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Abstract. Recently, wireless sensor networks providing fine-grained spatio-
temporal observations have become one of the major monitoring platforms
for geo-applications. Along side data acquisition, outlier detection is essen-
tial in geosensor networks to ensure data quality, secure monitoring and re-
liable detection of interesting and critical events. A key challenge for outlier
detection in these geosensor networks is accurate identification of outliers
in a distributed and online manner while maintaining resource consumption
low. In this paper, we propose an online outlier detection technique based on
one-class hyperellipsoidal SVM and take advantage of spatial and temporal
correlations that exist between sensor data to cooperatively identify outliers.
Experiments with both synthetic and real data show that our online outlier
detection technique achieves better detection accuracy compared to the ex-
isting SVM-based outlier detection techniques designed for sensor networks.
We also show that understanding data distribution and correlations among
sensor data is essential to select the most suitable outlier detection technique.

Key words: Geosensor networks, outlier detection, data mining, one-class
support vector machine, spatio-temporal correlation

1 Introduction

Advances in sensor technology and wireless communication have enabled deployment
of low-cost and low-power sensor nodes that are integrated with sensing, processing,
and wireless communication capabilities. A geosensor network consists of a large
number of these sensor nodes distributed in a large area to collaboratively monitor
phenomena of interest. The monitored geographic space may vary in size and can
range from small-scale room-sized spaces to highly complex dynamics of ecosystem
regions [1]. Emerging applications of large-scale geosensor networks include environ-
mental monitoring, precision agriculture, disaster management, early warning sys-
tems and wildlife tracking [1]. In a typical application, a geosensor network collects
and analyzes continuous streams of fine-grained geosensor data, detects events, makes
decisions, and takes actions.

Wireless geosensor networks have strong resource constraints in terms of energy,
memory, computational capacity, and communication bandwidth. Moreover, the au-
tonomous and self-organizing vision of these networks make them a good candidate
for operating in harsh and unattended environments. Resource constraints and envi-
ronmental effects cause wireless geosensor networks to be more vulnerable to noise,
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faults, and malicious activities (e.g., denial of service attacks or black hole attacks),
and more often generate unreliable and inaccurate sensor readings. Thus, to ensure
a reasonable data quality, secure monitoring and reliable detection of interesting and
critical events, identifying anomalous measurements locally at the point of action (at
the sensor node itself) is a must. These anomalous measurements, usually known
as outliers or anomalies, are defined as measurements that do not conform with the
normal behavioral pattern of the sensed data [2].

Unlike traditional outlier detection techniques performed off-line in a centralized
manner, limited resources available in sensor networks and specific nature of geosen-
sor data necessitate outlier detection to be performed in a distributed and online
manner to reduce communication overhead and enable fast respond. This implies
that outliers in distributed streaming data should accurately be detected in real-time
while maintaining resource consumption low. In this paper, we propose an online out-
lier detection technique based on one-class hyperellipsoidal Support Vector Machine
(SVM) and take advantage of spatial and temporal correlation that exist between
sensor data to cooperatively identify outliers. Experiments with both synthetic and
real data obtained from the EPFL SensorScope System [3] show that our online
outlier detection technique achieves better detection accuracy and lower false alarm
compared to the existing SVM-based outlier detection techniques [4], [5] designed for
sensor networks.

The remainder of this paper is organized as follows. Related work on one-class
SVM-based outlier detection techniques is presented in Section 2. Fundamentals of
the one-class hyperellipsoidal SVM are described in Section 3. Our proposed dis-
tributed and online outlier detection technique is explained in Section 4. Experi-
mental results and performance evaluation are reported in Section 5. The paper is
concluded in Section 6 with plans for future research.

2 Related Work

Generally speaking, outlier detection techniques can be categorized into statistical-
based, nearest neighbor-based, clustering-based, classification-based, and spectral
decomposition-based approaches [2], [6]. SVM-based techniques are one of the pop-
ular classification-based approaches due to the fact that they (i) do not require an
explicit statistical model, (ii) provide an optimum solution for classification by maxi-
mizing the margin of the decision boundary, and (iii) avoid the curse of dimensionality
problem.

