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Abstract. This paper discusses how the fields of augmented cognition and neu-
roergonomics can be expanded into training.  Several classification algorithms 
based upon EEG data and occular data are discussed in terms of their ability to 
classify operator state in real time.  These indices have been shown to enhance 
operator performance within adaptive automation paradigms.  Learning is differ-
ent from performing a task that one is familiar with.  According to cognitive load 
theory (CLT), learning is essentially the act of organizing information from 
working memory into long term memory. However, our working memory sys-
tem has a bottleneck in this process, such that when training exceeds working 
memory capacity, learning is hindered. This paper discusses how CLT can be 
combined with multiple resource theory to create a model of adaptive training.  
This new paradigm hypothesizes that a system that can monitor working mem-
ory capacity in real time and adjust training difficulty can improve learning. 

1   Introduction 

Whether it is called the field of Augmented Cognition or Neuroergonomics [1] there 
has been a recent push to apply findings from the field of neuroscience and the “Dec-
ade of the Brain“ to improve human performance.  While Neuroergonomics focuses 
on how neuroscience can be applied to work and everyday environments, Augmented 
Cognition places an emphasis on the design of closed loop systems based upon real 
time physiological assessment.   Until recently there has not been a focus on how ad-
vances within these two areas could be applied to learning or training.  As the use of 
computers and simulation become an increasingly important component of the learn-
ing process, it seems that applying these two fields and developing a closed loop 
adaptive training system would be a natural extension of these two areas.  Such a sys-
tem could adjust the content, presentation format, and pace of training to match the 
specific skills and abilities of the trainee.  It is proposed that such a system would 
reduce the amount of time required to train an individual by reducing the amount of 
time the trainee is under or overloaded.  The present paper reviews previous research 
in neuroscience and learning which serve as a theoretical basis for the adaptive  
training system. The paper will discuss the research done with respect to real time 
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physiological assessment, describe the cognitive load theory and explain how these 
two separate research areas can be merged into a theory of adaptive training. 

2   Real Time Physiological Assessment 

2.1   Sensors 

At the heart of neuroscience are the tools available to measure activity within the 
brain.  There are a number of different sensor technologies available which provide 
either direct or indirect indices of the brain’s activity. These include measures taken 
from the brain such as electroencephalogram (EEG), functional near-infrared imaging 
(fNIR), magnetoencephalography (MEG), functional magnetic resonance (fMRI), as 
well as indirect physiological measures of brain activity such as cardiorespiratory 
activity, for example heart rate (HR) and heart rate variability (HVR), as well as 
measures of electrodermal activity such as skin conductance and galvanic skin  
response (GSR) and pupilometry. The advantages of each of these methods can be 
assessed along three criteria including spatial resolution, temporal resolution, and ease 
of use [2].  Of these sensor technologies EEG has been the most widely used for real 
time assessment due to its temporal resolution and ease of use.  Although eye tracking 
data only provides an indirect measure of brain activity; it is widely used, unobtrusive 
(particularly with new off the head systems) and easy to collect. For those reasons the 
present paper will focus on advances made with respect to these two different sensors.   

