that the same study 
showed that having a passenger in the vehicle reduces the odds-ratio of having a crash 
by 50% [2]. In some sense, the goal of this research is to have the same crash-
reducing effect that passengers had in the naturalistic driving study. There has been 
substantial research into driver-assistance systems. Many systems focus on placing 
additional sensors on the vehicle, particularly visible-light cameras [7, 8], to identify 
previously undetectable situations. Other groups have focused on developing models 
of human drivers to focus attention [9]. While these are very promising avenues to 
pursue, we feel that we can offer powerful driver-assistance tools by intelligently 
analyzing readily available sensors on commercial vehicles to determine how the 
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current situation can impact driver performance. Unsupervised learning has been used 
as a basis for context recognition for mobile devices [10] and for improving image 
classification [11] 

The work presented in this paper extends the previous work in driving-difficulty 
systems of [12], which trained a classification system to identify potentially danger-
ous driving conditions using predefined situations. This system identified eight high-
level situations with high accuracy: 1) Approaching or Waiting at Intersection, 2) 
Leaving Intersection, 3) Entering On-ramp or High-Speed Roadway, 4) Being Over-
taken, 5) High Acceleration or Dynamic State of Vehicle, 6) Approaching Slow-
Moving Vehicle, 7) Preparing to Change Lanes, and 8) Changing Lanes. However, 
this system was based purely on supervised-learning classifications on predefined 
categories. The primary limitation is that predefined categories are inherently limited 
by the cleverness of the developers to identify all relevant situations, while ignoring 
irrelevant ones. This also means that the system must have numerous examples of 
each situation against which to train the classifier. Out of the 24 hours of data col-
lected, the rarest situation, “Entering On-ramp or High-Speed Roadway,” was present 
for less than 1% of the data and it is very challenging for any machine-learning classi-
fier to identify rare events [13]. Building on this previous work, our system uses a 
two-stage approach to identifying potentially dangerous driving conditions. 

3   Algorithms 

The central component of our approach is the automated unsupervised learning of 
context. Because we typically have a much larger amount of unlabeled data than la-
beled data, we take a semi-supervised approach to learning. The creation of contexts 
using unsupervised clustering algorithms makes use of all data recorded from an ex-
perimental vehicle. The supervised learning of driving difficulty makes use of the 
smaller amount of labeled data. This allows the driving-difficulty classifier to make 
productive use of all the unlabeled and labeled data. 

3.1   Data Representation 

The input to the system is a discrete-time temporal signal, which is extracted from 
sensors aboard an experimental vehicle from its standard Controller Area Network 
(CAN) bus (Section 4.1). Because we are interested in the change of the sensor values 
over time, we extract the rate-of-change and current-value information from each 
signal over a fixed time window. This feature-extraction process converts temporal 
signals into a vector-based representation. In terms of the features to use in the driv-
ing-context recognition, we feel that: 

1. The magnitude of a signal is important. For example, knowing the speed of the 
vehicle or brake-pedal force can help to disambiguate similar contexts. 

2. The general trend of a signal is also important. For example, knowing how sensors 
are changing can differentiate otherwise identical contexts.  

With this in mind, at each time step for each input sensor, we construct a window 
over some predefined length into the past (typically 5 seconds) and compute the  
first-order linear-regression slope-intercept coefficients {m,b} for that time window. 
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Converting a windowed temporal signal into a vector using the linear-regression coef-
ficients creates two coordinates; the regression slope (m) and the regression intercept 
(b). Consequently, if there are 5 input signals, the result will be a 10-dimensional 
vector. Our unsupervised-clustering algorithms search for driving contexts in this 
vector space. 

