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Abstract. The purpose of this effort is to introduce a novel approach which can 
be used to determine how multiple minimally intrusive physiological sensors 
can be used together and validly applied to areas such as Augmented Cognition 
and Neuroergonomics. While researchers in these fields have established the 
utility of many physiological measures for informing when to adapt systems, 
the use of such measures together remains limited. Specifically, this effort will 
provide a contextual explanation of cognitive state, workload, and the meas-
urement of both; provide a brief discussion on several relatively noninvasive 
physiological measures; explore what a modular cognitive state gauge should 
consist of; and finally, propose a framework based on the previous items that 
can be used to determine the interactions of the various measures in relation to 
the change of cognitive state. 
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1   Introduction 

Advances in technologies, research, and interest in Augmented Cognition applications 
have all but guaranteed a future in which the physiological state of a human operator 
will impact the interactions with many, if not all, (closed-loop) systems. To the unini-
tiated, this statement almost assuredly conjures images of cyborgs and bionic beings 
that seemingly have given up their humanity. While the issue of being “more machine 
than man” may eventually become an ethical dilemma, current technology has not yet 
required its serious contemplation. Current technologies do, however, offer the oppor-
tunity to create systems in which the user is part of the interface. Through available 
technology, it is now possible to reexamine the human-centered system design (proc-
ess) and include measurements of the human’s state as a means to inform and even 
adapt the system. 

Although researchers in fields such as Augmented Cognition (AUGCOG) and 
Neuroergonomics have begun to establish the utility of physiological measures for 
informing when to adapt systems, the use of such measures remains limited. While 
this may be partially explained by the high cost of equipment, it is more likely due to 
the lack of clear guidance for the use of multiple sensing devices to adapt systems. 
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This need was highlighted in 2007 by Reeves, Stanney, Axelsson, Young and 
Schmorrow [1] in their articulation of the near-, mid- and long-term goals of 
AUGCOG. The authors specifically noted that there were several impediments to the 
adoption of such technologies including: (1) the need for valid, reliable, and gener-
alizable cognitive state gauges based on basic neurophysiological sensors; (2) real-
time cognitive state classification based on basic cognitive psychology science and 
applied neuro-cognitive engineering; and (3) proof of effectiveness which demon-
strates generalizable application of mitigations (i.e., the ability to control how/when 
mitigations are applied). Unfortunately, the ability to detect cognitive state through 
the use of various technologies based on different physiological indices currently 
poses problems. For example, sampling rates (i.e., resolution) of different measures 
may cause one technology to indicate a state change while another is reporting the 
previous state. Additionally, a particular measure may indicate the onset of a state 
change which may not be reported by other measures, and this dissonance may cause 
conflict when determining if an intervention is required. 

As a tool, a “cognitive state gauge” is a vague concept which has the potential to 
include a wide range of contributing factors. When considering all of the possibilities, 
the goal of creating a valid and generalizable cognitive state gauge is a lofty one at 
best. In fact, the very idea of a cognitive state gauge poses issues of ambiguity similar 
to those of its conceptual springboard: mental workload. This vagueness, perhaps, is 
why such a measure has yet to be developed and/or proven effective in meeting the 
goals set by Reeves et al. [1].  

Based on the multiple resource theory model [2],[3] and its idea that we draw from 
multiple distinct pools of cognitive resources, it is therefore proposed that instead of 
taking on the concept of a holistic cognitive state gauge, it is necessary to first ma-
nipulate specific cognitive resources and examine the physiological state as recorded 
by each of several synchronized measures. By using a modular approach which  
targets specific cognitive abilities in a controlled environment, it should be possible  
to build a reliable and generalizable cognitive state gauge based on basic cognitive 
psychology. 