2.2   Real Time Cognitive State 

For a physiological sensor to be useful it must be sensitive to an aspect of operator 
state that has cognitive or performance implications (i.e., stress, arousal, mental work-
load).  Ultimately, much of the research has been looking to find a gauge of mental 
workload:  how hard the brain is working at a given point in time.  One of the key 
aspects of mental workload is the relationship between the task being performed and 
an individual’s limited pool of resources available.  Wickens’ multiple resource  
theory [3] distinguishes between three orthogonal resource dimensions including per-
ceptual modality (e.g., visual, auditory), information code (e.g., verbal, spatial) and 
processing stage (e.g., encoding, central processing, and responding).  Multiple re-
source theory parallels that of Baddeley’s model of working memory [4] which also 
includes a spatial and verbal component.  In fact there is some suggestion that re-
source theory is essentially synonymous with working memory [5].  Mental resource 
capacity can be conceptualized as essentially how much information can be main-
tained and manipulated in working memory.  Theoretical conceptions of both con-
structs make the assumption that capacity is in some way limited and that a given task 
or set of tasks can exceed that capacity.  Individual differences in working memory 
capacity are consistently found and these differences are strongly correlated with per-
formance on a number of different cognitive tasks [6-8].  Because working memory 
capacity affects both the difficulty of and the strategies used for learning complex 
tasks as well as the susceptibility to different forms of distraction [9-11], its assess-
ment may provide a powerful tool for improving existing training protocols.      
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The agreement between the two theories is that an individual’s mental capacity is 
in some way limited and that a given task or set of tasks can exceed that capacity.  A 
cognitive state gauge that provides a real time indicator of an individual’s available 
resources could provide great insight into performance, task design and training.  
However, moving from a physiological signal filled with noise to a real time gauge 
requires a significant amount of signal processing. 

2.3   EEG Algorithms  

A cognitive state gauge that provides a real time indicator of an individual’s current 
level of engagement and the availability of different types of resources could provide 
great insight into performance, task design and training.  However, improving meth-
ods of signal amplification, filtering, and the analog to digital conversions required to 
extract physiological signals from the background of noise is an on-going challenge to 
the successful implementation of real time cognitive state gauges.   

 
Linear Classification. Early real time metrics derived from EEG analyzed the 
changes of spectral power in the five frequency bands (alpha, beta, theta, gamma, and 
delta).  These changes were used to provide an indication of the operator’s engage-
ment, attention and mental workload.    Pope, Bogart, and Bartolome [12] developed 
an index based on a ratio of EEG power, defined as (beta/(alpha + theta)) which can 
be computed in real-time by calculating a running average over a 20 second window. 
This index was said to determine the level of engagement/alertness of an individual 
while performing a task.  The researchers were able to demonstrate the index could be 
used in real time to improve performance on a vigilance task [13] and a complex 
tracking task [14].   

A second linear algorithm for processing cognitive state from EEG is the eXecu-
tive Load Index (XLI) [15], which was designed to monitor changes in cognitive load 
related to processing messages in real-time. This was done by computing the ratio of 
((delta+theta)/alpha) over a moving 2 second window, with the change determined by 
comparing the value to the previous 20 second running average.  

Researchers at Advanced Brain Monitoring (ABM) developed several gauges of 
cognitive state based upon linear and quadratic discriminant function analysis (DFA) 
[16].  The gauges for mental workload and engagement are of particular interest.  The 
index for engagement tracks the demands for sensory processing and attentional re-
sources, whereas the index for mental workload tracks the level of cognitive function 
and is considered to be a correlate of executive function.  The algorithms for both 
indexes are derived for each individual based upon his or her EEG signals on a series 
of baseline vigilance tasks.  The measures have both been validated in a series of ba-
sic cognitive tasks.  The mental workload metric has been shown to track task demand 
in mental arithmetic and digit span tasks as well as show a significant correlation with 
subjective measures of workload and task performance.  The gauge for engagement 
has been shown to decrease as a function of time during a vigilance task whereas 
workload did not.  The algorithms for both engagement and workload output data 
every second. 
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Non-linear classification. Research at the Air Force Research Lab has investigated 
the ability of an Artificial Neural Network (ANN) to classify operator mental work-
load in a complex laboratory task and during a UAV simulation [17, 18].  The ANN 
derives its classification from EEG, EOG, and heart rate data and was successfully 
able to classify high versus low workload with a 85-90% accuracy rate when the 
ANN was trained for each individual.  The ANN was also successfully implemented 
in an adaptive automation UAV paradigm where vehicle speed was reduced during 
periods of high workload.  The adaptive automation system was able to significantly 
improve performance over both a non-adaptive system and a system with random 
changes to the speed.  Although ANN has been shown to be highly successful, it re-
quires a large amount of data to “train” the model.  It is also unclear how stable an 
ANN would be for a particular individual over time.   