One of the challenges faced by SVM-based outlier detection techniques for sensor
networks is obtaining error-free or labelled data for training. One-class (unsupervised)
SVM-based techniques can address this challenge by modelling the normal behavior
of the unlabelled data while automatically ignoring the anomalies existed in the
training set. The main idea of one-class SVM-based outlier detection techniques is to
use a non-linear function to map the data vectors (measurements) collected from the
original space (input space) to a higher dimensional space (feature space). Then a
decision boundary of normal data will be found that encompasses the majority of the
data vectors in the feature space. Those new unseen data vectors falling outside the
boundary are classified as outliers. Scholkopf et al. [7] have proposed a hyperplane-
based one-class SVM, which identifies outliers by fitting a hyperplane from the origin.
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Fig. 1. Geometry of the hyperellipsoidal formulation of one-class SVM [4].

Tax et al. [8] have proposed a hypersphere-based one-class SVM, which identifies
outliers by fitting a hypersphere with a minimal radius. Wang et al. [9] have proposed
a hyperellipsoid-based one-class SVM, which identifies outliers by fitting multiple
hyperellipsoids with minimum effective radii.

In addition to obtaining the labelled data, another challenge faced by SVM-based
outlier detection techniques is their quadratic optimization during the learning pro-
cess for the normal boundary. This process is extremely costly and not suitable for
limited resources available in sensor networks. Laskov et al. [10] have extended work
in [8] by proposing a one-class quarter-sphere SVM, which is formulated as a linear
optimization problem by fitting a hypersphere centered at the origin and thus reduc-
ing the effort and computational complexity. Rajasegarar et al. [11] and Zhang et
al. [5] have further exploited potential of the one-class quarter-sphere SVM of [10]
for distributed outlier detection in sensor networks. The main difference of these two
techniques is that unlike a batch technique of [11], the work of [5] aims at identifying
every new measurement collected at a node as normal or anomalous in an online
manner.

Rajasegarar et al. [4] have also extended work in [9] [10] by proposing a one-class
centered hyperellipsodal SVM with linear optimization. However, this technique is
neither distributed nor online. In this paper, we extend work in [4] and propose a
distributed and online outlier detection technique suitable for geosensor networks,
with low computational complexity and memory usage.

3 Fundamentals of the One-Class Hyperellipsoidal SVM

In our proposed technique, we exploit the one-class hyperellipsoidal SVM [9], [4] to
learn the normal behavioral pattern of sensor measurements. The quadric optimiza-
tion problem of the one-class hyperellipsoidal SVM has been converted to a linear
optimization problem in [4] by fixing the center of the hyperellipsoidal at the origin.
A hyperellipsoidal boundary is used to enclose the majority of the data vectors in the
feature space. The geometries of the one-class centered hyperellipsoidal SVM-based
approach is shown in Figure 1.
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The constrain for optimization problem of the one-class centered hyperspherical
SVM is formalized as follows:

min
Rε<,ξε<m

R2 + 1
υm

m∑

i=1

ξi (1)

subject to : φ(xi)Σ−1φ(xi)T ≤ R2 + ξi, ξi ≥ 0, i = 1, 2, . . . m

where m denotes number of data vectors in the training set. The parameter υ ε (0, 1)
controls the fraction of data vectors that can be outliers. Σ−1 is the inverse of the

covariance matrix Σ = 1
m

∑m
i=1(φ(xi) − µ)(φ(xi) − µ)T , µ = 1

m

m∑

i=1

φ(xi). Using

Mercer Kernels [12], the dot product computations of data vectors in the feature
space can be computed in the input data space. The centered kernel matrix Kc can
be obtained in terms of the kernel matrix K using Kc = K−1mK−K1m +1mK1m,
where 1m is the m×m matrix with all values equal to 1

m . Finally, the dual formulation
of (1) will become a linear optimization problem formulated as follows:

min
αε<m

−
m∑

i=1

αi‖
√

mΛ−1PT Ki
c‖2 (2)

subject to :
m∑

i=1

αi = 1, 0 ≤ αi ≤ 1
υm

, i = 1, 2, . . . m

where Λ is a diagonal matrix with positive eigenvalues, P is the eigenvector matrix
corresponding to the positive eigenvalues [13], and Ki

c is the ith column of the kernel
matrix Kc. From equation (2), the {αi} value can be easily obtained using some
effective linear optimization techniques [14]. The data vectors in the training set can
be classified depending on the results of {αi}, as shown in Figure 1. The training
data vectors with 0 ≤ α ≤ 1

υm , which fall on the hyperellipsoid, are called margin
support vectors. The effective radius of the hyperellipsoid R = ‖√mΛ−1PT Ki

c‖ can
be computed using any margin support vector.