3.2   Unsupervised Context Learning 

At each time step, the input to the unsupervised-learning context classifier is the col-
lection of vectors with the slope-intercept regression parameters for each sensor. The 
unsupervised context-learning algorithm is a reductionist version of the prevalent k-
means clustering algorithm [3]. To determine vector similarity, we use the Mahalano-
bis distance and compute the sample mean and full covariance matrices belonging to 
each cluster. We make an assumption that each regression-coefficient vector is gener-
ated independently of all others. With this assumption, the number of data points 
assigned to a particular cluster is a binomial random variable, and we remove a clus-
ter if its corresponding probability is too low. By evaluating the binomial cumulative 
distribution function, we can determine if a cluster is not significant, in a statistical 
sense, and should be removed. If we have k clusters and N data-points, then the ex-
pectation is that each cluster contains N/k data-points. From this perspective, we can 
set a removal threshold based on the fraction of data-points of the expectation. For 
example, a threshold of 0.5 means that we will remove any clusters containing less 
than 0.5N/k data-points. In practice on our experimental data, this reductionist cluster-
ing approach yields relatively stable numbers of clusters from random initializations 
(E{k}=53.5,±1.92, p<0.05 for a removal threshold of 0.5). We also find the reduction-
ist clustering approach to less sensitive to the initial parameter k because if the value 
of k is initially set too high, the algorithm will compensate by removing spurious 
clusters. Thus, to set k we can initially choose a relatively high value and then let the 
algorithm iteratively remove clusters to find a stable value. 

3.3   Supervised Learning of Driving Difficulty 

Up to this point, the system has mapped temporal vehicle sensors to a k-dimensional 
vector of context probabilities (cf. Fig. 1). We use supervised learning to map this 
context-probability vector to a difficulty score. As we describe later in more detail in 
Section 4.1.2, we collected labels of driving difficulty for a subset of the experimental 
data, by either backseat observation or post hoc video analysis. We use these scalar  
1-100 value labels as ground-truth outputs for a supervised-learning algorithm. Be-
cause the values are continuous, this difficulty classifier can be stated as a standard 
regression formulation. Not surprisingly, driving difficulty does not change dramati-
cally from second to second and the ground-truth difficulty labels are highly auto-
correlated (R=0.89 at 5-second lag). 

4   Experimental Description 

We have conducted a series of driving experiments in unstructured environments over 
the past several years. The first studies were a proof of concept that we could infer  
 



24 K.R. Dixon et al. 

 

Fig. 2. Frontal camera view from the Camp Pendleton experiments used for post hoc labeling 
and analysis 

difficult driving situation from readily available sensors from a commercial vehicle in 
naturalistic on-road driving conditions [12]. The set of experiments covered by this 
analysis involved driving in off-road conditions, on semi-improved and unimproved 
paths, at the United States Marine Corps Base Camp Pendleton. These experiments 
tested the ability for our system to identify high-difficulty driving conditions without 
the presence of human-made regularities, such as traffic lights, lanes, and signage. 
Drivers were instructed to drive on a predefined road circuit, but we did not attempt to 
alter the roadway and or control external conditions in any of the experiments. As 
such, we have encountered snow, rain, fog, traffic jams, road construction, mechani-
cal problems, armed guards, artillery howitzers, lost vehicles, and even flocks of 
sheep (complete with over-protective herding dogs). Through the evolution of these 
experiments and the knowledge gained, we have learned that identifying driving con-
text is crucial in achieving human-level accuracy with a driving-classification system. 
By context, we mean those regularities that are caused by the human operator (the 
driver) making the vehicle behave in a constrained manner. 

4.1   Data Collection 

Before each experiment, the subjects familiarize themselves with the test vehicle and 
drive on a sample course. Additionally, before the main experiment, we conduct a 
calibration study where we collect data from a small number of subjects with which 
we train our difficulty-classification system. The purpose of the calibration study was 
to duplicate the experimental conditions and gain insight into the phenomena that 
would be helpful in identifying high-difficulty situations. The use of calibration data 
also meant that a general driving-difficulty model is used, rather than a unique model 
for each driver. After the calibration study is complete, the main pool of subjects 
performs the driving study, as in [14]. 
 
