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Abstract. Previous research has demonstrated that EEG data can be used to 
identify and remove unintentional responses from a data set (guesses and slips).  
This study sought to determine if removing this error variance has a significant 
impact on the interpretation of a trainee’s performance. Participants were taught 
to recognize tank silhouettes.  Multiple linear regression models were built for 
each participant based on three sets of their data: 1) all trials of their perform-
ance data, 2) only trials that were learned according to a state space analysis, 
and 3) their intentional data as identified by EEG.  When compared to an expert 
model, each of the three models for every participant yielded a different diagno-
sis, indicating that filtering performance data with EEG data changes the inter-
pretation of a participant’s competence. 
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1   Introduction 

There is a growing movement to incorporate measures of physiological and neuro-
logical data collected from warfighters into military systems.  The premise is that the 
systems could make intelligent adaptations on the basis of those measurements, in 
order to increase the overall effectiveness of the warfighter [1].  Training seems to be 
a particularly promising field for the incorporation of these data [2].  Many research-
ers in this area have proposed monitoring physiological data to ensure that the trainee 
is being kept at an optimal level of alertness and engagement during the exercise – 
neither bored nor overwhelmed [3].   

Of course, alternative applications of neurophysiological data in training systems 
have been suggested as well. This work follows up on the proposal that electroe-
ncephalography data (EEG) could be used to support the process of diagnosing a 
trainee’s underlying competence [4]. Currently, trainers make inferences about a 
trainee’s competence based on the pattern of correct and incorrect actions that he or 
she takes during an exercise. While these data are obviously highly relevant, it has 
long been known that performance is not a perfect reflection of competence.  Some 
actions, for example, represent guesses (lucky or unlucky) and slips (unintentional 
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actions, which are more likely to occur when a person is working quickly) and thus 
are not representative of stable cognitive patterns.   

In fact, it has been shown that EEG data can reliably discriminate between inten-
tional and unintentional responses [5].  While these results are suggestive of the po-
tential for neurophysiological data to support the accomplishment of training goals, 
many questions still remain.  Of particular interest is the question of whether or not 
distinguishing between intentional and unintentional responses has any practical im-
pact on the actual diagnosis of trainee performance.  In other words, it has yet to be 
demonstrated that diagnosing only the intentional behaviors will lead a trainer to draw 
different conclusions about a trainee’s underlying competence from what he or she 
would have concluded based on a diagnosis of the entire set of performance data.   

We address this issue in the current study, using the Brunswik Lens Model [6] as 
our paradigm for diagnosing underlying trainee competence in a decision-making 
task. According to this paradigm, a mathematical model is derived relating trainee 
decisions to the characteristics of the environment or stimulus being processed.  This 
model is interpreted as indicating which characteristics the trainee is using, and to 
what degree, when making an identification decision.  An analogous model is built on 
either expert performance data or perfect performance data and the two models are 
compared. Discrepancies between the two models are interpreted as weaknesses in the 
student’s strategy of using characteristics or cues to make decisions.   

Our hypothesis is that using EEG data to remove guesses and slips (unintentional 
responses) from a trainee’s performance data set will result in a different interpreta-
tion of that trainee’s competence than would have been derived if the entire set of 
performance data had been modeled.  As an additional control condition, we used a 
statistical technique to try to identify and remove guesses from each trainee’s per-
formance data set, to see if the EEG data had any impact over and above that which 
could be achieved by a simpler and cheaper methodology.   

2   Method 

2.1   Participants 

Ten right-handed volunteers, 7 women and 3 men, over the age of 18 were recruited 
for this study. The mean age of the participants was 28 years (SD = 11; range: 18-48). 
Each received financial compensation for their participation.  

2.2   Apparatus 

A 256-channel HydroCel Geodesic Sensor Net (Electrical Geodesics, Inc., Eugene, 
OR) was used to acquire the EEG data.   All recordings were referenced to Cz and all 
of the electrodes were kept below 70 KΩ.  The EEG was bandpass filtered (0.1- to 
100-Hz) and sampled with a 16-bit analog-to-digital converter at 250 s/s.  Eprime© 
(Psychology Software Tools, Pittsburgh, PA) was used for stimulus control.   