4 A Distributed and Online Outlier Detection Technique for
GeoSensor Networks

In this section, we will describe our distributed and online outlier detection technique.
This proposed technique aims at identifying every new measurement collected at each
node as normal or anomalous in real-time. Moreover, using high degree of spatio-
temporal correlations that exist among the sensor readings, each node exchanges the
learned normal boundary with its spatially neighboring nodes and combines their
learned normal boundaries to cooperatively identify outliers. Before describing this
technique in details, we present our assumptions and explain why we exploit the
hyperellipsoidal SVM instead of hyperspherical SVM to learn the normal behavioral
pattern of sensor measurements.
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4.1 Assumptions

We assume that wireless sensor nodes are time synchronized and densely deployed in
a homogeneous geosensor network, where sensor data tends to be correlated in both
time and space. A sensor sub-network consists of n sensor nodes S1, S2, . . . Sn, which
are within radio transmission range of each other. This means that each node has
n-1 spatially neighboring nodes in the sub-network. At each time interval ∆i, each
sensor node in the sub-network measures a data vector. Let xi

1, x
i
2, . . . , x

i
n denote the

data vector measured at S1, S2, . . . Sn, respectively. Each data vector is composed of
multiple attributes xil

j , where xi
j = {xil

j : j = 1 . . . n, l = 1 . . . d} and xi
j ε <d. Our aim

is online identification of every new measurement collected at each node as normal or
anomalous by means of local processing at the node itself. In addition to near real-
time identification of outliers, increasing data quality, and reducing communication
overhead, this local processing also has the advantage of coping with (possibly) large
scale of the geosensor network.

4.2 Hyperellipsoidal SVM VS Hyperspherical SVM

In this paper, we exploit the hyperellipsoidal SVM instead of hyperspherical SVM to
learn the normal behavioral pattern of sensor measurements. The reason for doing
so is the fact that hyperspherical SVM assumes that the target sample points are
distributed around the center of mass in an ideal spherical manner. However, if
the data distribution is non-spherical, using a spherical boundary to fit the data
will increase the false alarm rate and reduces the detection rate. This is because
many superfluous outlier are mistakenly considered in the boundary and consequently
outliers are classified as normal.

On the contrary, the hyperellipsoidal SVM is able to best capture multivariate
data structures by considering not only the distance from the center of mass but also
the data distribution trend, where the latter is learned by building the covariance
matrix of the sample points. This feature can be used well for geosensor data, where
multivariate attributes may induce certain correlation, e.g., the readings of humidity
sensors are negatively correlated to the readings of temperature sensors. Unlike using
the Euclidean distance in the hyperspherical SVM, the distance metric adopted in
the hyperellipsoidal SVM is the Mahalanobis distance. The Mahalanobis distance
takes the shape of the multivariate data distribution into account and identifies the
correlations of data attributes. Thus using an ellipsoidal boundary to enclose geosen-
sor data aims to increase outlier detection accuracy and reduce the false alarm rate.
However, as a tradeoff, the hyperellipsoidal SVM has more computational and mem-
ory usage cost than the hyperspherical SVM. To correctly select the most appropriate
outlier detection technique, we believe that having some understanding about data
distribution and correlation among sensor data is crucial.

4.3 Hyperellipsoidal SVM-based Outlier Detection Techniques

The main idea behind our proposed Hyperellipsoidal SVM-based online outlier de-
tection technique (OODE) is that each node builds a normal boundary representing
normal behavior of the sensed data and then exchanges the learned normal bound-
ary with its spatially neighboring nodes. A sensor measurement collected at a node
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is identified as an outlier if it does not fit inside the boundary defined at the node
and also does not fit inside the combined boundaries of the spatially neighboring
nodes. We first explain the OODE technique in the input and feature spaces and
then present the corresponding pseudocode in Table 1.

