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Abstract. En-route data compression is fundamental to reduce the 
power consumed for data gathering in sensor networks. Typical in-
network compression schemes involve the distributed computation of 
some decorrelating transform on the data; the structure along which the 
transform is computed influences both coding performance and trans-
mission cost of the computed coefñcients, and has been widely explored 
in the literature. However, few works have studied this interaction in 
the practical case when the routing configuration of the network is 
also built in a distributed manner. In this paper we aim at expanding 
this understanding by specifically considering the impact of distributed 
routing tree initialization algorithms on coding and transmission costs, 
when a tree-based wavelet lifting transform is adopted. We propose a 
simple modification to the collection tree protocol (CTP) which can be 
tuned to account for a vast range of spatial correlations. In terms of 
costs and coding efñciency, our methods do not improve the performance 
of more sophisticated routing trees such as the shortest path tree, but 
they entail an easier manageability in case of node reconfigurations and 
update. 

Keywords: In-network compression, wavelet lifting, distributed routing 
algorithms, collection tree protocol, shortest path tree. 

1 Introduction 

Data gathering in Wireless Sensor Networks (WSN) is generally deemed to be 
energy-consuming, especially when the density of sensor deployment increases, 
since the amount of da ta to be t ransmit ted across nodes grows as well. The 
observation that , for many natural ly occurring phenomena, da ta acquired at 
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(spatially) neighboring nodes are correlated has suggested the use of en-route 
compression techniques, which directly send the acquired data to the sink in 
a compressed form. Such in-network compression methods and their interaction 
with routing have been extensively studied in the literature, both from a theoret-
ical point of view [1,2] and in practical scenarios, using Slepian-Wolf coding [3], 
opportunistic compression along the shortest path tree [4] or wavelet transforms 
[5,6,7]. Nevertheless, only limited work [8] has been done on understanding the 
problems associated with distributed node conñgurations, Le., how to build in 
a distributed fashion a routing structure along which to compress and gather 
data. This appears to be particularly appealing when the number of inter-node 
(or node-to-sink) messages is to be minimized in order to reduce initialization 
or reconñguration times (e.g., in dynamic networks with mobile nodes). In the 
SenZip architecture [8], this aspect has been considered for the case of a tree-
based spatial decorrelating transform, where the tree is built in a distributed 
way allowing only local message exchanges between nodes. However, a clear un­
derstanding of how different distributed routing initialization schemes impact 
the performance of a distributed transform is still missing. 

This work builds on the distributed approach proposed in SenZip in order to 
analyze the effects of distributed tree-building algorithms on coding and trans-
mission costs. As in SenZip, we focus on the in-network data compression scheme 
described in [7]. The key point of this algorithm is the computation of a 2D wavelet 
transform using a lifting scheme, where the lifting is operated along an arbitrary 
routing tree connecting nodes irregularly spaced in a sensor network. In SenZip, 
the collection tree protocol (CTP) [9], a tree-based collection service included in 
TinyOS, is employed to build this tree incrementally. We extend this CTP algo­
rithm in order to ñt naturally to a lifting scheme; moreover, we simplify tree man-
agement in the case of possible node reconñgurations. The proposed approach is 
compared with two distributed versions of the shortest path tree routing, which 
achieve better performance but with a higher reconñguration complexity. We also 
compare the costs of transmission when the wavelet transform compression is em­
ployed with those incurred in the simple raw data gathering case. We observe that, 
even in the distributed setting, the gain of using a transform to decorrelate data 
is signiñcant with respect to just forwarding data from nodes to the sink. Further-
more, we show that the gain of the transform increases when the average depth of 
peripheral nodes (leaves) of the routing tree with respect to the sink gets larger, 
i.e., when the average hop length in the tree is smaller (for a ñxed density of the 
nodes in the network), as this leads to more highly correlated data (assuming that 
data in two nodes tends to be more correlated if the two nodes are closer to each 
other). Our study suggests that trees that are in general good for data gathering, 
will also be good when a transform is used, while trees speciñcally designed to im-
prove transform performance will reduce only minimally the total costs, or will 
worsen them due to routing sub-optimality. 

The rest of this paper is organized as follows. In Section 2, we provide a brief 
survey of previous work on en-route data compression, including the 2D wavelet 
transform of [7] used in our experiments. In Section 3 we present a tree-based 



collection algorithm to construct the routing tree for compression. In Section 4 we 
use simulations to study the impact oí different distributed tree-building strate-
gies on transmission costs. Our conclusions are in Section 5. 

