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Abstract. One of the major deficiencies with the EEG-based classifiers used in 
today’s laboratory settings is that they are often ill suited for the real world.  In 
many cases the classifiers that were painstakingly developed in the controlled 
laboratory environment become unreliable with increased mobility of the user.  
In addition to increased mobility, many real world scenarios impose con-
straints on data collection that cannot be accommodated by the lab-created 
classifier.  Addressing these issues throughout the development process of 
EEG-based classifiers by building hardware, software, and algorithms in-
tended for use in the real world should result in more dependable classifiers.  
With this approach we were able to collect and classify data on a research ves-
sel at sea, in the desert by night, on dismounted soldiers in the training field, 
and everywhere between. 
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1   Introduction 

Researchers have been interested in developing electroencephalogram (EEG) based 
classifiers for over forty years, in order to enable brain-computer interface (BCI) and 
neuro-feedback applications. Classifiers have been developed to track global activa-
tion state(s) as well as specific cognitive and medically diagnostic states [1-5].  Many 
commercially available EEG systems allow for the simultaneous recording of high 
quality EEG from a large number of scalp locations (128 – 256) in controlled labora-
tory environments and the advent of powerful digital electronics has allowed a shift in 
focus from simple data collection to development and implementation of complex 
signal processing and pattern recognition techniques that can be programmed to run in 
real-time. EEG metrics have been developed to quantify alertness, engagement, 
drowsiness and working memory, and the integration of EEG metrics into the evalua-
tion of Human-Computer Interfaces provided the foundation for establishing new 
fields including  neuroergonomics [1, 6-14].  However, the use of EEG outside of the 
lab was, until recently hampered by high susceptibility of EEG to movement artifacts, 
as well as environmental and physiological noise with amplitudes several orders of 
magnitude larger than the typical EEG amplitude (20-50 µV). Only in the last decade 
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has EEG left the laboratory, and entered the field with the development of portable 
EEG systems that include the acquisition tools and noise rejection techniques  
necessary for high quality data collection in real world environments.  Having these 
tools and systems enables implementation of EEG-based classifiers in real time in the 
real world. 

Real-world, real-time EEG applications must meet certain requirements to be  
relevant and useful. First, the equipment, software and algorithms required for acqui-
sition and processing must be easy to set-up and use. The hardware needs to be  
mobile, lightweight, robust, flexible, and reliable, whereas the acquisition and proc-
essing software should be intuitive and flexible. Finally, the algorithms should be 
developed with real-world applications in mind. While there are a number of poten-
tial approaches to developing real-world, real-time classifiers, at a minimum the 
hardware, software, and algorithm development methodology must be part of the 
overall game plan. 

2   Methods 

2.1   It’s All about the Hardware 

Hardware for in-field acquisition of EEG must address the following issues: portabil-
ity, ease of set-up and use in the field, durability, and minimization of signal  
acquisition artifacts. Mobility and portability requirements translate into a need for 
lightweight, simplified form factors, and preferably a wireless system. Wireless sys-
tems provide maximal flexibility and platform-independence in addition to improving 
durability while reducing environmental artifact during acquisition. To meet ease of 
use requirements, it should be easy to apply by the end user and once applied, it should 
become “transparent” so the user is able to focus on the task at hand (not the equip-
ment). Finally the system should be easy to trouble shoot with minimal set up time.   

Advanced Brain Monitoring (ABM) has developed a system that meets these re-
quirements.  The physical system consists of 3 basic components plus electrodes: a 
skull cap, and electrode placement strip that is integrated into the skull cap, and an 
electronics headset.  The skull cap and electrode placement strip components are size-
matched, and sizing is derived from the Nasium-to-Occipital distance of the end user, 
allowing selection of small, medium or large sizes. The integrated, size-matched skull 
cap and electrode placement strip incorporates the occipital bone placement to ensure 
accurate and easy placement of the electrodes (according to the 10-20 system). This 
set up has the added advantage of allowing easy identification and correction of incor-
rect sizing that could lead to inappropriate placement of the electrodes and collection 
of faulty data. The number of electrodes used is also important in minimizing the set-
up time, maintaining a light weight system, and reducing power consumption re-
quirements that can decrease portability, durability, and flexibility.  With only three 
electrodes, (Fz, Cz, and POz) the ABM system classifies a subject’s arousal state on a 
spectrum from Sleep Onset to High Engagement [6, 15-25]. By adding only three 
additional electrodes, (F3, C3, and C4), cognitive workload states have been deter-
mined in multiple Augmented Cognition scenarios [17, 19, 26 – 30].  Finally, imped-
ances below 5kOhms are not essential, and therefore need not delay the start of data 
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collection. With the current ABM set-up data can be collected and classified with 
impedances as high as 45kOhms, allowing for much greater flexibility in real-world 
environments. All of the above allow the system to be set-up and begin data collection 
quickly in the field setting, and are particularly advantageous in time sensitive settings 
where access to the subject population may be limited or driven by inflexible third 
party events. 