OODE in the Input Space Initially, each node learns the local effective radius of
the hyperellipsoid using its m sequential data measurements, which may include some
anomalous data. In the input space, equation (1) can be formalized as equation (3).
The one-class hyperellipsoidal SVM can efficiently find a minimum effective radius R
to enclose the majority of these sensor measurements in the input space. Each node
then locally broadcasts the learned radius information to its spatially neighboring
nodes. When receiving the radii from all of its neighbors, each node computes a
median radius Rm of its neighboring nodes. We use median because in estimating
the ”center” of a sample set, the median is more accurate than the mean.

min
Rε<,ξε<m

R2 + 1
υm

m∑

i=1

ξi (3)

subject to : (xi − µ)Σ−1(xi − µ)T ≤ R2 + ξi, ξi ≥ 0, i = 1, 2, . . . m

Sensor data collected in a densely deployed geosensor network tends to be spatially
and temporally correlated [1]. When a new sensor measurement x is collected at node
Si, node Si first compares the Mahalanobis distance of x with its local effective radius

Ri. In the input space, the mean can be expressed as µ = 1
m

m∑

i=1

xi, and thus the

Mahalanobis distance of x is formulated as follows:

Md(x) =
√

(x− µ)Σ−1(x− µ)T = ‖Σ− 1
2 (x− 1

m

m∑

i=1

xi)‖ (4)

The data x will be classified as normal if Md(x) <= Ri. This means that x falls on
or inside the hyperellipsoid defined at Si. If Md(x) > Ri, Si further compares Md(x)
with the median radius Rim of its spatially neighboring nodes. Then if Md(x) >
Rim, x will finally be classified as an outlier. The decision function to declare a
measurement as normal or outlier can be formulated as equation (5), where a reading
with a negative value is classified as an outlier.

f(x) = sgn(max(R−Md(x), Rm −Md(x))) (5)

The computational complexity of OODE in the input space is low as it only
depends on solving a linear optimization problem presented in equation (3) and
simple computations expressed by equations (4) and (5). Once the optimization is
solved, each node only keeps the effective radius value, the mean, and the covariance
matrix obtained from the training data in memory. Using the radius information
from adjacent nodes is to reduce high false alarm caused by unsupervised learning
techniques.
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OODE in the Feature Space Each node learns the local effective radius of the
hyperellipsoid using equation (1) and (2), and then exchanges the learned radius
information with its spatially neighboring nodes. In the input space, the mean can

be expressed as µ = 1
m

m∑

i=1

φ(xi), and thus the Mahalanobis distance of each new

measurement x in the feature space can be formalized as follows:

Md(x) =
√

(φ(x)− µ)Σ−1(φ(x)− µ)T = ‖√mΛ−1PT Kx
c ‖ (6)

Then the data x will be classified as normal or anomalous using the same decision
function as the equation (5). Due to high computational cost and memory usage
required for classification of each new sensor measurement as normal or anomalous,
we modify the OODE in such a way that it does not run for every new sensor reading
and it waits until a few measurements X = {xn : n = 1 . . . t} are collected. The
centered kernel matrix KX

c can be obtained by using KX
c = KX − 1tmK −KX1m +

1tmK1m, where 1tm is the t×m matrix with all values equal to 1
m . This modification

reduces the computational complexity and also facilitates linking outliers to actual
events in later stages.

1 procedure LearningSVM()
2 each node collects m sensor measurements for learning its own effective radius R

and locally broadcasts the radius to its spatially neighboring nodes;
3 each node then computes Rm;
4 initiate OutlierDetectionProcess(R, Rm);
5 return;

6 procedure OutlierDetectionProcess(R, Rm)
7 when a new measurement x arrives
8 compute Md(x);
9 if (Md(x) > R AND Md(x) > Rm)
10 x indicates an outlier;
11 else
12 x indicates a normal measurement;
13 endif;
14 return;

Table 1. Pseudocode of the OODE

5 Experimental Results and Evaluation

The goals of expreiments are two folds. First we evaluate performance of our dis-
tributed and online technique compared to the batch hyperellipsoidal SVM-based
outlier detection technique (BODE) presented in [4] and the online quarter-sphere
SVM-based outlier detection technique (OODQ) presented in [5]. Secondly, we inves-
tigated impact of data distribution and spatial/spatio-temporal correlations in per-
formance of our outlier detection technique. In experiments, we use synthetic data
as well as real data gathered from a geosensor network deployment by the EPFL [3].
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5.1 Datasets

