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Abstract. Current brain-computer interface (BCI) research attempts to estimate 
intended operator body or cursor movements from his/her electroencephalo-
graphic (EEG) activity alone. More general methods of monitoring operator 
cognitive state, intentions, motivations, and reactions to events might be based 
on continuous monitoring of the operator’s (EEG) as well as his of her body 
and eye movements and, to the extent possible, her or his multisensory input. 
Joint modeling of this data should attempt to identify individualized modes of 
brain/body activity and/or reactivity that appear in the operator’s brain and/or 
behavior in distinct cognitive contexts, if successful producing, in effect, a new 
mobile brain/body imaging (MoBI) modality. Robust MoBI could allow devel-
opment of new brain/body-system interface (BBI) designs performing multidi-
mensional monitoring of an operator’s changing cognitive state including their 
movement intentions and motivations and (‘top-down’) apprehension of sen-
sory events. 

Keywords: cognitive monitoring; electroencephalography (EEG); motion cap-
ture; independent component analysis (ICA); brain-computer interface (BCI), 
mobile brain/body imaging (MoBI); human-computer interface (HCI). 

1   Introduction 

Over the last decade there has been an explosion of interest in using EEG to monitor 
selected movement intentions of an operator trained to produce changes in the  
amplitude of one or more EEG measures that are mechanically associated by a  
brain-computer interface (BCI) system with two or more intended external actions 
(in simplest form, moving a screen cursor up or down). BCI research was first 
funded to construct systems allowing communication by a relatively few cognitively 
intact but totally paralyzed or ‘locked-in’ subjects though, naturally, first exploratory 
phases of BCI research use normal test subjects. To insure the possibility that the 
methods developed in these phases might be usable by the target locked-in subjects, 
it was important to establish that the EEG changes used to detect movement inten-
tions were not based on non-brain contributions to EEG signals recorded on the 
scalp, e.g., activity arising from subject eye movements or scalp muscle activities. 
Thus, for many researchers the BCI concept became identified with the goal of using 
‘pure’ EEG, apart from non-brain ‘artifacts,’ to convey and decipher a subject’s 
stereotyped cursor (or body) movement intentions.  
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The goal of providing a useful, non-invasive communication system for ‘locked-in’ 
subjects is surely laudable, and actual demonstrations that both a few ‘locked-in’ and 
many normal subjects can communicate (albeit quite slowly) via learned control of 
their macroscopic brain activity patterns, without involvement of direct motor control, 
are novel and intriguing. However, unnecessary adherence to this limited BCI goal 
could slow development of more general classes of human-system interfaces involv-
ing continuous monitoring of non-invasively recorded brain activity.  

1.1   Unexplored Problems in BCI Research 

As a new subject, at least four fundamental questions about the operation, limitations, 
and effects of EEG-based BCI operation remain unexplored: 

1. Key obstacles to widespread acceptance and application of non-invasive EEG-
based BCI systems are the need for a long training regimen, and the failure of a 
significant fraction of subjects to achieve stable, non-invasive BCI control even af-
ter intensive training. Finding specific reasons for these difficulties, and methods 
around them, are fundamental if BCI or more general ‘neurotechnology’ or ‘neuro-
ergonomic’ HCI research is to have broad applications. 

2.  When a subject in a BCI experiment learns to move a computer screen cursor by 
increasing or reducing the amplitude of a selected brain rhythm – whether a mu 
rhythm, near-DC potential, or other phenomenon – what ‘body part’ (or brain sys-
tem) do they use to willfully effect the modulation? While this is a fundamental is-
sue for BCI research, it is one that has so far been nearly ignored.  

3. Although achieving volitional control of a BCI system through EEG modulation 
alone is an intriguing goal, more general questions for HCI systems involving EEG 
monitoring are how to combine EEG analysis with concurrent recording and analy-
sis of subject behavior, eye and muscle activities, and multisensory input to moni-
tor and adapt to changing human cognitive state, intent, and reactivity. 

4.  Another relatively unexplored question is whether there are psychobiological ef-
fects of training and performing volitional control of natural brain rhythms. These 
effects might either be phasic (affecting the operator only during BCI operation) or 
tonic (also affecting their behavior and/or brain activity at other times); they might 
be positive (for example producing a useful strengthening of attentional control), or 
negative (some unforeseen consequence of disrupting natural, non-conscious 
modes of dynamic brain regulation).  