The system used for the majority of data collection to date is a Bluetooth (BT) 
wireless system that allows for true mobility in any setting. Wireless EEG has been 
acquired and passed to PDA’s, desktops, laptops, and mini-laptops; allowing the user 
to move freely in any environment without fear of catching loose wires, while provid-
ing maximal flexibility in the set-up process.  Additional mobility and comfort is 
found in the design of the EEG cap. Unlike traditional EEG caps, that use a chin strap 
to hold the EEG cap in place, the ABM system uses a skull cap design that holds the 
cap in place by applying tension around the head (similar to a head band) providing a 
greater range of normal movement. The end result is hardware that weighs less than 6 
oz including the electrodes, cap, electronics and batteries in a system with maximal 
run times of over 10 hours on two AAA batteries. 

The hardware discussed herein, has a small vertical and horizontal footprint that al-
lows the system to be integrated into multiple configurations on the end-user. The 
condensed size has allowed the system to be integrated with and under, Kevlar and 
safety helmets, fNIR headsets, gas masks and various head mounted eye trackers  
[31-33]. The system design provided the flexibility that accommodated these various 
configurations: the flexible cap and strip material and configuration provided the ro-
bustness needed to maintain good scalp contact required for high quality data acquisi-
tion with minimal noise in the signal. The electronics that provide amplification and 
digitization, as well as BT transmission are encased in a plastic reinforced with Lexan 
material, for high impact resistance. The durability and robustness of the hardware 
system was perhaps best demonstrated during use in live-fire, Simunitions training 
exercises occurring in a rainstorm at Aberdeen proving grounds [34], where the head-
set sustained a direct hit, yet maintained full functionality, continuing to acquire high 
quality data. In the real world, a system that acquires data for a classifier will need to 
be ready for anything, including: rain, misuse, abuse, and neglect- and yet be able to 
continue to collect high quality EEG signals that are the basis of the classifier.  

Ideally, the hardware design should minimally impact the state of the user; they 
should forget that the system is on. Depending on the level of intrusiveness of the 
hardware, the classifications characterizing distraction, work load, or effort described 
may be from the task, from coping with the data collection system, or any combina-
tion of related factors. By incorporating comfort into the original design of the ABM 
system the end result is a system that has been worn for 24 hours of continuous use, 
and has been worn by over 1000 subjects with minimal awareness of the data collec-
tion system.   

2.2   It’s All about the Software 

Real-world software for acquisition of EEG must address the following issues: At 
minimum, the software required for acquisition and processing must be easy to  
install and intuitive to use. Ideally it should also provide mobility options, along with 
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flexible interfaces, inputs and outputs, and reliably collect and save data. The software 
would be of greater assistance to the non-EEG researcher as well as the experienced 
EEG researcher if it were also able to identify and provide feedback regarding arti-
facts associated with environmental noise and/or physiological noise. Finally, the 
software should allow for flexible interaction with third-party software programs to 
ensure maximal applications of the classifiers developed. 

The B-Alert Acquisition software developed by ABM was designed to meet the 
above needs. The software for running data acquisition in the field is less than 50 
megabytes in size, can be installed in under five minutes, and does not require any 
additional third party software or drivers making it truly plug and play. This platform 
allows acquisition through a desktop, laptop, mini-computer, or PDA. As computer 
issues are not uncommon in real-world applications, this system allows for quick  
adaptation to another collection interface to be adapted as needed (either through 
changing to another similar system such as an additional laptop; or changing  
systems completely as needed such as from a laptop to a PDA). With this high degree 
of simplicity and flexibility, researchers are enabled to develop a plethora of experi-
mental designs and applications.   

The software has simple selection options for acquisition and retransmission allow-
ing for observation of the signal quality from a secondary computer. In addition, prior 
to acquisition the software completes both an impedance check and an artifact evalua-
tion for each electrode. Thus, the researcher can have great confidence in the initial 
signal quality. Finally, while in Acquisition mode(s) the software provides helpful 
feedback (regarding artifact as well as overall signal quality) to the end user allowing 
even an untrained EEG technician to quickly recognize and troubleshoot poor EEG 
signal quality. 

