Skip to main content

Efficient Data Structures for the Orthogonal Range Successor Problem

  • Conference paper
Computing and Combinatorics (COCOON 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5609))

Included in the following conference series:

Abstract

This paper considers a type of orthogonal range query, called orthogonal range successor query, which is defined as follows: Let P be a set of n points that lie on an n ×n grid. Then, for any given rectangle R, our target is to report, among all points of P ∩ R, the point which has the smallest y-coordinate. We propose two indexing data structures for P so that online orthogonal range successor queries are supported efficiently. The first one is a succinct index where only O(n) words are allowed for the index space. We show that each query can be answered in O(logn / loglogn) time, thus improving the best-known O(logn) time by Mäkinen and Navarro. The improvement stems from the design of an index with O(1) query time when the points are restricted to lie on a narrow grid, which in turn extends the recent wavelet tree technique to support the desired query. Our second result is a general framework for indexing points in the d-dimensional grids. We show an O(n 1 + ε)-space index that supports each d-dimensional query in optimal O(1) time. Our second index is very simple and when d = 2, it is as efficient as the existing index by Crochemore et al.

This research was supported in part by the National Science Council of the Republic of China under the Contracts NSC-95-2213-E-007-029 and NSC-96-2221-E-007-082.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Erickson, J.: Geometric Range Searching and Its Relatives. Advances in Discrete and Computational Geometry 223, 1–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved Algorithms for the Range Next Value Problem and Applications. In: 25th Annual Symposium on Theoretical Aspects of Computer Science, pp. 205–216 (2008)

    Google Scholar 

  4. Crochemore, M., Iliopoulos, C.S., Rahman, M.S.: Finding Patterns in Given Intervals. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 645–656. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed Representations of Sequences and Full-Text Indexes. ACM Transactions on Algorithms 3(2) (2007)

    Google Scholar 

  6. Grossi, R., Gupta, A., Vitter, J.S.: High-Order Entropy-Compressed Text Indexes. In: 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850 (2003)

    Google Scholar 

  7. Iliopoulos, C.S., Rahman, M.S.: Indexing Circular Patterns. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM 2008. LNCS, vol. 4921, pp. 46–57. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Keller, O., Kopelowitz, T., Lewenstein, M.: Range Non-overlapping Indexing and Successive List Indexing. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 625–636. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Lenhof, H.-P., Smid, M.H.M.: Using Persistent Data Structures for Adding Range Restrictions to Searching Problems. RAIRO Theoretical Informatics and Application 28(1), 25–49 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Mäkinen, V., Navarro, G.: Rank and Select Revisited and Extended. Theor. Comput. Sci. 387(3), 332–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nekrich, Y.: Orthogonal Range Searching in Linear and Almost-Linear Space. Comput. Geom. 42(4), 342–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, CC., Hon, WK., Wang, BF. (2009). Efficient Data Structures for the Orthogonal Range Successor Problem. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02882-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02881-6

  • Online ISBN: 978-3-642-02882-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics