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Abstract. The EEG for use in augmented cognition produces large amounts of 
compressible data from multiple electrodes mounted on the scalp. This huge 
amount of data needs to be processed, stored and transmitted and consumes 
large amounts of power. In turn this leads to physically large EEG units with 
limited lifetimes which limit the ease of use, and robustness and reliability of 
the recording. This work investigates the suitability of compressive sensing, a 
recent development in compression theory, for providing online data reduction 
to decrease the amount of system power required. System modeling which in-
corporates a review of state-of-the-art EEG suitable integrated circuits shows 
that compressive sensing offers no benefits when using an EEG system with 
only a few channels. It can, however, lead to significant power savings in situa-
tions where more than approximately 20 channels are required. This result 
shows that the further investigation and optimization of compressive sensing 
algorithms for EEG data is justified. 

Keywords: Compressive Sensing, Electroencephalogram, Power efficient, 
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1   Introduction 

Augmented cognition systems which aim to close the loop on human-computer inter-
actions intrinsically require some form of physiological monitoring of the human. The 
electroencephalogram (EEG), which places multiple recording electrodes on the head 
and records the micro-Volt sized signals produced, is a popular choice for this. The 
eventual level of end-user acceptance of augmented cognition technology will thus be 
strongly dependent on the miniaturization of the EEG technology so that it is discrete, 
comfortable and long-lasting. This last point is also an important factor in the design 
of robust systems. For example, in the dismounted solider scenario the EEG equip-
ment may have to operate reliably over many days while the solider is out of contact 
with friendly forces. Also, when using EEG devices with people with learning diffi-
culties, physically large systems requiring frequent battery changes could be a major 
impediment to producing reliable and repeatable results. 

It has been shown [1] that power consumption, and in turn the battery size, is the 
major determining factor in the overall device size and system lifetime. For wireless 
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EEG systems (which are potentially more discrete and wearable) most of the system 
power is consumed by the wireless transmitter, and thus it is desirable to compress the 
raw EEG data in real-time on the wearable device, in order to reduce the amount of 
data to transmit, and thus increase the operating lifetime or decrease the battery size. 

This paper investigates applicability of compressive sensing, a recent development 
in compression theory, for this online data compression. An overview of compressive 
sensing theory is given in Section 2, but the work here assumes, based upon previous 
studies with EEG data [2] as well as in applications such as MRI where compressive 
sensing has been used very successfully [3], that compressive sensing can be used to 
achieve an acceptable compression ratio and reconstruction error. Instead, the focus 
here is on investigating the computational complexity of the method, and the implica-
tions of this for its implementation in an online, low power system. 

Based upon the system modeling presented in Section 3, it is found that compres-
sive sensing is not a beneficial compression technique when applied to an EEG sys-
tem consisting of only a few channels, as commonly used in augmented cognition 
systems. However, as more channels are used, and many systems may commonly use 
128 or more channels, the compressive sensing scheme can lead to a significant re-
duction in the overall power consumption. These results are presented, and the impli-
cations discussed, in Section 4. 

2   Compressive Sensing Overview 

The concept of compressive sensing [4] and [5] is based on the fact that there is a 
difference between the rate of change of a signal and the rate of information in the 
signal. Traditional Nyquist sampling, putting the signal into the digital domain ready 
for wireless transmission, is based on the former. The Nyquist theorem states that it is 
necessary to sample the signal at a rate at least twice the maximum rate of change 
present. A conventional compression algorithm would then be applied to all of these 
samples taken to remove any redundancy present, giving a reduced number of bits 
that represent the signal. 

In contrast, compressive sensing exploits the information rate within a particular 
signal. Redundancy in the signal is removed during the sampling process itself, lead-
ing to a lower effective sampling rate. Provided certain conditions are satisfied [5], 
sampling at a sub-Nyquist rate the signal can still be accurately recovered.  

To illustrate this, consider an EEG signal of interest x which is a vector of N digital 
samples; i.e. x[n] where n =1, 2 … N. Then assume that this signal can be represented 
by a projection onto a different basis set: 
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where s is a N×1 basis function vector and Ψ is a N×N basis matrix. The matrix s can 
be calculated from the inner product of x and Ψ: 

 

〉Ψ〈= iis ,x . 
 

(2) 
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For example, if Ψ is the Fourier basis set of complex exponential functions, s is the 
Fourier transform of x and both s and x represent the signal equivalently, but in dif-
ferent domains. In compressive sensing Ψ is chosen so that s is sparse – a vector is K-
sparse if has K non-zero entries and the remaining N–K entries are all zero. s is thus a 
more compact representation of the signal than the original x. 