The ABM B-Alert Acquisition software suite has been used to provide input from 
EEG into several other third party systems to enable closed-loop feedback systems.  
The algorithms for identifying arousal and workload states may be passed (as would 
any additional algorithms that may developed), as well as the raw EEG signal. These 
options are easily enabled, and can be used to develop and apply real-time feedback 
systems in field operational environments. The configurations enabled in the B-alert 
acquisition software allow researchers to collect the developmental data for real-
world algorithms in the real world. Perhaps equally important, the system also then 
enables application of these algorithms (once developed and validated) in the real 
world. In several recent collaborations with the Lockheed-Martin Advanced Technol-
ogy Laboratory, the ABM software provided outputs via DLL (digital library link) on 
operator levels of engagement and mental workload that were used to drive changes 
in the display of a Tactical Tomahawks Weapons training simulation. The resulting 
closed-loop system provided an 80% reduction in launch time deviations from opti-
mal and a 55% reduction in the number of late launches [26]. 

2.3   Its All about the Algorithms 

Real world algorithms must be flexible, robust, and developed with real-world appli-
cations in mind. To meet these requirements, the following issues will need to be con-
sidered: the design of the initial data collection experiments upon which the classifiers 
will be built, the feature extraction method for model building, the types of classifier 
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models that may be considered, and the validation of the classifier. Ideally, the  
initial experimental design will be informed by the planned methodology for mathe-
matically building the classifier, and these will both inform the validation process. In 
other words, the development of a classifier should be a well-designed rational proc-
ess based on a plan that takes into account the final application(s) envisioned for the 
classifier. 

Experimental design for initial data collection will need to address many aspects of 
the planned research. First, the overall design of the experiment should be considered, 
to ensure proper experimental control of unexplainable variance that may de-stabilize 
the models that are developed. Full factorial designs are not required, but well thought 
out protocols will ensure that the appropriate data (such as ERPs) are in fact available 
for classifier development. It is also essential that all subjects are exposed to identical 
scenarios for the purposes of development- casual changes will lead to noise that will 
negatively impact algorithm development. The experimental design for the initial data 
collection should include an acknowledgement of real-world concerns: and may bene-
fit greatly from at least some real–world data.  

Next, understanding the number and quality of anticipated features to be extracted 
must be taken into consideration in regard to the sample size selected. In general, sta-
ble mathematical models with good generalization ability require a minimum sample 
size that is at least one order of magnitude larger than the number of features ex-
tracted per unit of observation (e.g. a single-trial ERP waveform) and subsequently 
used for classification. Classifiers that are built on a sample of insufficient size tend to 
memorize rather than learn from the sample, which usually results in poor ‘real 
world’ performance on cross-validation in spite of high classification accuracy 
achieved during the model development. This problem is aggravated by complexity of 
the selected classifier (e.g. non-linear classifiers are more vulnerable than linear,  
neural networks with more hidden layer neurons are more easily over-trained than 
simpler architectures) or by non-linear transformations of the input space, typical for 
support vector machines (SVM), that in a non-transparent way significantly increase 
the real number of features (often as ~O(N2) or ~O(N3), where N is the number of 
‘visible’, i.e. nominal features in the original input space). Other issues may also im-
pact the sample size that can be reasonably collected, including access to the appro-
priate subjects.   

Building a classifier (in a broad sense of the word) can take a number of paths, but 
it usually consists of three tightly connected phases: choice of feature extraction 
method(s), choice of feature selection method(s) and finally selection of classifier in a 
narrower sense of the word. Feature extraction methods serve to reduce the dimen-
sionality of the original space containing input variables by determining an appropri-
ate subspace of, in most cases, smaller dimensionality. Principal component analysis 
(PCA) is the most popular technique for dimensionality reduction, but other linear 
transforms (factor analysis, linear discriminant analysis, projection pursuit) or non-
linear techniques (Kernel PCA, multi-dimensional scaling, and self-organizing maps) 
can be used instead. One should note that for low-dimensionality input spaces feature 
extraction can be omitted. Feature selection methods take the original or transformed 
set of N input variables and down-selects a subset of M (M<N) variables that provide 
the best discrimination among the different classes into which signals (e.g. an ERP) 
should be classified. Exhaustive search, branch-and-bound search, sequential forward 
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or backward search, plus-L-take-away-R selection and sequential forward and back-
ward floating search are some of the popular methods available to researchers. The 
key for a successful feature selection is the balance between the optimality of a 
method (i.e. how likely it is to find a local rather than the global minimum) and  
the speed of convergence (e.g. branch-and-bound search is optimal but very slow). 
Finally, a variety of techniques is available that will group similar vectors of selected 
features into few desired classes such as the k-nearest neighbor rule, binary decision 
tree, Bayes classifier, logistic classifier, Parzen classifier, Fisher linear discriminants, 
support vector machines and neural networks.  Because of the existence of so many 
(in some respects overlapping) techniques and ready availability of fast computers 
nowadays, attempts at building a classifier easily turn into a fishing expedition. Ide-
ally, the researcher will understand the goal of the classifier and select the appropriate 
techniques in order to arrive at a solid solution.  