2.4   Eye Tracking 

Visual scanning strategies may provide an indication of mental workload. Di Nocera, 
et al. [19] implemented the Nearest Neighbor Index (NNI) to investigate whether a 
statistical index that provides information on dispersion of points, or fixations, would 
have differential patterns for high workload and low workload conditions.  The index 
is based on the Complete Spatial Randomness (CSR) method, which is the spatial 
analysis equivalent of uniformly and independently distributed random variables. The 
index is computationally straightforward and is feasible to compute in near real-time, 
which lends potential to be used as a metric or trigger for adaptive training.  Essen-
tially, higher values in the NNI show higher levels of entropy in scanning.  Prelimi-
nary analysis from a case study showed that higher NNI values were correlated with 
higher workload, and that the NNI was sensitive to varying workload conditions. 
However it was suggested that more studies be performed to fully understand the cor-
relation between the randomness of fixations and mental workload.   

Cognitive workload has also been evaluated using measures of eye movement and 
pupil dilation to detect cognitive strategy shifts [20].  A psycho-physiological index of 
workload based on pupil dilation, the Index of Cognitive Activity (ICA), was used in 
a case study by Marshall et al. to detect shifts in strategy based upon large changes of 
ICA.  ICA does not require averaging over trials or individuals, it can be applied to a 
signal of any given length, and it can be computed in near real-time.  ICA is calcu-
lated as the frequency of a detection of an abrupt discontinuity in the pupil signal 
[21].  Marshall, et al.’s study demonstrated that cognitive strategy shifts can be identi-
fied from eye tracking data, and observed fluctuations of ICA can identify the time 
and location of those strategy shifts.  Identification of cognitive strategy shifts may be 
beneficial not only for instructional design based on cognitive load theory [22], but 
also for adaptive training.   

A recent review identified and evaluated the ability of seven eye tracking metrics 
to classify an operator’s cognitive state, while taking into account the sensitivity and 
specificity of the classification [23].  The metrics under evaluation included the Index 
of Cognitive Activity (ICA), blinks, movement, and divergence between eyes, where 
separate right and left eye values were calculated for the ICA, blink, and movement 
metrics.  Each of the seven metrics can be computed in near real time, making them 
attractive candidates to apply and incorporate into adaptive training applications.   
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For statistical analysis, all metrics were transformed to a common scale ranging 
from 0 to 1.  Two classification models, linear discriminate function analysis and non-
linear neural network analysis were employed, and the sensitivity and specificity were 
evaluated to determine classification adequacy.  Two-state classifications were calcu-
lated for three separate studies (problem solving, driving simulation, and visual 
search) to differentiate between an engaged or relaxed state, focused or distracted 
driving, and a fatigued versus alert state.  For all three studies, both classification 
models were successful in differentiating cognitive states (69% to 92%) based solely 
upon the aforementioned eye metrics.  Discriminant analyses with systematic elimina-
tion of each metric were conducted to confirm that all metrics were needed to obtain 
the same accuracy of results. In addition, it was determined that all metrics were 
needed to obtain the level of demonstrated classification, and that no particular metric 
was salient across all subjects within any study. 

3   Cognitive Load Theory 

Cognitive load theory (CLT) is model of learning based around components of human 
information processing, particularly working memory and long term memory. A core 
principle of CLT theory is that learning places demands on a limited capacity working 
memory system [24, 25].  Since working memory capacity (WMC) is limited [26, 27], 
learning is integrally tied to both the working memory capacity (WMC) of the learner 
and the working memory demand of the instruction and instructional material.  While 
the WMC of an individual is limited, his or her long term memory is almost unlim-
ited.  Thus the theory is concerned with how information from working memory is 
organized and grouped together (into schemata) and stored in long term memory.  
Once information is stored in long term memory, it enables the individual to access it 
later and reduces the burden placed upon the working memory system.  Much of the 
research on CLT has focused on working memory since it serves as the bottleneck to 
learning. 