Similar to this projection, assume that x can be related to another signal y: 
 

Φxy =  
 

(3) 

where y is a M×1 vector and Ф is a matrix of dimensions M×N where M<N. Thus: 
 

ΦΨsy = . 
 

(4) 

Provided that Ф is correctly chosen so that no significant information is lost during 
the reduction in dimensionality, it is possible to use Ф to sample the sparse signal s, 
rather than the original signal x to give an output vector y which has only M entries  
rather than the original N. If M<N data compression is thus achieved, and the signal y 
would be transmitted from the portable EEG unit. It can be shown [5] that this tech-
nique is possible if Ф and Ψ are incoherent; that is if the elements of Ф and Ψ have 
low correlation.  

Given a compressed measurement y at the receiver, the signal x can be recon-
structed by solving the L1 problem: 

 

1
min

l
s

s Nℜ∈
 subject to 〉Φ〈= Ψs,iiy  

 

(5) 

which finds the vector s with the lowest L1 norm that satisfies the observations made. 
This is then easily converted back into x. In general, the L1 minimization problem is 
non-trivial and computationally complex, but there is no need for this to run online in 
the portable EEG unit. The EEG signal x will be sampled as signal y, and these  
samples wirelessly transmitted to a base station which will then regenerate x from y 
offline. The fact that compressive sensing based data compression has all of its com-
putational complexity in the backend, where power and size constraints are not as 
stringent is a major factor motivating its investigation. 

Previous work, [2], using Gaussian Random matrices with independent and identi-
cally distributed random variables or the Bernoulli matrix as the measurement matrix 
Ф has shown promising (although not conclusive) results on the application of com-
pressive sensing theory to EEG signals. However, the optimal choice of N and M, 
which set the amount of data compression but also reconstruction error, and the 
choice of optimization algorithm for the reconstruction are still open questions.  

3   System Modeling and Feasibility Analysis Framework 

The answering of these open questions is not the focus of this work. Before consider-
ing them it is instead essential to assess the feasibility of the overall scheme from the 
power point of view: the aim of compression must be to reduce the system power 
consumption so it is necessary to assess whether this is achievable. There is little 
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practical point in optimizing the parameters identified above if this decrease is system 
power is not achievable.  

An investigation of this can be carried out by considering the simplified EEG sys-
tem model from Figure 1a. This incorporates an input instrumentation amplifier to 
amplify the small EEG signals from the head, an analogue-to-digital converter (ADC) 
to convert the EEG signals into the digital domain ready for transmission, and a 
transmitter. Given this, the system power consumption for a C channel system (Psys) is 
given by: 

 

( )RJfPPCP sADCAmpsys ++=  
 

(6) 

where Px is the power consumption of block x from Figure 1a, fs is the ADC sampling 
frequency, R the number of bits per sample and J the net transmission power per bit 
such that JfsR gives the transmitter power consumption. It is assumed that band-
limiting of the EEG signal is incorporated into the instrumentation amplifier. 
 

  
 

a) A standard EEG unit. b) An EEG unit incorporating compres-
sive sensing. 

Fig. 1. Simplified EEG system model to enable power modeling 

For comparison, Figure 1b illustrates the necessary modifications required to in-
corporate compressive sensing into the EEG system. The compressive sensing is  
implemented in the discrete domain and all that is required is a block to generate the 
measurement matrix Ф which would be used to select a random set of samples to 
form y. Elements in Ф form a pseudo-random sequence following a particular prob-
ability distribution.  

Given this, the system power consumption per channel (Psys_cs) is now modified to: 
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(7) 

Here the instrumentation amplifier and ADC power consumptions are unchanged, but 
three extra terms representing the extra hardware required are also present: a random 
number generator (PRNG) is used to generate the Ф matrix; a DSP or microcontroller 
(PDSP) is used to carry out the matrix multiplications from (4); and a synchronization 
unit (PSync) is used so that Ф matrix does not need to be transmitted – it can be recon-
structed at the receiver based upon the known pseudo-random sequence and a seed. 
Only one of each of these blocks is required regardless of the number of channels in 
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the system. In addition to these blocks, the transmitter power consumption has 
changed in a number of ways. 

Firstly, the power required to transmit the number of data bits (CJfsR in (6)) has 
been reduced by a factor of M/N. This corresponds to the compressive sampling in (3) 
where there is a reduction in dimensionality between x and y. In addition, however, it 
is necessary to also transmit S bits of extra data corresponding to the synchronization 
required between the EEG unit and the receiver to regenerate the Ф matrix. Again the 
number of bits needed does not depend on the number of channels present as the same 
Ф matrix will be used for all channels. 