2.3   Materials 

Participants were trained on identification of military vehicles in a computer-based 
learning program created in EPrime©.  The images used were bitmap files scanned 
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from images selected from the United States Marine Corps unclassified anti-armor 
training materials.  They consisted of eight tank silhouettes: the ASU85, Centurion, 
Chieftain, Leopard, M60A1, T62, T72, and ZSU23-4.  The program presented a  
bitmap file of the tank silhouette, allowed a fixed amount of time for a response,  
provided feedback, and kept a record of the stimuli presented as well as participant 
responses including reaction times.  Trials were presented in a block randomized or-
der so that for each consecutive eight trials each stimulus was presented once but in 
random sequence.   

2.4   Procedure 

After completing the informed consent paperwork, each participant was fitted with a 
256-channel sensor array, and then began the computer-based learning task, which 
was divided into four stages.  The first stage consisted of 120 trials divided into 15 
randomized blocks of the eight tanks. The goal of this stage was to familiarize partici-
pants of the association between tank names and response keys.  A target tank name 
was displayed in the center of the screen.  Near the bottom of the screen a representa-
tion of the response keys with the tank names indicated on each key was displayed.  
The participant’s task was to press the corresponding key as quickly as possible.  
Pressing the correct response key initiated the next trial in the program. 

The goal of the second stage was to oblige participants to remember which re-
sponse keys corresponded to each tank name.  The task was identical to the task in the 
first stage except that the labeled keyboard display was removed.  Participants en-
gaged in seven randomized blocks of the eight tank names for a total of 56 trials.  
Feedback was given after each trial, and the next trial was initiated by a correct key 
press by the participant.   

The third stage consisted of the primary learning task in which participants were 
asked to learn to identify the tank silhouettes.   Each trial began with presentation of 
a silhouette in the center of the computer screen.  Participants had 2000 milliseconds 
to identify the silhouette by pressing the appropriate response key.  Immediately fol-
lowing the response, or if the response time ended before a key press was made, the 
participant was given feedback including information about the correctness of their 
response and the correct name of the tank.  The feedback remained on the display for 
2000 milliseconds, or until the participant pressed a key, upon which the computer 
screen went blank for 100 milliseconds and then the next trial began.  This stage  
proceeded through 400 trials divided into 50 randomized blocks of the eight tank 
silhouettes.   

Finally, the fourth stage consisted of the testing stage. Similar to the previous task, 
participants were asked to identify the tank silhouettes in a brief period of time (1000 
milliseconds) by pressing the appropriate key.  No feedback was provided, however, 
at any time during this stage.  There were 32 test trials divided into four randomized 
blocks of the eight tank silhouettes.   

Following these four stages participants filled out a standard questionnaire regarding 
the comfort of the 256-channel sensor array net and a debriefing questionnaire regard-
ing the learning task.  This was comprised of Likert scale ratings of both the difficulty 
of the learning task and usefulness of the feedback as well as questions in which  
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participants were asked to describe the features that they used to identify the tank sil-
houettes and any learning strategies they may have used during the experiment.   

3   Results 

In preparation for modeling, the eight tank images were decomposed into a set of 7 
features, for example, the ratio of the length of the gun barrel to the length of the ve-
hicle body.  This was accomplished partly through visual inspection by the authors 
and partly using subjective reports from pilot subjects.  These features were sufficient 
to uniquely discriminate each of the images.  The following paragraphs describe the 
steps used to build models.  It should be noted that separate models were built for 
each participant and data were never combined across participants.   

Each participant’s data from stage three of the procedure (400 trials) were assem-
bled into a table that contained one row per trial, and detailed the actual stimulus, the 
participant’s response, the participant’s reaction time and the values that those seven 
features took on for that stimulus.  The analysis tool pack from Microsoft Excel ® 
was used to conduct a multiple linear regression on each participant’s complete data 
set from stage three, with the constant set to zero, resulting in the first of the three 
models for each participant.   