In order to describe a novel approach to assessing cognitive state with multiple 
physiological measures, this paper will provide a contextual explanation of cognitive 
state, workload, and the measurement of both. This will include a brief discussion of 
several relatively noninvasive physiological measures whose use, in concert, are pro-
posed to present a solution to the impediments articulated by Reeves et al. [1]. In-
spired by technologies described in the Augmented Cognition Technical Integration 
Experiment Report [4], the candidate measures that will be discussed include six non-
cortical measures: eye blink rate (EBR); pupil dilation (PD); respiration rate (RR); 
heart rate (HR); heart rate variability (HRV); electrodermal response (EDR), and one 
cortical measure: electroencephalography (EEG). Specifically, this effort will explore 
what a modular cognitive state gauge (MCSG) should consist of and will also propose 
a framework. Additionally, a testbed based on the MCSG and proposed framework 
will be introduced for the purpose of determining the interactions of the various 
measures in relation to the change of cognitive state. 
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2   Measuring Cognitive State 

It would be a futile effort to suggest that there is a way to measure cognitive state 
without first defining what is meant by the term cognitive state. For the purposes of 
this work, the idea that dynamic changes in human cognitive activity can be identified 
during task performance [5] allows us to define cognitive state as consisting of those 
aspects of cognitive ability which are called upon for the completion of a task. 

While this may be an acceptable definition of cognitive state, it must be understood 
that there are numerous factors that contribute to cognitive state. For example, chang-
ing levels of fatigue or stress during task performance are responses, not indicators of 
the capacity of cognitive ability. Simply measuring the physiological response of 
fatigue and/or stress to a task would be to ignore the mechanisms that explain such 
responses. The mental capacity that allows for the successful completion of tasks 
should be the area of interest when investigating cognitive state. Ultimately, it is this 
capacity that, when taxed, results in performance decrements. The taxing of these 
mental capacities has been extensively investigated in various environments in order 
to understand the phenomenon of mental workload. If one intends to work toward the 
goals set forth by Reeves et al., it is necessary to understand what is meant by the 
term workload and to identify approaches that can be used for its measurement. 

2.1   Workload 

At the core, workload can be defined as the amount of demand(s) placed on an opera-
tor while attempting to accomplish something. Researchers have gone to great lengths 
to understand the effect of mental workload on performance. These researchers have 
proposed various theories and analogous models to explain how the human mind 
allocates its ability to handle information and task completion from the mundane to 
the complex. Byrne and Parasuraman [6] state that the general consensus on mental 
workload is based on theoretical models of resource and capacity for information 
processing. For this to be the case, it is accepted that humans have a finite amount of 
available cognitive resources which must be allocated and used to accomplish a task. 
In essence, mental workload is directly related to the proportion of the mental capac-
ity an operator expends on the performance of a task [7],[8]. 

As a construct, workload is difficult to examine due to the seemingly limitless at-
tributing variables. In his 2007 report to the Department of Transportation, Reinach 
[10] suggested that workload can be defined as the interaction between the demands 
of a task and an operator’s ability to meet those demands. When considered in these 
terms, workload is viewed as being dependent upon an operator’s level of training, 
expertise, experience, fatigue, stress, motivation, and his or her available cognitive 
abilities and resources for a given task. Of course, task load is an integral piece of the 
workload puzzle. Task load has been defined as the total amount of demands placed 
on an operator at a given moment in a situation [10]. For a contextual example, Had-
ley, Guttman, and Stringer [9] describe an air traffic controller’s task load to include 
elements such as the volume and composition of traffic, routing complexity, and 
weather conditions. Therefore, in the context of this effort, workload is operationally 
defined as the demands on available cognitive ability and resources placed on an 
operator by the demands and complexity of a given task. 
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In 2002, Wickens provided a review of multiple resource theory (MRT) and its ap-
plication with an updated four-dimensional model [3]. MRT suggests that there is not 
a single information processing source that can be tapped by an operator. Instead, in 
order to perform a task or tasks, Wickens [2],[3] proposes that an operator must draw 
from multiple distinct pools of resources simultaneously. Dependent upon the compo-
sition of the task(s), the operator may have to process information serially (if the 
task(s) require the same resource pool) or in parallel (if the task(s) require differing 
resource pools). 

Central to this effort is the idea that Wickens’ theory would view exceeding op-
erator workload (resulting in a performance decrement) as a shortfall of available 
resources. Further, Wickens suggests that operators have a finite capability for in-
formation processing. In short, cognitive resources are limited and conflicts (operator 
overload) occur when an operator performs two or more tasks that require a single 
resource 

 
Measuring Workload. Not surprisingly, numerous approaches for assessing work-
load have been developed, from relatively simple questionnaires to complex brain 
imaging techniques. Regardless of type, these approaches will generally fall into one 
of three distinct categories: performance, subjective, and physiological [8],[11],[12]. 
The following will discuss selected measures which are proposed for measuring cog-
nitive state in this effort. 
 
Performance Measures. As mentioned above, the measure of task performance is a 
widely used method of inferring the amount of workload experienced during the 
completion of a task. In general, research has shown that if performance is high 
(maintaining acceptable performance) then workload can be considered low. Con-
versely, low performance suggests high workload. However, there are various factors 
that contribute to the workload construct resulting in a non-linear relationship with 
performance. As a contributing factor to workload, performance does provide a quan-
tifiable and potentially real-time (provided the parameters are known) method for 
assessing operator workload. The measurement of performance is generally separated 
into two main subcategories: primary and secondary task measures. 
 
Primary Task Performance. On the surface, measuring primary task performance is a 
simple proposition. Unfortunately, this may not always be the case. Several factors 
can contribute to task difficulty experienced by an operator. For example, an increase 
in time pressure or the demands on cognitive resources may not always degrade per-
formance [13]. The lack of performance decrement can be attributed to the operator’s 
skill level or motivation to exert more effort to maintain an acceptable level of per-
formance. These contributing factors can result in an incorrect assessment of operator 
workload due to the fact that acceptable performance is maintained while the operator 
is approaching the limitations of his or her cognitive capabilities. 
 
Secondary Task Performance. The addition of a concurrently performed task to the 
primary task can be used to detect the workload of a primary task [14]. The goal of 
using a secondary task is to additionally tax the cognitive resources being used to 
complete the primary task. By doing so, an operator who is maintaining an acceptable 
level of performance is required to divert resources to the additional task and could 
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potentially uncover his or her level of workload through an observable performance 
decrement in either the primary or secondary task. As suggested by multiple-resource 
theory [2][3], through the imposition of a secondary task that consumes the same 
resource(s) as the primary task, it should be possible to measure the excess re-
source(s) not utilized by the primary task.  
 
Subjective Measures. One of the most commonly used methods for measuring work-
load is the NASA Task Load Index (TLX). The TLX is a subjective evaluation of 
workload that is completed by an operator upon completion of a task. The TLX is a 
multidimensional approach that measures workload by calculating a total workload 
score from six weighted subscales: mental demand, physical demand, temporal de-
mands, performance, effort, and frustration level. These six subscales are based on 
extensive research and psychometric analyses from a wide range of contexts [15]. 

While asking an operator to evaluate his or her own level of workload following 
completion of a task has utility, most tasks are not static, isolated events and post hoc 
assessment, by its nature, would fail to offer real-time assistance to the operator. Peo-
ple are expected to perform in complex and dynamic environments which tend to 
evolve over time with the emergence of information. The complexity and propensity 
for real world operations to present novel and often hard-to-predict situations makes 
real time and predictive state assessment extremely intriguing as a way to inform 
potential mitigations to operator workload. While subjective ratings such as the TLX 
are useful for eliciting overall task workload assessment, they lack the ability to pro-
vide real-time assessment without intrusion.  
 