2 Related work 

In-network data compression techniques include, among others, the distributed 
KLT proposed in [10], wavelet based methods [11,6,5,12,7], networked Slepian-
Wolf coding [3], and, recently, distributed compressive sensing [13]. In particular 
we focus on wavelet transforms based on lifting, which can easily be used even 
in the case oí arbitrary node positions. While early approaches required back-
ward data transmission [12] (i.e., away from the sink), these bidirectional data 
flows (i.e. from and towards the sink) lead to higher transmission costs. Instead 
unidirectional transforms, where data only flows towards the sink, are preferable 
[11,14,7]. We focus on the approach in [7], where a unidirectional way along any 
routing tree, e.g., shortest path tree (SPT), can be computed. The SPT guaran-
tees the best path from a given node to the sink from the routing perspective, 
but obviously does not ensure that consecutive nodes in a path contain highly 
correlated data. Conversely a tree that seeks to minimize inter-node distance 
(e.g., a minimum spanning tree, MST), in order to lower the bitrate, may have a 
higher transport cost. In [15], this problem is addressed by proposing a joint op-
timization of routing and compression. A broader perspective is adopted in [16], 
where each node can collect data broadcasted by its neighbors (i.e. nodes that 
are spatially cióse), even in the case they are not directly connected in the tree 
structure. This enables the use of a routing-optimal tree (SPT) while leveraging 
the context information at the same time. Very recently, Pattem et al. [8] have 
demonstrated for the ñrst time an architecture for en-route compression, based 
on the tree wavelet transform of [7], in which the routing (compression) tree is 
initialized in a distributed way, using CTP. In this paper, our goal is to evalúate 
different network routing initialization techniques in terms of their impact on 
overall costs for a given data representation quality. 

In order to compress the data gathered by the sensor nodes in a distributed 
manner we use the 2D unidirectional lifting transforms proposed in [7,16]. These 
transforms are critically sampled and computable in a unidirectional manner, 
so that the transmission costs are reduced. Consider a sensor network with N 
sensor nodes and one sink, where xn is the data gathered by node n. Let T 
be the routing tree, with the root of the tree corresponding to the sink (node 
N + 1). Let depth(n) be the number of hops from n to the sink in T, with 
depth(./V + 1) = 0. To perform a lifting transform on T, we ñrst split nodes into 
even and odd sets. This is done by assigning nodes of odd (resp. even) depth 
as odd (resp. even) in the transform. Data at odd nodes is then predicted using 
data from even neighbors on T, yielding detail coefñcients. Then, even node data 
is updated using detail coefñcients from odd neighbors on T. This can be done 
over múltiple levéis of decomposition, either directly on T or on other trees using 
the notion of "delayed processing" introduced in [16]. 



3 Distr ibuted Tree Construction Algorithms 

We outline in this section three distributed algorithms to initialize the routing 
tree on which the tree-based wavelet transform will be computed. 

3.1 Modified Collection Tree Protocol (M-CTP) 

The collection tree protocol (CTP) [9] is a tree-based data gathering approach 
that provides best-effort anycast datagram communication to the sinks in a 
multihop network. The protocol has an initialization phase in which one or more 
nodes advertise themselves as sinks (or tree roots) and the rest of the nodes 
form routing trees to these roots using the expected transmissions (ETX) as the 
routing gradient. This metric gives an estimate of the number of transmissions it 
takes for a node to send a unicast packet whose acknowledgement is successfully 
received. The ETX of a node is the ETX of its parent plus the ETX of the link 
to its parent and given a choice of valid routes, CTP chooses the one with the 
lowest ETX valué. CTP assumes that the data link layer provides synchronous 
acknowledgements for unicast packets, so when the acknowledgement of a packet 
is not received, the packet is retransmitted. 