While logistic regression would technically have been more appropriate given the 
nature of the response (a vehicle name), a logical ordering of the vehicles (based on 
similarity) was imposed and a comparison of the two regression techniques indicated 
that they derived representations that were equally predictive of the participants’ re-
sponses.  The linear regression representation was used for this study because it pro-
vided cue weights that were easier to interpret within the context of the Brunswik 
Lens Model.   

Next, following [7], state space analyses were applied separately to each partici-
pant’s performance on each of the eight stimulus images, in an attempt to estimate the 
trial (if any) at which each image was reliably learned.  Responses made before these 
learning points were discarded (as guesses) and the subset of performance data re-
maining was again analyzed by multiple linear regression.   

The results of the state space analyses were also used as inputs to support the  
single trial analyses of the EEG data that was collected during stage three of the pro-
cedure.  EEG-based indices were developed to discriminate between intentional  
(or learned) responses, guesses and slips.  More details on the single trial analysis 
procedure that was applied can be found in [5].  Once the single trial analyses were 
complete, the results were used to identify and discard all of the responses that were 
not flagged as intentional and learned by the EEG signal.  The remaining subset of 
data was used to generate the third model for each participant, following the proce-
dure described above.  Beta weights for each of the three models built for each par-
ticipant can be found in Table 1.   

In order to apply the Brunswik Lens Model paradigm, we needed to create one last 
model using hypothetical data from a “perfect participant.”  This was accomplished 
by using the correct stimulus images as the criterion in a regression analysis, instead 
of the responses given by a real participant.  The beta weights and the 95% confi-
dence intervals around those beta weights are presented in Table 2.   
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Table 1. Cue weights from Regression Equations Built from Three Different Subsets of Each 
Participant’s Data   

CUES 1 2 3 4 5 6 7 
Participant #1 

All 0.16 3.07 0.77 -0.79 1.22 0.00 1.71 
SSA 0.05 3.40 0.91 -0.93 1.21 0.00 1.89 
EEG -0.28 5.20 1.32 -1.40 1.74 -0.01 2.18 

Participant #2 
All -0.23 7.02 1.65 -1.55 3.02 -0.02 1.64 

SSA -0.37 7.17 1.70 -1.62 2.91 -0.02 1.83 
EEG -0.26 5.22 1.34 -1.39 1.75 -0.01 2.18 

Participant #3 
All 0.60 2.76 0.36 -1.97 2.17 0.01 0.40 

SSA -1.02 0.00 -0.26 -0.38 -1.11 0.03 3.25 
EEG -0.21 4.98 1.26 -1.37 1.64 -0.01 2.17 

Participant #4 
All 0.71 -0.67 0.28 -1.23 0.46 0.02 0.74 

SSA -0.11 -4.14 0.50 0.00 1.38 0.05 0.92 
EEG -0.27 4.95 1.29 -1.37 1.71 -0.01 2.15 

Participant #5 
All 0.88 4.81 -0.57 -2.06 1.16 0.00 0.94 

SSA 0.71 5.10 0.13 -1.64 0.59 -0.01 1.81 
EEG -0.30 5.09 1.32 -1.39 1.76 -0.01 2.17 

Participant #6 
All 0.46 -1.11 -0.67 -1.46 -0.30 0.03 0.96 

SSA 0.72 0.00 0.36 -0.73 0.00 0.01 1.64 
EEG -0.18 5.05 1.31 -1.31 1.59 -0.01 2.22 

Participant #7 
All -0.14 4.58 1.13 -1.33 1.75 -0.01 1.97 

SSA -0.11 3.92 1.18 -1.09 1.44 0.00 2.09 
EEG -0.22 4.80 1.37 -1.24 1.64 -0.01 2.19 

Participant #8 
All 0.44 5.60 -0.38 -2.89 1.56 0.00 1.14 

SSA -0.07 4.92 1.04 -1.72 2.00 -0.01 1.71 
EEG -0.36 5.26 1.42 -1.38 1.88 -0.01 2.18 

Participant #9 
All 0.06 -0.46 -1.18 -0.98 -0.19 0.04 1.10 

SSA 0.24 0.17 -0.45 -1.07 -0.19 0.02 1.59 
EEG -0.27 4.94 1.32 -1.33 1.69 -0.01 2.18 

Participant #10 
All 0.88 3.32 -0.05 -1.38 0.31 0.00 1.55 

SSA 0.85 0.00 0.14 -0.47 -0.46 0.01 1.87 
EEG -0.38 5.08 1.43 -1.34 1.89 -0.01 2.16 

Table 2. Beta weights and 95% confidence intervals in hypothetical perfect participant model   