Physiological Measures. The idea that physiological measures may assess workload 
is not a new one. For example, in their report for NASA, Scerbo, Parasuraman, Di 
Nocero, and Prinzell discussed the efficacy of using physiological measures for adap-
tive automation [16]. Their effort highlighted four promising physiological measures 
that could be used to assess mental workload: eye blink, respiration, cardiovascular 
activity, and speech measures. Additionally, EEG was discussed as a cortical measure 
that may inform the adaptation of automation. 

It should come as no surprise that there are numerous methods that use physiologi-
cal measurement technologies to assess cognitive state. Each of these methods use a 
unique approach to their measurement and assessment, a detail that must be addressed. 
The argument that one measure is adequate for operational systems will not suffice in 
the face of multidimensional tasks which are carried out in dynamic environments. 
Although, the use of multiple measures, as stated previously, presents confounding 
factors which must be considered. The responsiveness of one measure to the change of 
an operator’s state may not occur within the same time frame as another measure. One 
measure may provide a global view of operator state while another may be better 
suited to detect subtle changes based on discrete events and/or situations. Confusion 
and even catastrophe can occur if system(s) dependent on these differing physiological 
measures are based on conflicting indications of operator state change. In order to 
achieve the goal of assessing cognitive state through the use of multiple physiological 
measures, it is important to discuss candidate physiological measures. These measures 
include six non-cortical measures: EBR; PD; RR; HR; HRV; EDR and one cortical 
measure: EEG. Table 1 provides an overview of each candidate technology. 
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Table 1.  Overview of candidate physiological measures 

Type Description 
EBR Shown to be a useful measure of mental workload [17],[18]. Several labora-

tory and field studies have shown that blink rate decreases with an increase 
in task difficulty (e.g., [19],[20],[21],[22]) 

PD Shown to decrease or increase depending on autonomic response. Pupil dila-
tion is an important measure of mental workload [7] and has been used nu-
merous times as a global measure of workload. Increased pupil diameter 
has been observed with an increase in resource taxation [22] 

RR Proposed as a useful physiological indicator of the state of an operator. In-
creased respiration rate along with a decrease in the depth of inspiration 
have been associated with increases in stress and cognitive demand 

HR Likely candidate for measuring cognitive workload. Wilson & Eggemeier 
[23] suggest that heart rate could predict and be an overall indicator of 
workload. This is supported by a series of workload studies showing that 
heart rate was the most favorable physiological measure 

HRV Decreases with the increase in heart rate. An increase in workload results in a 
decrease in heart rate variability [26] when compared to the rest state [8]. 
Of particular interest for the measurement of mental effort is the varying 
duration of time between heartbeats, the inter-beat interval [27] 

EDR Measurable change of electrical activity of the skin as a result of sweat gland 
activity capable of indicating stress-strain, emotion, and arousal [28]. One 
of the several measures of EDR, Skin Conductance Level (SCL) is meas-
ured by the application of a constant voltage to the skin via electrodes in 
order to measure conductance. Research has shown that there can be a sig-
nificant increase of SCL across workload conditions [29] 

EEG Provides the total amount of the electrical brain activity of active neurons that 
can be recorded on the scalp through the use of electrodes [30]. Berka et al. 
validated use of EEG for measuring task engagement and mental workload. 
An investigation utilizing their task engagement and mental workload 
measures had promising results showing that participants’ EEG-workload 
index increased on tasks with increasing difficulty and working memory 
load. Similarly, EEG-engagement was shown to be related to the processes 
required for completing vigilance tasks [30] 

3   Modular Cognitive State Gauge (MCSG) 

As stated in the introduction, the objective of this work is to define a useful approach 
for using multiple physiological measures to assess one’s cognitive state. The para-
digm presented here aims to segregate specific contributors to mental workload for 
measurement. It is proposed that by systematically exploring the manner in which 
each physiological measure correlates to performance and to each other in targeted 
areas, a cognitive state gauge that meets the validity, reliability, and generalizability 
requirements set forth by Reeves et al. [1] can be created. 
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It is proposed here to use Wicken’s MRT model [2],[3] as a practical guide for  
investigating multiple physiological sensors and their combined ability to predict 
performance decrements in specific cognitive resource areas. After compiling an 
understanding of what to expect for particular cognitive resources through empirical 
research, the MCSG should begin to take shape (Figure 1). Essentially, it is proposed 
that by parsing out individual cognitive resources (e.g., visual, auditory, spatial, etc.) 
into modules, they can be empirically investigated and then integrated into a gener-
alizable cognitive state gauge. 

 

 

Fig. 1. MRT-based cognitive modules towards a modular cognitive state gauge 

By using this modular approach, potential issues with the use of multiple sensors 
can be identified and addressed as the modules are investigated. For example, HRV 
and EEG, as discussed previously, have both been shown to be useful for measuring 
workload. Interestingly, Gohara et al. [31] discovered that HRV becomes less sensi-
tive when measured during a state of fatigue. Discrepancies between measures like 
these could present serious consequences to the accuracy of any cognitive state gauge 
if the input were not understood.  

While it may seem daunting to examine the multitude of cognitive resources in 
such a systematic way, the great potential of previous efforts conducted by various 
academic, private, and government institutions [1],[32] will undoubtedly contribute to 
the compilation of the proposed MCSG. Of course, once a sufficient amount of mod-
ules are understood, the next challenge will be integrating them into a unified gauge. 
There could be a variety of approaches to accomplishing this task and these will un-
doubtedly be discussed in subsequent investigations. 

4   Proposed Implementation 

While the investigation of each module may be unique, the following should provide 
at least the basic heuristics to determine a course of action. It is proposed here to iden-
tify experimental methods from previous foundational studies which focus on the 
cognitive resource of interest and adopt those efforts for investigation with multiple 
physiological sensors. Once an effort has been identified, it is suggested that the three 
types of workload measures described in section 2.1.2 (performance, subjective,  
and physiological) should be collected for the new investigation. By following this 
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implementation, it is assumed that any new confounds should be limited to the new 
measure(s). 

When determining which physiological measures to use, the most relevant devices 
should be considered first. For example, eye tracking would be an obvious choice for 
an investigation exploring visual search and attention but may not provide meaningful 
data for an effort solely focused on the area of auditory attention. 

Once the physiological sensors have been determined it is recommended that all 
experimental components are synchronized. While it would be inappropriate, and in 
some cases impossible, to attempt to force physiological measuring devices into  
having identical sampling rates, they can be synchronized to each other and the ex-
perimental environment. At a minimum, a timestamp indicating the beginning and 
conclusion of an experimental trial common to all data logs should be the included. 
Additionally, synchronously recording performance in the experimental environment 
with the selected physiological measures will allow for successful matching of 
changes in performance for observation. For example, in an effort to use multiple 
sensors for an adaptive learning system, Vartak et al. [33] proposed a block process-
ing model in order to synchronize and evaluate the volumes of physiological data 
from multiple measures. Using an approach similar to the one found in Varatak et 
al.’s model should prove to help streamline the data collection and perhaps even aid in 
the development of future AUGCOG applications. Finally, perceived levels of work-
load can only be obtained by asking. Collecting subjective measures, while not dy-
namic, can be extremely useful in providing consistency across participants. 

5   Future Work and Conclusion 

Previous research using a dynamic spatial task showed that highly skilled participants 
outperformed those with lower skills when evaluated on spatial ability tests [34]. 
Using a similar task and methods, we will investigate the modular approach described 
here through the implementation outlined in section 4.  

This paper proposed an approach that can be used determine under what conditions 
multiple minimally intrusive physiological sensors can be used together and validly 
applied to a cognitive state gauge. Through the use of the model and implementation 
proposed, we are confident that various physiological measures can be used to accu-
rately measure changes in cognitive state while meeting the goals set forth by Reeves 
et al. [1]. 
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