All these questions should and must eventually be addressed by the advancing 
fields of human neuroscience and neurotechnology. This paper discusses a general 
plan of approach to the first three questions above – How can learning of EEG-based 
volitional control be made quicker and more universal? What EEG modulatory sys-
tems do successful BCI subjects use to learn and to effect volitional control of their 
EEG activity? And, how can EEG be combined with other information about operator 
behavior and sensation to allow human-system interactions to estimate and use infor-
mation about operator mental state and cognitive reactions to events? 
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1.2   EEG Modulation 

EEG dynamics have long been characterized by their diverse spectral profiles. For 
example, slow semi-rhythmic activity is characteristic of EEG in deep sleep, while 
awake/alert EEG contains more high-frequency activity. Narrow-band brain rhythms 
appear most predominantly in the (8-12 Hz) alpha band, but also at somewhat higher 
and lower frequencies. Spectral modulations of EEG activity at lower and higher fre-
quencies affect broader frequency bands. A considerable (if insufficient) amount is 
known about several brain systems that modulate the spectrum of local field activity 
in the brain’s cortex, the brain source of most scalp-recorded EEG. A number of these 
systems are the brainstem-centered ‘evaluation’ systems labeled by the specific neu-
rotransmitter they project quite widely (acetylcholine, dopamine, norepinephrine, se-
rotonin, or etc.). However, evidence for the involvement of these or other systems in 
successful BCI control has not been presented. 

1.3   Mobile Brain/Body Imaging (MoBI) 

The fundamental purpose of the brain is to control behavior or more exactly, to opti-
mize the outcome of behavior – maximizing its ensuing rewards and/or minimizing 
ensuing penalties as per subject purposes, needs, and desires. It is now possible to 
record brain activity at relatively high bandwidth – a Mbit/sec or more of EEG, MEG, 
BOLD, single-cell spike/field data, etc. Surprisingly, however, there has been little 
serious effort to concurrently record the behavior the brain is controlling with any-
thing near the same bandwidth. In human brain experiments, behavior is most often 
recorded only in the form of a sparse series of minimal finger button presses – giving 
an effective rate of behavioral data collection near 1 bit/sec. Simply from this 
~1,000,000:1 mismatch, it is no wonder that recent progress in human psychophysiol-
ogy has been relatively slow. 

The obvious remedy for this oversight is to simultaneously record as much behav-
ioral information as possible in paradigms including some range of natural behavior. 
It should be desirable to record as wide and natural a range of behavior as possible, in 
as physically free and natural a behavioral environment as possible. Currently, this 
goal can only be approached only using EEG brain imaging, since its sensors, alone 
among current high-bandwidth brain imaging modalities, are light enough that its 
recording does not require major restriction on subject head or body movements.  

Recently, I have proposed the combination of wearable, high-density EEG and 
body motion capture (combined, ideally, with eye gaze and audiovisual scene re-
cording) may constitute a new brain imaging modality, ‘Mobile Brain/Body Imaging’ 
or MoBI [1]. Once successfully developed and demonstrated, MoBI could allow, for 
the first time, the study of macroscopic brain dynamic patterns supporting natural and 
naturally motivated actions (and interactions) in normal 3-D environments. 

A key first problem to be overcome in realizing the promise of mobile brain imag-
ing is the problem of separating the activities of brain EEG sources from non-brain 
artifacts, particularly head and neck muscle activities and artifacts induced in the EEG 
by eye movements. A workable solution to this problem, at least, is the introduction 
of independent component analysis (ICA) of EEG data [2-6]. Under favorable cir-
cumstances, ICA cleanly separates brain and non-brain data source activities that are 
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mixed by volume conduction in scalp EEG recordings, a process for which much 
open-source software is now available [7]. A second problem is to model the muscu-
lar forces producing the observed motor behavior; for this, open-source biomechani-
cal modeling software is also becoming available [8]. Finally, adequate statistical  
signal processing or machine learning methods are required to discover dynamic links 
between concurrent brain source activities, muscle activations, and other classes of 
MoBI data. 

Supposing the near-future availability of viable MoBI recording and analysis 
methods, we can ask how the concept of BCI can be expanded to consider brain/body 
interface (BBI) designs that acquire and continuously update information about the 
cognitive state, reactions, intentions, and motivations of the system operator from 
joint MoBI recording. 