In this work we have used a similar collection protocol, but instead of using 
the ETX metric, the protocol chooses the links with lowest Ínter-node distance. 
In the following, we refer to this modiñed versión of the collection tree protocol as 
M-CTP. In the initialization phase, the sink broadcasts a 'Helio' packet using a 
given transmission power. All the nodes within its communication range receive 
this packet, and label themselves as 1-hop nodes. Then, using the same trans­
mission power as the sink, each 1-hop node broadcasts another 'Helio' packet, 
which will be received by their neighboring nodes. Among these nodes, those 
which have not received previously any 'Helio' packet will become 2-hop nodes 
and they will continué with the initialization procedure in the same way. At 
the end, every node in the network will know their number of hops to the sink, 
from which it will be possible to determine the node parity (even or odd), and 
therefore the role of the node in the tree-based transform [7]. Furthermore, when 
a node receives a packet from another node, it measures the Received Signal 
Strength (RSS) of the message and uses this information to estimate the dis­
tance to its neighbor. Therefore, at the end of the initialization phase, each node 
in the network will also have estimates of the distances to its neighboring nodes. 
Later, when a sensor node collects data from the environment, it just chooses 
to send this data to the neighbor that is 1-hop closer to the sink than itself. If 
more than one neighbor is in this situation, the sensor node will send the data 
to the neighbor which is closer to itself, i.e., the neighbor from which it has the 
lowest distance estimation. We assume that during the data transmission phase 
the nodes can adjust their transmission power according to the estimated dis­
tance to their parent node in the routing tree, so that they transmit with "just 
enough" power to reach the parent node reliably. Depending on the transmission 
power that is used in the initialization phase, the resulting routing tree will be 
different. If a low transmission power is used, the nodes will be connected to the 



sink through several short hops; conversely, if the transmission power is higher, 
nodes will be connected through fewer, but longer, links. 

This CTP-based tree construction protocol can be constructed and tuned in 
a very simple way, without the need of backwards transmissions from children 
to parents, and therefore maintains a very low initialization cost. The reason to 
propose this tree construction algorithm instead of using CTP trees directly is 
twofold. On the one hand, we are interested in using distance (not the ETX) 
for building the trees, as distance is likely to be more directly related to the 
data correlation. On the other hand, the parity of each node can be calculated 
very easily with the proposed algorithm, whereas with the CTP scheme it is 
more complex to determine, as a given path from a node to the sink can change 
several times during the initialization process, and this affects the parity of the 
node and its descendants. Note that node parity is important, since it is used to 
determine the role of each node in computing the wavelet transform. 

3.2 Shortest Path Tree (SPT) and Minimum Distance Tree (MDT) 

In order to broaden our evaluation of distributed data compression techniques 
over different routing trees, we also consider two other trees that can be con­
structed as well in a distributed way. The ñrst one is a shortest path tree (SPT) 
that minimizes the sum of the squared distances between any node of the network 
and the sink. In an ideal propagation environment, the transmission cost for a 
given link is proportional to the square of the distance between the two nodes, 
so, under these circumstances, this shortest path tree is optimum in the sense 
that it minimizes the total transmission cost per bit. The second tree that we 
consider here is a variation of shortest path tree but, in contrast to the previous 
one, the objective function to be minimized in this case is the total distance to 
the sink. We ñame this tree minimum distance tree (MDT). Assuming that the 
correlation between sensor data is inversely proportional to the distance between 
the sensors, this tree is expected to perform well in terms of data compression. 
Both SPT and MDT can be computed in a distributed manner following the 
same approach used by CTP (substituting the cumulated ETX to the sink at 
each node, with the cumulated costs). 

When the network conñguration has to be built from scratch, both SPT/MDT 
and M-CTP can be seen as greedy procedures, as each node selects its parent lo-
cally, i.e. making a decisión only on the basis of its neighbors' distances or accu-
mulated costs. Speciñcally, in the initialization phase with SPT/MDT, each node 
n chooses a parent pn which minimizes the sum of the costs from the parent to the 
sink, C(pn), plus the cost from node ntopn,C(n). When the costs are non-negative 
(as is the case of distances), minimizing greedíly C(pn )+C(n) for each node n guar-
antees a globally optimal solution, as in fact this is nothing but the well-known 
Dijkstra algorithm. On the other hand, M-CTP simply minimizes the number of 
hops, by choosing closest matches when múltiple equivalent choices are available, 
without any claim of optimality in the sense of total costs. The fundamental dis-
tinction between STP/MDT and M-CTP occurs when some tree reconfiguration 
is needed. Consider, without loss of generality, a simple example where a node n 