CLT proposes three specific types of cognitive load with additive effects; the sum 
total of which must not exceed a learner’s working memory resources if optimal 
learning is to be achieved.  The first, termed intrinsic cognitive load is the difficulty 
imposed by the material or task to be learned.  It is heavily influenced by the elemen-
tal interactivity of the material – how many interacting elements must be maintained 
in working memory at any given time.  Complex material may have high elemental 
interactivity.  The more inherent elemental interactivity, the higher the cognitive load. 
Often there is little if anything that instructional design can do to change the intrinsic 
cognitive load of the material or task to be learned.  As expertise develops, schemas 
are formed and elements become grouped together; enabling the individual to deal 
with more elements simultaneously and allowing them to overcome the working 
memory bottleneck.  This process reflects learning and the dynamic nature of intrinsic 
cognitive load within CLT.  The number of elements which make up intrinsic load are 
based upon the individual’s ability to group them together. 

The second form of cognitive load is extraneous cognitive load and this is  
where instructional design has the potential to make vast improvements in training.  
Extraneous load typically refers to how the information is presented, e.g., graphically 
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versus verbally.  Ineffective instructional designs impose an additional level of extra-
neous cognitive load, which is particularly problematic when the intrinsic load is 
high.  Much of CLT has emphasized reducing extraneous load as a method of reduc-
ing overall load and enabling learning. 

Germane cognitive load, the third type, is the process of creating and organizing 
information into schema.  Germane load is the result of the instructional design [28].  
It promotes the development of accurate mental models of the task and relevant 
schemas as well as facilitating the transition from controlled to automatic processing 
that accompanies expertise.  Germane load is influenced by the manner, modality 
and sequence in which the material is presented and the learning activities involved.  
Differential sensitivity has been observed between various measures for each type of 
load [29]. 

Within the framework of cognitive load theory, intrinsic cognitive load is set by the 
task, and extraneous cognitive load is typically manipulated through instructional de-
sign. This ensures an individual’s cognitive resources are not being exceeded, and that 
learning is promoted.  Instructional design that reduces extraneous cognitive load 
frees more resources for germane cognitive load thus facilitating the development of 
schema acquisition and a shift toward automatic processing and expertise.   

4   Adaptive Training 

Although traditionally cognitive load theory has focused on adjusting extraneous load 
simulation based training allows for an adjustment in the amount of intrinsic cognitive 
load presented at a given time.  This ability to manipulate intrinsic load combined 
with the capability to measure working memory capacity in real time provides the 
basis for the development of an adaptive training approach.  

Combining elements from Wickens’ Multiple Resource Theory [3] which is de-
signed to describe workload and ultimately help predict performance and Sweller’s 
CLT [24] we have developed an initial throughput model of learning that can be used 
in a closed loop system.  Within the adaptive training paradigm the intrinsic load acts 
as the input into the system.  How that information is presented in terms of modality 
and processing code produces the extraneous load.  As with the traditional model of 
CLT presenting information in a spatial code versus a verbal code can yield different 
amounts of extraneous load depending on the task/information.  Following multiple 
resource theory and CLT it would be possible to reduce extraneous load by using dif-
ferent modalities and processing codes.  

As with CLT the germane load is still the organization of information into schema.  
The overall load is still the combination of intrinsic, extraneous, and germane load.  
However, as with multiple resource theory there are now potentially multiple capaci-
ties.  Figure 1 represents a simple throughput model of how adaptive training would 
work.  Operator capacity would be assessed in real time based upon a real-time 
physiological metric described above.  Presently their may not be a separate metric 
for each potential resource pool.  However an overall gauge of spare capacity could 
still serve to trigger an adaptive training screen.  Based upon whether the physiologi-
cal metrics indicate spare capacity the screen could add or remove certain elements of  
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Fig. 1. Model of Adaptive Training based upon Wickens’ Multiple Resource Theory and 
Sweller’s Cognitive Load Theory 

intrinsic load or add/reduce the size of a single element (e.g., driving at high speed 
versus low) from the overall material to be learned.   