Vehicle Data. To obtain information about the state of the vehicle and how the driver 
is interacting with it, we interfaced through the Controller Area Network (CAN) bus  
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Fig. 3. Performance of the difficulty classifier with and without context recognition in terms of 
normalized correlation coefficient (ρ). The error bars are the cross-subject 95% confidence 
intervals. Same persons have an average of ρ=0.95 for subsequent scoring of the same round. 
Different persons difficulty scores have an average of ρ=0.74 agreement. 

of the vehicle to record sensors that are readily available on many commercial vehi-
cles. In all experiments, we sampled data from the CAN bus at 4Hz. In our experi-
ence, sampling rates above 4Hz did not improve performance, and sampling slower 
than 2Hz could result in missed events. Our difficulty-classification system incorpo-
rated two types of sensors: sensors that directly measure how the driver is interacting 
with the vehicle and sensors that measure secondary interactions or vehicle state. 
From the control-surface state, we made use of steering-wheel position, force applied 
to the brake pedal, and accelerator-pedal deflection. From the physical state of the 
vehicle, we made use of wheel speeds, adaptive cruise-control radar, and current gear 
number. There are many driver-assistance systems that require special-purpose in-
strumentation [8] and these provide valuable insight into the cost-benefit analysis of 
additional instrumentation to vehicles. However, our driving-difficulty classifier does 
not require any experiment-specific instrumentation of the driver or vehicle, meaning 
that this system is deployable on currently available commercial vehicles. 
 
Difficulty Labels. To generate the ground-truth labels, the difficulty of the current 
driving situation were scored on 100-point scale (1 to 100) entered by a human labeler 
with an external dial or a software slider bar. A value of 1 means that the driving is 
very easy, while a value of 100 means that there is imminent danger. Furthermore, the 
labelers were instructed that a score of 50 or above indicated a judgment that it would 
be a bad time to burden the driver with additional tasks, such as a mobile-phone call. 
Allowing the labelers to input a continuous value on a 100-point scale, instead of a 
binary difficulty decision, makes it possible to create more accurate machine-learning 
classifiers. A human labeler can generate difficulty scores in two ways: sitting in the 
back seat of the vehicle during the experiment or a graphical user interface for post 
hoc analysis. For post hoc labeling, we constructed a user interface that displays a 
video recording taken out the front window of the vehicle, such as Fig. 2, and controls 
that allowed the labeler to move forward and backward in time so that users may  
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Fig. 4. Performance of the difficulty classifier with and without context recognition in terms of 
the receiver operator characteristic (ROC) area under curve (AUC). The error bars are the 95% 
cross-subject confidence intervals.  Same persons average an AUC of 0.87 for subsequent 
scoring of the same round.  Different persons agree with each other with an average AUC of 
0.78. 

adjust difficulty labels to ensure their accuracy. While the human labeler may use the 
video to generate difficulty labels, the classifier system did not process the images in 
keeping with the requirement that the system only use sensors currently available on 
commercial vehicles. 

4.2   Off-Road Experiments in Camp Pendleton 

We conducted a series of experiments at the United States Marine Corps Base Camp 
Pendleton, where the experimental platform was a Mercedes-Benz G-class 500 SUV. 
In these experiments, subjects drove on a mixed semi-improved and off-road circuit 
four times at 30 km/hour, with each circuit lasting about half an hour. We collected 
data from nineteen drivers, resulting in 42 hours (609,744 samples) of data. As in our 
previous experiments, we had to contend with unforeseen events, such as vehicle 
traffic, road guards, and other equipment. The results described in this paper will be 
based on the data collected from these experiments (Section 5). 