CUES 1 2 3 4 5 6 7 
Perfect Performance Model 

Lower 95th 
confidence 

interval -0.37 4.43 1.20 -1.44 1.43 -0.01 2.14 
Beta weights -0.25 4.93 1.38 -1.27 1.70 -0.01 2.19 

Upper 95th 
confidence 

interval -0.12 5.43 1.56 -1.11 1.97 -0.01 2.24 
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Table 3. Summary of beta weight comparisons between the perfect participant’s model and 
each of the three models built per participant  

 # of Beta Weights 
 β > Upper Bound 

OR  
β < Lower 

Bound on P.P. 
Model 

Lower < β < Upper 
Bounds of P.P. Model 

Participant 1 
All 7 0 

SSA 7 0 
EEG 0 7 

Participant 2 
All 6 1 

SSA 6 1 
EEG 0 7 

Participant 3 
All 7 0 

SSA 7 0 
EEG 0 7 

Participant 4 
All 6 1 

SSA 7 0 
EEG 0 7 

Participant 5 
All 6 1 

SSA 6 1 
EEG 0 7 

Participant 6 
All 7 0 

SSA 7 0 
EEG 0 7 

Participant 7 
All 3 4 

SSA 6 1 
EEG 0 7 

Participant 8 
All 6 1 

SSA 6 1 
EEG 0 7 

Participant 9 
All 7 0 

SSA 7 0 
EEG 0 7 

Participant 10 
All 6 1 

SSA 7 0 
EEG 1 6 

 
The final step was to conduct the diagnosis of each participant model.  This was 

accomplished by comparing each of the beta weights in the participant’s model to the 
95% confidence intervals around the beta weights in the perfect model.  If a beta 
weight fell outside of a confidence interval, the qualitative interpretation would be 
that the participant did not use information available in that cue appropriately.   
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For example, consider the regression equation built for participant #1 using all of 
his or her data.  The beta weight on the second cue is 3.07.  The perfect participant 
model shows a beta weight of 4.93, and the lower bound on the 95% confidence in-
terval around this beta weight is 4.43.  This could be interpreted as saying that, ac-
cording to the participant’s data, the participant is under-utilizing the information 
available in this cue or characteristic of the vehicle images.   

Next, consider the same cue for participant #2.  This participant has a beta weight 
of 7.02 on the second cue, which is above the upper bound of 5.43 on the 95% confi-
dence interval around the beta weight in the perfect participant’s model.  It would 
appear that participant #2 over-relies upon information contained in this feature of the 
vehicle images when making his or her identification decision.    

The results of this comparison are summarized in Table 3.  The comparison of  
interest is, for each participant, the interpretation of the accuracy of his or her cue 
usage to make identification decisions within each of the three models.  More spe-
cifically, an examination of the table reveals a high degree of overlap in the first two 
rows of each participant’s section of the table, and a large deviation in the third row 
of each participant’s section of the table.  In other words, the model based on EEG 
information led to a different diagnosis of competence for every single one of the 10 
participants.   

4   Discussion 

Currently, the measurement and analysis of electroencephalographic (EEG) signals 
can be a complicated, cumbersome and costly procedure.  While there has been some 
scientific work suggesting that single trial analysis of EEG data can distinguish be-
tween intentional and unintentional responses given in a training context [5], that is 
only a first step towards determining the potential practical value added of using neu-
rophysiological data in a real training setting.  In this paper, we investigated the ques-
tion of whether or not making this discrimination at a response-by-response level has 
the potential to influence a more global diagnosis of a trainee’s cognitive strategy.  If 
discriminating intentional from unintentional responses doesn’t change the ultimate 
diagnosis of a trainee’s strengths and weaknesses, then it is unlikely that this extra 
step is worth the required resources.   