To assess the feasibility of compressive sensing based systems in low power port-
able EEG equipment it is thus simply a matter of comparing (6) and (7) using realis-
tic, and state-of-the-art, figures. For this, five separate blocks need to be considered. 
These are discussed in turn below and the end figures used, incorporating some 
rounding and safety factors, are summarized in Table 3. 
 
Instrumentation amplifier. The input amplifier is responsible for amplifying the 
small EEG signals detected on the scalp (typically in the range 2 µV to 500 µV) so 
that they match the input range of the analogue-to-digital converter. In addition it is 
assumed that the signal is band-limited (to the approximate range 0.5 Hz to 70 Hz) in 
this stage. The performance of a range of state-of-the-art integrated circuit EEG am-
plifiers is illustrated in Table 1. 

Table 1. A comparison of state-of-the-art EEG suitable instrumentation amplifiers 

Reference [6] [7] [8] [9] [10] [11] [12] 

Gain [dB] 40 44 77 40 44 48 38 

Bandwidth [Hz] 30 1000 600 500 200 100 200 

Input referred 
noise integrated 
over bandwidth 

[µVrms] 

1.6 1.5 0.26 10 1.3 0.59 0.89 

Process technol-
ogy [µm] 

1.5 0.35 1 3 0.35 0.5 3 

Supply voltage 
[V] 

2.5 1 5 2.5 1 3 2 

Power consump-
tion (PAmp) [µW] 

0.9 1.4 3,000 75 50 7 34 

 
Analogue-to-digital converter. The ADC is responsible for digitizing the EEG ready 
for transmission, and the core parameter of interest is the resolution which sets the 
number of bits taken per sample and the end level of quantization noise. If any d.c. 
offset in the EEG signal is removed by the instrumentation amplifier a resolution of 
10-12 bits is generally sufficient for the clinical recording of the EEG [13]. Given 
this, and the approximate 200 Hz sampling rate required, the performance of a selec-
tion of state-of-the-art ADCs is illustrated in Table 2. Thus, based upon Table 1 and 
Table 2, an overall power consumption for the instrumentation amplifier and the ADC 
of 2 µW is assumed to be reasonable. 
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Table 2. A comparison of state-of-the-art ADCs with suitable resolutions and sampling rates 

Reference [11] [14] [15] [16] [17] [18] 

Resolution (R) [bits] 11 8 12 10 10 10 

Sampling rate (fs) [kS/s] 8 1000 0.5 0.7 100 3.2 

Process technology [µm] 0.5 0.18 0.18 0.8 0.09 0.5 

Supply voltage [V] 3 0.6 1 2 0.65 1.2 
Power consumption (PADC) 

[µW] 
23 0.4 0.2 2.3 27 0.055 

 
Random number generator. An example random number generator for use in gen-
erating the Ф matrix is given in [19], and as [19] also contains a comparison with 
other random number generators with respect to bit rates and power consumption, it is 
taken to be representative. This operates at 5V on a 0.35 µm process consuming 2.9 
µW for an output data rate of 500 bps. 
 
Processor unit for matrix multiplications. The matrix multiplications to carry out 
the compressive sensing will need to be implemented in either a dedicated digital 
signal processing chip or a microcontroller. The overall power of this depends 
strongly on the specifications of the model chosen for use. To be representative here, 
the estimates are taken based upon the popular TI MSP430 family, although possibly 
lower power dedicated components may be available. 

In addition, the complexity of the multiplication operation depends on the size of 
the matrix used. In general for an N×N matrix it is an O(N3) process [20]. In the case 
for compressive sensing, however, where the Ф matrix is M×N this bound reduces to 
O(M1.594N) [21], significantly reducing the power required. Even so, based upon a Ф 
resolution of 16 bits, for any reasonable M and N it is likely that the MSP430 will 
have to be operated at the maximum clock frequency of 1 MHz, corresponding to an 
active mode power consumption of approximately 352 µW [22]. It is unlikely that 
portable EEG systems will be designed to have more than 64 channels, hence this 
power rating is considered to be the worst case scenario for systems having 64 or 
smaller number of channels. 
 
Synchronization unit. For the purposes of the analysis here PSync and S are assumed 
to be negligible: they are essentially one time (start-up) operations that require the 
generation and transmission of approximately 48 bits (16 to initiate the random num-
ber process and 32 for the synchronization with the receiver). Compared to a continu-
ous data rate in the range of kbps even for compressively sensed EEG this is deemed 
negligible. 
 