5   Results 

To evaluate the results of our driving-difficulty classifier, we compared the context-
based difficulty recognizers to those without context recognition. For the results with-
out context recognition, we mapped directly from the regression-coefficients (cf. Fig. 
1) to the difficulty labels1. In all cases, we tried several regression architectures, in-
cluding a linear dynamical system, a linear mapping, and a feedforward artificial 
neural network (ANN). 

The linear dynamical system was trained using an iterative one-step optimal Ex-
pectation-Maximization routine using least-squares pseudoinversion of the feedfor-
ward and feedback matrices. The linear mapping was trained using the closed-form 
                                                           
1 Mapping from the sensors to driving difficulty did not produce results better than random. 
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optimal least-squares pseudoinverse. The ANN had arctan node activation with 50 
hidden units2, trained with the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) algorithm with Fletcher-type line search [15]. The unsupervised context-
learning algorithm was given 7.5 hours (107,313 samples) of unlabeled driving data 
from which to extract driving context. The supervised-learning algorithms were 
trained with 4.6 hours (65,678 samples) of labeled driving-difficulty data. The hold-
out cross-validation set was 2.4 hours (34,581 samples) of labeled data from subjects 
not contained in the supervised-training or context-learning sets. 

To compare the performance of the different approaches, we use the correlation 
coefficient between the estimated driving difficulty (the scalar 1-100 values) and the 
ground-truth driving difficulty generated by the human labelers. To baseline the re-
sults, we also asked human labelers to generate difficulty labels for the same round on 
subsequent days, and asked different human labelers to generate difficulty labels, and 
compared their results to other labelers. This yields a correlation for how consistent 
humans are with themselves, and how consistent different persons are with each 
other. The results are summarized in Fig. 3. In terms of correlation coefficients, all 
context-based difficulty classifiers outperform those that do not use context recogni-
tion. The context-based linear dynamical systems (ρ=0.76) and the context-based 
ANN (ρ=0.73) perform to the consistency level of different persons with each other 
(ρ=0.74). The best non-context-based classifier, the ANN, achieved a statistically 
significantly worse correlation of ρ=0.56. 

Another measure of performance is the receiver operating characteristic (ROC) 
area under curve (AUC) measure [3]. In our case, this measures the probability that a 
difficulty estimate will agree with a ground-truth label that the situation is “too  
difficult,” cf. Section 4.1.2. The results are summarized in Fig. 4. Once again, all 
context-based classifiers outperform those that do not use context recognition. The 
best performer was the context-based linear dynamical system (AUC=0.92), which 
performed as well as the self-consistency of human labelers (AUC=0.87). The best 
non-context-based classifier, the linear mapping, achieved a statistically significantly 
worse result of AUC=0.80. Thus, the best context-based classifier reduces the AUC 
error rate by almost 60% over those classifiers that do not use context recognition, 
achieving human levels of performance on both correlation and AUC measures. 

6   Conclusions and Future Work 

We have presented a context-based semi-supervised machine-learning approach to 
identify difficult driving situations. We showed that context-based classifiers outper-
form those that do not use context recognition and that a context-based linear dynami-
cal system can achieve human-like performance on real-world experimental data. In 
future work, we plan to look at techniques for automatically adapting the generalized 
contexts to the behavior of a new driver. This will create contexts that are representa-
tive of the actual person-specific driving style. In addition, because we have much 

                                                           
2 An ANN with 50 hidden units performed better than other hidden-layer sizes on cross-

validation data, which is, incidentally, close to the number of contexts discovered by our un-
supervised context-learning algorithm on this data set. 
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more unlabeled data than labeled data, we want to look at bootstrapping techniques 
for the difficulty scorer. 

In the experiments so far, we have applied this technique within the realm of driver 
overload. In the future, we plan to change our focus to look at the more common 
condition of driver underload. By underload, we mean those situations that become 
potentially dangerous because the driver is distracted, inattentive, drowsy, or bored. 
We plan to extend the context-based approach to unsupervised learning approach in 
order to identify unusual, potentially dangerous driving situations due to underload. 
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