For the simulation, we use Matlab and consider a sensor sub-network consisting of
seven sensor nodes. Sensor nodes are within the one-hop range of each other. Two 2-D
synthetic data distributions with 10% (of the normal data) anomalous data are shown
in Figure 2(a) and 4(a). It can clearly be seen that Figure 4(a) has a concentrated
distribution around the origin while the data distribution shown in Figure 2(a) is not
spherical but has a certain trend. The data values are normalized to fit in the [0, 1].
The BODE performs outlier detection when all measurements are collected at each
node, while the OODQ operates in a distributed and online manner.

The real data is collected from a closed neighborhood by a geosensor network
deployed in Grand-St-Bernard. Figure 3(a) shows the deployment area. The closed
neighborhood contains the node 31 and its 4 spatially neighboring nodes, namely
nodes 25, 28, 29, 32. The network records ambient temperature, relative humidity,
soil moisture, solar radiation and watermark measurements at 2 minutes intervals. In
our experiments, we use ambient temperature and relative humidity collected during
the period of 9am-5pm on the 5th October 2007. The labels of measurements are
obtained based on degree of dissimilarity between data measurements.
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Fig. 2. (a) Plot for synthetic data; (b) ROC curves in the input space.

5.2 Experimental Results and Evaluation

We have evaluated two important performance metrics, the detection rate (DR),
which represents the percentage of anomalous data that are correctly classified as
outliers, and the false alarm rate, also known as false positive rate (FPR), which
represents the percentage of normal data that are incorrectly considered as outliers.
A receiver operating characteristics (ROC) curve is used to represent the trade-off
between the detection rate and the false alarm rate. The larger the area under the
ROC curve, the better the performance of the technique.

We have examined the effect of the regularization parameter υ for OODE , BODE ,
and OODQ. υ represents the fraction of data vectors that can be outliers. For syn-
thetic dataset, we varied υ from 0.02 to 0.18 in intervals of 0.02 and evaluated the
detection accuracy of the three techniques in the input space. For real dataset, we
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varied υ from 0.01 to 0.10 in intervals of 0.01 and used Polynomial kernel function
to evaluate the accuracy performance of three techniques in the feature space. The
Polynomial kernel function is formulated as: kPOLY = (x1.x2 + 1)r, where r is the
degree of the polynomial.
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Fig. 3. (a) Grand-St-Bernard deployment in [3]; (b) ROC curves in the feature space.

Figure 2(b) and 3(b) show the ROC curves obtained for the three techniques
in the input space for synthetic data and using Polynomial kernel function for real
data. Simulation results show that our OODE always outperforms BODE and OODQ.
Moreover, quarter-sphere SVM-based OODQ is obviously worse than the hyperellip-
soidal SVM-based OODE and BODE in the input space for synthetic data. For real
data in the feature space, the performance of OODQ and BODE is not very obvious
to distinguish.
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Fig. 4. (a) Plot for synthetic data; (b) ROC curves in the input space.

Although experiments show that hyperellipsoidal SVM-based techniques outper-
form quarter-sphere SVM-based technique, our experiments show that this greatly
depends on data distribution and correlations that exist between sensor data. It can
be clearly seen from Figure 4(b), the quarter-sphere SVM-based OODQ has a better
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performance than two hyperellipsoidal SVM-based outlier detection techniques in the
input space for synthetic data. The obtained results conform with our idea about the
need of having some understanding about data distribution and correlation among
sensor data to be able to select the most suitable outlier detection technique.

6 Conclusions

In this paper, we have proposed a distributed and online outlier detection technique
based on one-class hyperellipsoidal SVM for geosensor networks. We compare the
performance of our techniques with the existing SVM-based techniques using both
synthetic and real data sets. Experimental results show that our technique achieves
better detection accuracy and lower false alarm. Our future research includes se-
quentially updating the normal boundary of the sensor data, online computation
of spatio-temporal correlations and online distinction outliers between events and
errors.
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