Finally, validation of any classifier must be completed prior to finalization and  
application. Validation may be done on the initial data set using various techniques, 
including bootstrapping, and hold out methods. While such an approach is statistically 
legitimate and can save both time and financial resources, it may not be sufficient to 
ensure true real-world generalized applicability. Therefore, it is highly desirable to 
ensure that once developed, the classifier be cross-validated on a unique dataset dif-
ferent from that used for the development of the classifier. Over time, occasional re-
examination of the classifier’s performance as it is used can also serve to ensure that it 
maintains real-world viability.   

3   Results 

Classifiers that have been successfully collected include both arousal state (sleep on-
set-distraction-low engagement-high engagement) and cognitive workload (low-high). 
Over 1000 subjects have had data collected in over 2000 sessions by over 30 in-house 
technicians at ABM, and our client/collaborators have collected hundreds of addi-
tional subjects with over 50 client/collaborator technicians. Through ABM work and 
that of our collaborators, EEG data has been collected on soldiers in the field at 29 
Palms, in live-fire exercises at Aberdeen Training Grounds inNorfolk, Virginia, and 
Camp Pendleton (San Diego, CA), in vehicles, and in the classroom. EEG data has 
been collected from expert imagery analysts, expert marksman, expert chemistry  
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Fig. 1. From left to right: Engagement levels during marksmanship studies, data collection at 
29 Palms, drowsiness classifications for 29 Palms study 
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students, as well as a plethora of healthy control volunteers, novice marksman, sleep 
disordered patients, and other experimental subjects.  Some exemplar data results are 
shown in Figure 1. 

4   Conclusion 

Investigations of human mental activity have employed EEG recordings for nearly a 
century since the first recordings were made by Hans Berger in 1929 [35]. Today 
EEG is routinely used for overnight sleep studies in the laboratory and in neurology to 
characterize epilepsy and neurological disorders, but the great leaps in EEG research 
can be largely attributed to the wealth of information generated by psychologists and 
neuroscientists using EEG to investigate brain, mind and behavior. Although the rela-
tionships between specific mental states and EEG are just beginning to be understood, 
the foundation of work in detecting global state changes is sufficient to begin devel-
oping practical applications. Our team developed hardware and software to facilitate 
the widespread and routine use of EEG outside the laboratory supporting a growing 
number of applications in education and training, human factors evaluations, military 
operations and market research. Our team developed methods for Psychophysiologi-
cal Profiling that can now be accomplished by integrating EEG and EKG with  
cognitive tests. The result is efficient, inexpensive assessment of alertness, attention, 
learning and memory, providing a quantitative profile of impairment that can be used 
for patients with sleep, neurological and psychiatric disorders. These NeuroAssays 
can be used for diagnostic and treatment outcome evaluations, pharmaceutical inves-
tigations, and to identify potential biomarkers for specific diseases [15-17]. 

Field applications for the EEG technology include real-time assessment of drowsi-
ness for truck drivers or airline pilots in military, industrial or other operational  
settings. The integration of EEG monitoring of operator status offers the possibility of 
allocating tasks between machines and humans based on the operator status.  Intelli-
gent feedback or “closed-loop” systems can facilitate active intervention by the opera-
tor or through a third party (man or machine), increasing safety and productivity.  
Another novel approach to this evolving technology is to radically rethink the design 
of human-machine system interfaces to optimize the flow and exchange of data be-
tween humans and machines. The new discipline of neuroergonomics has taken on 
this challenge combining understanding of the neural bases of cognition and behavior 
with the design and implementation of technology.  Our team is collaborating with 
educators in developing next generation EEG technology to build models of student 
learning using EEG for non-intrusive assessment of cognitive processes including 
attention, working memory, workload and problem solving [29-30].  The vision is to 
integrate EEG into interactive tutorials and training simulations. There are no limits to 
the applications of the venerable technology now that it has left the laboratory. 

Although the hardware, software, and algorithms are continually undergoing 
changes to provide better end results, the current complete package to date has been 
used in a variety of locations, weather conditions, and configurations that were previ-
ously impractical if not impossible to collect EEG data in with other commercially  
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available systems.  Our system will continue to be developed to improve the durabil-
ity, flexibility, and applicability in the real world, including the development of classi-
fiers for the real world. 
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