Transmitter. The figure for J, the net energy per bit transmitted is simply taken from 
[23] which summaries the performance of several off-the-self transmitters finding that 
50nJ/b is a conservative figure which should be readily achievable in most usage 
situations, and 5nJ/b is a more speculative figure for what may be possible. In this 
work this speculative 5nJ/b figure is used. 
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Table 3. Summary of the model parameters used and their justification 

Parameter Symbol Value Reasoning 

Front end power PAmp + PADC 2 µW From Tables 1 and 2. 

Random number generator 
power 

PRNG 3 µW From [19]. 

Matrix multiplication power PDSP 352 µW From [22] and discussion above. 

Seed and synchronization 
power 

PSync 0 µW 
From discussion above assumed 

negligible. 
Transmitter energy required per 

bit transmitted  
J 5nJ/b From [28]. 

Net number of samples taken:  M Variable 
The effect of this will be investi-

gated in Section 4. 
Compressive sensing frame 

size:  
N 750 

Arbitrary choice to illustrate one 
performance point. 

Nyquist sampling frequency  fs 200 kS/s 
From standard EEG specifica-

tions [13]. 

ADC sampling resolution  R 16 bits Idealized value 

Bits required to initialize ran-
dom number process and syn-

chronize with receiver  
S 0 bit 

From discussion above assumed 
negligible 

Number of channels in the 
system  

C Variable 
The effect of this will be investi-

gated in Section 4. 

4   Results and Discussion 

Given the figures from Table 3 the implications of (6) and (7) can be investigated. 
Fig. 2 shows how the ratio M/N, which determines the amount of compression 
achieved as well as the end reconstruction error, affects the system power. In Fig. 2, N 
is arbitrarily set to 750 samples to limit the size of each matrix multiplication re-
quired. As may be expected, increasing M results in transmitting more data and so the 
system power consumption increases. The overall power consumption is also seen to 
be a strong function of the number of channels used.  

This is illustrated more clearly in Fig. 3 which takes a compressive sensing operat-
ing point of M=80, N=750, and shows how the system power consumption varies with 
the number of channels present when compressive sensing is and isn’t present. From 
this it is seen that for this operating point a compressive sensing based system is only 
feasible if more than 22 channels are to be present. When fewer channels than this are 
needed it is preferable to simply transmit the raw data. 

This potentially has significant implications for augmented cognition applications 
of the EEG. For example, many augmented cognition applications such as [24] and 
[25] are using in the region of six channels. If this is sufficient for use there is no 
benefit to a compressive sensing based system, and optimizing the reconstruction 
performance and answering the open questions about basis functions and similar is 
not of practical interest at this time.  
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Fig. 2. The trade-off between the number of measurement samples taken (M), the number of 
channels used and the total system power consumption 
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Fig. 3. The trade-off between the system power consumption and the number of channels (C) 
used for M/N=80/750 illustrates that a compressive sensing based system is only feasible when 
more than 22 channels are used 

In contrast, there are other augmented cognition systems such as [26, 27] which are 
using 128 or more channels for recording. In this situation the use of compressive 
sensing is highly beneficial, with a reduction in system power consumption by 
1.5mW being achievable for a 128 channel system. Using a conventional 30mWh 
small coin cell battery this could increase operational lifetime from 13 hours to 36 
hours. In turn this can lead to significant improvements in the reliability, robustness 
and ease of use of systems allowing the accurate collection of physiological data. 
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5   Conclusions 

Online data compression can be of significant use in facilitating the operation of 
portable EEG units from physically small batteries over a long period of time. In turn 
this aids the reliability and robustness of the overall system as the device is easier to 
use and more comfortable to wear. This paper has quantified the feasibility, from a 
power point of view, of using compressive sensing in order to provide this online 
data reduction. 

Compressive sensing is a recent development in compression theory that states that 
it is possible to effectively sample a signal at a sub-Nyquist rate and yet still be able to 
accurately reconstruct the signal. Assuming that acceptable signal reconstruction is 
possible, this paper has presented a system modeling framework that quantifies the 
required power overhead for the compression system. 

It was found that the feasibility of a compressive sensing based EEG system is a 
strong function of the number of channels present in the system; no benefit is present 
when less than 22 channels are needed (for the case considered here), but large power 
savings can be made when high numbers of channels are present. The feasibility of a 
compressive sensing based EEG system thus varies on an application-by-application 
basis, and the framework presented here can be used to assess this.  

Given this result, there are potential benefits to using a compressive sensing sys-
tem. Future work will thus focus on answering the many open questions still present: 
for example what basis functions and compression ratios can be used to minimize the 
reconstruction error.  
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