2   Brain/Body Interface (BBI) Methods 

For a BBI system to be maximally effective, it would seem wise to consider and test 
two design principles:  

a) To best understand the complex associations of ongoing multidimensional 
changes in EEG dynamics with cognitive state, perceptual events, and movement 
intentions and motivations, the analysis should both observe and take into ac-
count the subject’s movements (including limb, body, and eye movements), and 
any other available physiological signals. In other words, to optimally model 
brain activity it is important to take in to account, as much as possible, the behav-
ior the brain is controlling. This suggests the potential importance of the devel-
opment of concurrent brain/body imaging recording and analysis, as in the MoBI 
concept. 

b) The information about cognitive state and action motivations and intentions that 
may be most robustly decoded from joint EEG and behavioral information should 
concern distinctions between circumstances and events in which EEG dynamics 
exhibit spontaneous differences. In particular, it is likely that learned control of 
EEG signals will be most successful when the learned repertoire of EEG modula-
tions used to decode subject control intentions are identical or close to the sub-
ject’s repertoire of spontaneous EEG modulations.  

The identified EEG dynamics used in BBI monitoring and control may either index 
brain dynamics that play supporting roles in these circumstances, or their cortical 
source activities may also play a direct role in shaping the joint timing of distributed 
neural activities, a concept that is gradually being re-introduced into neuroscience by 
new evidence and by theoretical considerations of the utility of mass action in the 
central nervous system for controlling behavior and its outcomes. 

2.1   EEG Modulators 

Standard methods for analyzing EEG data are based on averaging measures of EEG 
dynamics across trials or time windows, thereby collapsing the continuously time-
varying signals into a average representation of activity time-locked to one or more 
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classes of events. Further, most EEG analyses focuses on the individual scalp channel 
signals, though they are each differently weighted mixtures of many brain and non-
brain source signals. Independent component analysis attempts to locate discrete 
sources of information in multidimensional data in which several independent infor-
mation streams are linearly mixed in sensor data. However, the spectrum of each 
identified brain source component signal, like every recorded scalp signal, varies  
irregularly over time. Standard methods for analyzing either independent component 
or scalp channel signals during a period of continued subject task performance  
typically model the exhibited variability as noisy deviations from a stable mean spec-
trum or stable event-related spectral perturbation (ERSP) time/frequency mean, varia-
tion noise in which spectral power at each frequency is implicitly assumed to vary 
independently.  

An alternate approach assumes that the observed power spectral variability sums 
variations in several to many modes of spectral variability (and co-variability) that are 
characteristic of the component source process. Earlier, we introduced the device of 
converting component spectrograms to log power while positing that the motive force 
behind these modal modulations are processes that modulate spectral activity multi-
plicatively, at characteristic frequencies, with independent or near-independent time 
courses or effect distributions across trials [9]. Recently, we have tested the use of 
ICA decomposition the ongoing log power spectrograms of a number of independent 
component processes from single subjects performing eyes-closed imagination exer-
cises1. Log spectral decomposition separated second-to-second variations in the log 
spectrogram into a log sum of multiplicative modulator processes, each with a fixed 
spectral and spatial component effect template whose effect on the affected spatial 
component log spectra is determined by multiplication by a single log amplitude time 
series. This approach gave a number of interesting results including alpha band proc-
esses at different frequencies plus harmonics, broader beta and theta band processes, 
and very broadband shifts in power distribution.  

We have also experimented with adding information to the analysis about the time 
locking and other experimental events and the context in which they occur. The goal 
of this analysis approach is to avoid so far as possible the method of planned compari-
sons, the basis for most experimental data analysis, in which measures for pairs of 
conditions are compared, each measure an identically weighted average of measure-
ments characterized by one (or sometimes more) key variable value.  

For example, there have been thousands of EEG studies that compared the average 
responses (typically called ‘P300’) to ‘target’ and ‘non-target’ stimuli in a simple at-
tention task. The underlying assumption here is that the brain emits identical re-
sponses to each ‘target’ or ‘non-target’ stimulus, respectively, regardless of the local 
event context. The hope is that the effect of the ‘target/non-target’ variable is separa-
ble from other variables, and essentially stable across time. Unfortunately, this is not 
the case. P300 ‘target’ responses vary widely in amplitude and scalp distribution from 
trial to trial, and this type of variability limits the performance of simple BCI systems, 
for example one that might attempt to set a fixed threshold to identify the appearance 
of a ‘target’ response, regardless of event context [10].  