For example, in a computer simulation designed to teach target identification, the 
cognitive load of the task can be manipulated by adjusting the number of targets pre-
sented at a given time, target speed or salience.  These manipulations do not change 
the intrinsic load of the task, per se.  However, the load imposed on the novice learner 
is adjusted.  Extraneous load may be reduced by making the targets more visible, by 
using an auditory modality to supplement identification of salient aspects of the visual 
targets, etc.   

Germaine cognitive load, which supports skill development, can be increased by 
presenting various targets to be identified in random order rather than for instance all 
enemy tanks and then all enemy helicopters.  The proposed adaptive training system 
would manipulate the amount of overall cognitive load in the scenario based on as-
sessment of the trainee’s current expenditure of mental resources.  When physiologi-
cal metrics indicate that mental workload is high, for example enemy units could 
slow down or decrease in number.  Alternatively, when a trainee displays a low level 
of mental resource utilization, the scenario can be made more difficult.  Changes to 
the cognitive load in the adaptive training system must be based not only on an indi-
vidual’s available resources but also their level of expertise with the system.  There 
is a dynamic relationship between level of expertise and cognitive load required by 
the task.   

The primary difference between a novice and an expert in any given task domain 
hinges on two things.  First, the expert has an extensive knowledge base of well de-
veloped relevant schemas held in long term memory.  Schemas allow a person to treat 
multiple elements as one item.  For example, an expert chess player has literally thou-
sands of schemas for movement patterns stored in long term memory.  Secondly, for 
the expert many of the relevant tasks and skills as well as access to the stored schemas 
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are automatic, no longer requiring resource demanding controlled processing [30].  
Novices have neither extensive or well developed schemas, nor can they initiate many 
of the task components automatically [31].  Problem solving routines and access to 
schemas can become automated as when one automatically knows to solve the alge-
braic equations within the brackets before moving on to the relationships between the 
bracketed and non-bracketed items.  Individual features of letters, nor even individual 
letters need to be processed once a reader has developed sufficient skill.  As schemas 
develop and tasks become automated, working memory load is reduced and learning 
is accelerated.  As learning is accelerated the amount and or rate of information pres-
entation can and should be accelerated.  Monitoring the transition from novice to ex-
pert is essential for efficient learning and is a key element of the proposed adaptive 
training strategy. 

As with CLT the adaptive training paradigm will recognize the task-learner interac-
tion, or expertise reversal effect, meaning that as a learner develops expertise, the 
methods of instruction that are effective should change [28, 32].  Optimal training 
protocols must continuously monitor in real-time both the working memory resources 
being utilized or mental workload of the learner and changes in skill level associated 
with developing expertise. Under or over utilization of working memory processes or 
a mismatch with the learner’s current skill level will result in less efficient learning. 

5   Conclusions 

It is believed that the proposed adaptive training model will be able to significantly 
improve learning by eliminating the time in which the learner is not in an optimal 
state as determined by their working memory capacity.  An adaptive training system 
will be capable of reducing the intrinsic load when working memory capacity is  
exceeded, or adding to the intrinsic load when there is sufficient reserve working 
memory capacity. Additionally the new model allows for a diagnostic approach to 
implementing the adaptive training screen.  Advances in the real time sensors may 
eventually be capable of assessing capacity within the different pools (i.e., spatial 
versus verbal) and therefore allow for more specific changes to the material being 
presented.  Eventually such a system will be capable of moving between information 
codes and processing modalities of the information being presented to capitalize on an 
individual’s multiple resources. 
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