with parity / in the tree runs out of battery and is no longer operational. Thus 
its "orphan" children need to be re-connected to other nodes. Note that in order 
to perform the wavelet transform this also implies that the parity of the children 
nodes needs to be updated to keep the transform consistent (the new conñguration 
will be forwarded to the sink for the transform to be invertible, but we neglect this 
cost since it cannot be avoided with any of our routing schemes). Let p(n) denote 
the set of children of node n, which have parity / + 1 in the tree. When n dies, a 
reconñguration procedure is launched. In the case of M-CTP, children nodes will 
have to look for a new parent node having depth in the tree greater than or equal to 
/ using search procedure described in Section 3.1. If the new parent has level /, the 
conñguration update is done; otherwise, if the level of the new parent is /' > /, each 
child m G p(n) set its parity to / ' + 1 and the set of descendants p(m), p(p(m))..., 
m G p(n) will modify their parity accordingly as well. Thus, in the worst CcLS67 el 

reconñguration with M-CTP involves a propagation through descendants of par­
ity level information, but no other topologícal changes in the set of descendants are 
carried out. In the case of SPT/MDT, on the contrary, each child node m G p(n) 
needs to look for a new candidate parent node pm that minimizes C(m) + C(pm). 
But once the parent node isfound, the descendants oím,t G {p(rn)Up(p(m))U...}, 
will not simply update their parity as in the M-CTP case, since each node t is sup-
posed to be connected to the sink through the mínimum costpath which minimizes 
C(t) + C(pt), where as before C(pt) denotes the cost of the path from the parent 
of í up to the sink. Therefore, a reconñguration in the SPT/MDT case will in gen­
eral entail a global re-computation of costs for the descendants of the modiñed 
node and in general this will lead to an overall modiñcation of the tree. On the 
other hand, the proposed M-CTP algorithm can substantially reduce reconñgura­
tion complexity, and thus it is a valid practical alternative to optimal SPT/MDT 
trees when network conñguration changes frequently over time. 

4 Results and Discussion 

4.1 Description of Experimental Setup 

In order to analyze precisely how the total energy consumption in the network de-
pends on the different parameters we have run a set of simulations. In each sim-
ulation a network composed of 100 nodes (99 sensor nodes and one sink node) is 
deployed randomly in a 100 m2 room. Three different data ñelds with different cor-
relations (high, médium and low, denoted, H, M, L, respectively) are generated over 
the same región using a separable second order autoregressive ñlter. The commu-
nication channel is modeled using the lognormal shadowing path loss model [17], 
which establishes for each link a relation between the transmitted power (PTX), 

the received power (PRX) and the distance between transmitter and receiver (d): 

PRX(dBm) = PrX(dBm) + A - lOrylog -£• + N. (1) 
«o 

A is a constant term that depends on the power loss for a reference distance 
cío, i) is the path loss exponent and N ~ A/"(0, a2) is a zero-mean gaussian noise 



Fig. 1. Total energy consumption [left) and relative energy consumption with respect 
to the raw data case (right) for different routing trees. The labels M-CTP (ai) correspond 
to the different M-CTP trees constructed with transmission power x. H, M and L 
represent the high, médium and low correlation dataseis respectively. 

with s tandard deviation a. In the simulations we have set these parameters to 
A = - 8 0 dB, d0 = 1 m, r¡ = 2 and a = 2. 

Different routing trees are constructed for each simulation: the SPT and MDT 
described in Section 3.2 and various M-CTP trees using the initialization pro-
cedure explained in Section 3.1 with different transmission powers. During this 
phase the nodes measure the RSS of all the packets they receive from their 
neighbors and they estimate the distances to them using the lognormal model. 
Then all the nodes send their da ta towards the sink and the tree-based wavelet 
transform is applied to reduce the amount of information tha t is sent over the 
network. During this da ta gathering phase the packets are sent with a transmis­
sion power tha t depends on the estimated inter-node distances: Prx(dBm) = 
S(dBm) — A + 10?7log(j-) + M, where S is the receiver sensitivity and M 
is a margin to reduce the packet loss probability (for the lognormal channel 
M(dB) = - Q - ^ P R P ) • CTA/2, where Q " 1 is the inverse Q function and P R P 
is the desired packet reception probabil i ty in our simulations PRP=0 .99 ) . For 
the retransmissions it is reasonable to use a higher transmission power so, in 
the simulations, we have added 0.5 dB for each retransmission. After the da ta 
gathering phase, when the sink has received all the information, it computes the 
inverse transform so the original da ta is reconstructed (with some distortion). 