                                                           
1 Onton, J. and Makeig, S., unpublished data. 
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I propose that BBI research explore an alternative approach in which multiple 
characteristic relationships between EEG dynamics and single events in context are 
determined directly from the joint EEG, stimulus, and behavioral data. Some facts 
concerning the nature of individual events may be available to at BBI system in real 
time, for example the moment and screen on which a piece of information is pre-
sented, or the screen to which the subject is directing their gaze.  

An example of an unavailable context variable might be the interpretation of the 
subject of a visual event as representing a challenge or threat. In pilot data recorded to 
build an individualized (or collective) BBI model, the level of threat could be varied 
systematically and the level of perceived threat might be estimated from the subject’s 
brain and behavioral responses. In subsequent real-time operation, other variables 
defining the current event and event context may be available from the system event 
log and subject behavioral record.  

Combined with direct observation of the EEG and subject motor behavior, these 
available context variables, combined, may allow estimation of the unavailable vari-
able – here, whether and to what extent the subject perceives a visual event to signal a 
threat to the operation of the system. This information might be used to immediately 
deploy available additional countermeasures whenever a genuine perceived system 
threat is estimated to occur, or possibly to monitor the state of responsiveness of the 
subject when false indications of (test) threats are delivered to the subject, probing 
their advancing level of expertise in recognizing a threatening event, or for estimating 
their current cognitive fitness for duty. 

If the system response to the operator’s appraisal of a threatening event helps the 
operator mount an adequate and timely response, then the system response will serve 
as a powerful reward, and naturally over time and use the operator’s EEG pattern 
should be expected to adapt to give a more distinct perceived-threat signal to the sys-
tem. Thus, a natural cognitive response monitoring system could easily become an 
interactive learned BCI/BBI system. Further, it is natural to hypothesize that when the 
system is based on the operator’s natural brain response modes, it may also be natural 
and relatively easy for the operator to learn to produce the EEG patterns that are most 
distinctly and reliably detected by the system. 

Fig. 1 gives the gist of the concept in graphic form. Three types of MoBI data may 
be recorded concurrently to run a brain/body interface (BBI): high-density EEG data, 
behavioral data, and context data (event information, event, EEG, and behavioral his-
tory, etc.). Standard BCI systems (dotted arrows) attempt to estimate some parameter 
of the behavioral and/or event/context data directly from the scalp EEG using a ma-
chine learning approach. In the proposed BBI model (wide light blue arrows), the 
EEG data are first separated into cortical (and non-brain) EEG source processes (thin 
blue arrows), the spectral modulator processes operating on these source processes 
are estimated from the EEG source data, and the linkage of the EEG source and 
source modulator processes to the behavioral and/or event/context data are deter-
mined. When one or more parameters of the event/context data are unavailable (e.g., 
in real-time operation), any of the available MoBI data may be used in a BBI to esti-
mate the unavailable parameter. The estimation process might be designed to perform 
well even when additional data variables are missing. The MoBI data used for this 
estimation might include available behavioral data (body motion capture, eye gaze 
tracking, etc.) and event/context information as well as EEG dynamics. 
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Fig. 1. Schematic model diagram for a non-invasive brain/behavior system interface (BBI) 
design. Concurrent scalp EEG, behavior, and event/context data are collected in a Mobile 
Brain/body Imaging (MoBI) paradigm (thick ovals). In most currently proposed BCI systems 
(dotted arrows), selected EEG data are processed in near-real time to estimate or predict some 
behavioral or event/context parameter (‘BCI’). In the proposed BBI, the EEG data are first 
separated into cortical EEG source processes (upper middle oval) (plus non-brain artifact proc-
esses, not shown). Then the time/frequency behaviors of the source processes are further sepa-
rated into effects of a number of maximally distinct EEG source modulator processes (upper 
right oval). In the BBI model, both selected EEG time-domain source and frequency-domain 
source modulator data may be integrated with the behavioral and other event/context data  
to estimate or predict selected behavioral and/or event/context parameters (broad light blue 
arrows). 

3   Discussion 

The model of an EEG-based BBI system shown in Fig. 1 has the advantage of involv-
ing volitional control of spatiotemporal EEG dynamic patterns most specifically asso-
ciated with the operator’s spontaneous EEG responses in the targeted event categories 
[11]. While it is natural to hypothesize that strengthening and controlling spontane-
ously active EEG patterns may be more easily and quickly learned, this assumption 
may prove incorrect in some or many cases, and thus basic experiments (and adequate 
analyses) are needed to test it. Earlier, we showed that applying even highly over-
learned BCI control of a single pre-defined EEG feature may involve complex and 
asymmetric EEG changes in and among many cortical regions [12]. Thus, gaining a 
basic understanding of the nature and learning of volitional EEG control may in many 
cases prove to be a complex and difficult process. 