We used multiple linear regression equations to estimate the extent to which a 
trainee was over-, under- or appropriately using the various features of tanks to help 
identify them.  We evaluated the appropriateness of their cue usage by comparing cue 
weights from their strategy regression equations to cue weights from the strategy re-
gression equation of a hypothetical perfect participant.  More specifically, we con-
cluded that a participant was appropriately using a particular vehicle feature if his cue 
weight on that feature fell within the 95% confidence intervals around the perfect par-
ticipant’s cue weight for that feature.   

In total, we built three equations for each participant.  We built the first equation 
using all of that participant’s data.  Next, we applied a statistical technique to try to 
discriminate guesses from learned responses.  The second equation for each subject 
was based on only the subset of responses that appeared to be learned according  
to this state-space analysis.  Finally, we used single trial analyses of EEG data to  
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discriminate between guesses, slips and intentional responses.  The third equation for 
each subject was based on only the subset of responses that appeared to be intentional 
according to this neurophysiological analysis.   

As our results clearly demonstrate, when compared to a diagnosis based on the en-
tire set of responses given by a single participant, the statistical technique of identify-
ing learned responses had little impact on the conclusions that a trainer would draw 
about the trainee’s mental strategy.  However, using the EEG-based filter to identify 
intentional responses had a dramatic impact on the conclusions that a trainer would 
draw for every single one of our ten participants.  In each case, the diagnosis would 
flip from indicating that the participant was using few, if any, cues appropriately to 
indicating that the participant was using most, if not all, cues appropriately.  Needless 
to say, these two sets of diagnoses would lead to very different instructional “next 
steps” for these trainees.     

The fact that the use of the EEG filter led to the conclusion that most of the  
trainees were using all of the available information appropriately to make their identi-
fications is not really surprising, given our training methodology.  Remember that 
trainees were given the correct identification of each vehicle after every response.  
What this suggests is that this particular training paradigm led to accurate learning 
and that the trainees may have been further along that learning path than their per-
formance data alone would lead us to believe.     

While this work moves us one step closer to addressing the practical question of 
whether or not the incorporation of EEG-based measurement in a training system has 
value added, it is still not a final answer.  We have demonstrated that the use of an 
EEG-based filter may lead to a different diagnosis of a trainee’s underlying compe-
tence, however these data do not tell us if that diagnosis is, in fact, more accurate.  
The next step, which we are currently working on, is to see if using the EEG-based 
diagnosis to control the instructional response is either more effective or more effi-
cient than relying on the trainee’s entire data set.   

It should be noted that there are also technical challenges that must be overcome, 
even if the EEG-based diagnosis does turn out to be more accurate.  The method we 
used to conduct the single trial analysis of EEG data was largely data-driven and rea-
sonably time consuming.  To truly have practical application in a military training 
system, the EEG analyses would need to be automated and able to run in very-close to 
real-time.   

Finally, of course, the fact that the EEG-based diagnoses differed substantially 
from the full data diagnoses for this particular training context does not guarantee that 
it will always have an impact.  There could easily be many environments in which the 
use of this technology does not confer any advantage.  For example, in slow moving 
domains that allow for a lot of deliberation before taking a single action, we would 
not expect to see a lot of unintentional responses that needed to be filtered out with 
EEG data.  Similarly, in a domain that allowed operators to “undo” an accidental ac-
tion, the use of EEG data to identify these slips would be overkill.  Also, statistical 
techniques to distinguish intentional (or reliable) from unintentional (or unreliable) 
data are likely to be more cost effective then neurological data when there is the op-
portunity to collect a large enough sample of performance data from a trainee.   

Despite the limitations of this study and the possible limitations on the use of this 
technology, we think that this work represents an important step forward towards the 
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goal of effectively incorporating neurophysiological measurement into the assessment 
and diagnosis of trainee performance patterns.  Our data have shown that, at least un-
der some circumstances, the use of EEG data to filter the corresponding set of per-
formance data can have a substantial impact on the conclusions that a trainer would 
draw about the trainee’s underlying knowledge and competence.   
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