4.2 E x p e r i m e n t a l R e s u l t s 

Using the described setup we have evaluated the total energy consumption in 
the network during the da ta gathering phase. Note tha t the cost of the ini­
tialization phase, i.e. the cost of constructing the routing tree, is not considered 
here. Fig. 1 shows the total energy consumption during the da ta collection phase 
for the tree routing algorithms described in Section 3. The cost of t ransmit t ing 
raw da ta across the network is compared against the cases of 1 and 2 levéis of 
wavelet decomposition. For the tunable M-CTP trees, it can be seen tha t the 
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Fig. 2. SNR-Energy consumption for two dataseis with different correlation. Each 
point in the curves represents the average over 50 simulations. 

energy consumption generally increases with the transmission power; at the same 
time, the relative cost reduction with respect to simple data gathering (raw bits 
transmission) tends to get smaller. For the MDT and the SPT the results are 
better than those obtained with the M-CTP trees, as the former trees have a 
higher number of (shorter) hops. This supports the thesis that longer paths with 
shorter hops are better from both a transform coding gain point of view and 
for routing efñciency. Note that the consumption reduction yielded by wavelet 
transform with respect to raw data gathering does not change across the differ­
ent M-CTP trees as signiñcatively as does the total cost. This is partially due 
to an intrinsic overhead of the adopted transform, which necessarily requires the 
transmission of non compressed information for 1 or 2 hops. However, we believe 
that this reduced gain could improve in the case of a denser network1. 

An overall evaluation of in-network compression also needs to consider the 
quality of the data reconstructed at the sink. We consider in Fig. 2 SNR-Energy 
consumption curves for the three different routing trees (only the M-CTP tree 
with a transmission power of -10 dBm is shown in the graph). The SNR here 
is the reconstruction signal-to-quantization noise. Clearly, to obtain a lower dis­
tortion in the reconstructed data, the energy to be consumed is larger (as the 
number of bits increase). However, we observe that, e.g. for a target distortion 
of 40 dB, the M-CTP tree yields a cost reduction of about 10% (14%) with a 1 
level wavelet transform in the case of data with low (high) correlation; using 2 
levéis of decomposition we can further gain 5% (6%) for the case of low (high) 
correlation. These gains are basically the same for the MDT tree, while the SPT 
produces a further transform gain of about 1-2%. Note that in terms of absolute 
consumption-distortion performance, the SPT gives the best performance, as it 
is designed to provide the cost-optimal tree. 

1 We are not considering channel capacity and interference effects, for which having a 
denser network implies an asymptotically increasing cost due to retransmission and 
reduced throughput [18]. 
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Fig. 3. SNR-Rate curves for two dataseis with different correlation. Each point in the 
curves represents the average over 50 simulations. 

In order to sepárate the speciñc contribution of the transform to the total 
cost, we plot in Fig. 3 SNR-Bit rate curves for the same routing trees of Fig. 2 
(we only show the performance of one of the M-CTP routing trees for the sake 
of clarity). Again, the best performance is obtained with the 2-level transform. 
The marginal gain of using a transform in the MDT with respect to M-CTP is 
on average about 0.5 dB for both the high and low correlation dataseis. The 
SPT can beneñt more from higher correlation, and the gain when the transform 
is applied increases to 3 dB for the high correlation data (while it stops at 1.5 dB 
for low correlation). This suggests that a tree which is optimal for routing is in 
general optimal also for transform coding, even if a sub-optimal tree like the M-
CTP can be still preferable in practice when other non-functional requirements 
(such as the reconñguration time) come into play. 

5 Conclusions 

This paper aims at corroborating the practícal feasibility of transform-based in-
network compression using a totally distrihuted initialization approach. Our main 
contribution is to propose a simple, yet effective distributed tree-construction al-
gorithm based on CTP, which ñts particularly well to the 2D wavelet transform 
adopted in this work by embedding, explicitly, the distance between nodes and 
thus data correlation. We discuss how to tune, in a practical situation, the ini­
tialization power of the M-CTP scheme in order to produce trees with different 
depth, and we show that deeper trees will lead in general to better performance 
in terms of transmission costs. The proposed scheme entails lower initialization 
costs in comparison to distributed versions of optimal routing trees such as the 
SPT when some nodes need to be reconñgured (which is particularly beneñcial 
in case of highly dynamic networks). 
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