How may we determine which brain modulatory systems are involved in spontane-
ous and learned control of particular EEG or behavioral/EEG dynamics? A full an-
swer to this question may require invasive experiments (potentially involving patient 
volunteers who have been implanted with cortical electrodes for clinical purposes), 
positron emission tomography (PET) experiments that can assess neurotransmitter 
distributions in the brain, various psychopharmacological manipulations, combined 
with carefully selected behavioral paradigms, for example those directly manipulating 
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reward levels known to be linked to dopamine release [13]. However, a number of 
brain modulatory systems may be involved in most state changes and event responses 
of interest, so this investigation should be expected to be involved. 

A possible objection to the model shown in Fig. 1 is that if an adequate BCI func-
tion linking the recorded EEG signal to the target behavioral or event/context parame-
ter(s) of interest proves to be linear, then constructing a more elaborate BBI function 
linking EEG data first to EEG sources, then to their natural modes of spectral modula-
tion, and finally to the estimated event/context or behavioral measure may not give a 
better-performing estimator. The proposed EEG source modulator model, however, is 
nonlinear as it operates on source (log) power spectra. Linear or other functions of the 
estimated source and source modulator time courses, therefore, involve additional 
information and might well have advantages over direct (and particularly, linear) BCI 
estimation. However, use of power spectral estimates ignore source signal phase and 
with it, precise latency information available in the time-domain data. Thus, applying 
a joint linear (or other) estimator to combine time-domain and time/frequency-domain 
data could improve performance over a time-domain estimator alone. 

Recently Bigdely Shamlo and colleagues demonstrated a successful application of 
such an approach [14]. We reported a method for estimating the probability that a 
briefly presented visual image contained a rare target feature – an airplane feature in a 
stream of satellite ground images presented to the subject at a rate of 12 images per 
second. Near-real time performance in correctly detecting the presentation of single 
target-bearing images solely from high-density EEG (by combining source time-
domain and source spectral modulator information in a linear estimator) was high, 
giving an area under the ROC curve of over 90% for most subjects.  

Like most BCI projects, this project did not expressly capture subject behavioral 
information. However, it did allow use of maximally independent EEG sources cap-
turing potentials induced by characteristic subject eye gaze behavior following target 
appraisal, unlike BCI systems built to serve completely paralyzed subjects. Although 
the very rapid serial visual presentation (RSVP) did not reward normal saccadic eye 
movements, independent components accounting for eye movements following target 
perception was found to carry some target classification information (though of less 
value compared to several brain EEG source responses). 

The BBI model shown schematically in Fig. 1 does not propose a method for com-
bining EEG and behavioral data, in particular body motion capture data. This is a 
topic that both requires and deserves much attention and exploration. Of particular 
interest is to determine the extent to which it is desirable to solve the biomechanical 
inverse problem, estimating which muscle actions produce the observed sequence of 
body movements, before estimating links between EEG source activities, body 
movements, and operator mental state or reactions [8]. 

Finally, can the proposed MoBI-based BBI systems be practical for widespread 
application, or must they remain basic research tools? EEG spatial filtering requires 
the availability of a relatively high number of scalp EEG recording channels. Typi-
cally, BCI designers have attempted to maximize signal to noise ratio by restricting 
the number of channels used in the classifier, an approach that might also lower the 
cost of the system, if realized using currently available technology. To date, body 
motion capture (mocap) systems also remain quite expensive. Thus, can the proposed 
MoBI-based BBI systems become practical for routine application, even in (e.g.) 
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high-value military or civilian environments? Here, the rapid progress of electronic 
fabrication methods, allow microminiaturized data acquisition and processing  
units based on flexible thin-film technologies should allow development and rela-
tively low-cost deployment of wearable high-density EEG and behavioral monitoring 
systems within a few years [15]. Such systems should be readily applicable to some 
important problems, for example alertness monitoring of shift-work operators of  
high-value, high-risk systems [16]. Full realization of the MoBI-based BBI concepts 
discussed here will likely require a great deal more basic and applied research in 
many laboratories combining expertise in several fields of neuroscience, mathematics, 
and engineering. 
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