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Abstract. In this paper, a new algebraic representation by the non-Archimedean
fields is proposed to model stratified/ranked knowledge bases. The non-Archimedean
representation is in the form of the non-Archimedean polynomials. With the non-
Archimedean representation, the most widely used ordering strategies are easily
induced and compared. Moreover, a framework of prioritized merging operators
using the non-Archimedean representation is presented. It is shown that these
merging operators satisfy the prioritized merging properties proposed by Del-
grande, Dubois and Lang. In addition, several prioritized merging operators in
the literature are proved to be special cases of the framework. Furthermore, the
egalitarist fusion of incommensurable ranked bases by Benferhat, Lagrue and
Rossit is also derived from the non-Archimedean representation.

1 Introduction
In many applications, there is a need to combine possibly conflicting information from
different sources in order to get coherent knowledge. This is the origin of informa-
tion/data fusion problem. As a very important part of the data fusion problem, in the
last two decades, the merging of knowledge bases has attracted significant attention.

Knowledge bases (KBs) can be flat or stratified/ranked. In a flat KB, all the logical
formulae are viewed as equally important. In stratified KBs (SKBs), however, formulae
are assigned with different levels of importance (priority). A formula at a higher level
is viewed as more important than those at a lower level, while in a ranked KB (RKB),
each formula is attached to a rank (e.g., an ordinal number). A formula with a higher
rank is more preferred than those with lower ranks.

A significant property of stratified/ranked KBs is that higher level/rank items are
more important than lower ones. This property is exploited in all the prioritized merging
operators in different forms. That is, each of such merging operators involves a step that
captures prioritized information as well as a step that merges knowledge. In this paper,
we want to investigate whether there is a unified framework to represent the prioritized
information prior considering merging and hence use this unified framework to define
prioritized merging operators. To achieve this, we introduce the non-Archimedean fields
to represent stratified/ranked KBs. We demonstrate that this representation perfectly
captures this property and its format is intuitive. In this way, a merging operator only
requires a simple definition since most of the work required for merging has already
been encoded in the non-Archimedean representation.



It appears that simple vectors of integers can also be used to represent Stratified
KBs, but they have some major drawbacks. First, it is difficult to represent ranked
bases with simple vectors, especially in performing the scalings of ranked bases (Def.
15). Second, although simple vectors can be used to obtain orderings between possible
worlds, it is hard to present a unified picture on different ordering strategies. In contrast,
our non-Archimedean representation solves these problems easily.

The merging of stratified/ranked KBs has been studied in many papers such as,
[B+93,Leh95,Bre04,DDL06,QLB06,BLR07]. The extra knowledge implied in a Strat-
ified KB can be used to induce a total preorder relation on interpretations, and the
three widely used ordering strategies are best out, maxsat and leximin [B+93,Bre04]. In
[Bre04], the relationship between the three orderings was studied.

In this paper, we first provide the non-Archimedean polynomial (NAP) representa-
tion for Stratified KBs which gives us a clear and unified representation of the three pre-
order relations on interpretations, and therefore, makes the relationship between them
immediately provable.

Second, we propose a family of merging operators for Stratified KBs in terms of
NAPs. This family of merging operators captures a wide class of prioritized merging
operators. It not only captures several existing prioritized merging operators in the lit-
erature, such as the linear and leximin operators, but also identifies new merging oper-
ators. Our family of prioritized merging operators is the counterpart of the DA2 family
of flat merging operators [KLM04].

When merging prioritized KBs, an issue to be considered is whether this set of bases
is commensurable. In fact, most of the merging operators for Stratified KBs proposed so
far require that the commensurability assumption is in place. For the incommensurable
situation, a method called the egalitarist fusion of Ranked KBs was proposed [BLR07].
It is proved that the egalitarist fusion, obtained from a maximum based ordering that is
unchanged in all compatible scalings, is equivalent to a Pareto-like operator. In this pa-
per, we show that our non-Archimedean representation of the ranked bases are sufficient
to simulate the egalitarist fusion.

In summary, the main contributions of this paper are as follows. First, this paper
provides a uniform framework to represent prioritized information at a higher level
than embedding it in concrete merging operators. Second, this paper shows that the
NAPs provides a unified format to represent three commonly used ordering strategies
so that relationship between them can be induced easily. Third, this paper proposes a
new family of prioritized merging operators in terms of NAPs which covers a variety
of prioritized merging operators in the literature. Fourth, this paper shows that the egal-
itarist fusion for ranked bases can also be represented and interpreted by NAPs.

The rest of the paper is organized as follows. In Section 2, we recall some basic
concepts on propositional logic, Stratified KBs, and non-Archimedean fields. For con-
venience and subsequent representation, we also introduce some definitions from the
DA2 merging operators. In Section 3, we propose the NAPs and relate them to the three
ordering strategies. In Section 4, we introduce the framework of prioritized merging
operators using NAPs. In Section 5, we give the NAP representation for Ranked KBs
and simulate the egalitarist fusion. Finally, we conclude the paper in Section 6.
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2 Preliminaries
In this paper, we consider a propositional language LPS defined on a finite set PS of
propositional atoms, denoted by p, q, r etc. A proposition φ is constructed by proposi-
tional atoms with logical connectives ¬,∧,∨,→ in the usual way. An interpretation w
(or possible world) is a function that maps PS to {0, 1}. The set of all possible inter-
pretations on PS is denoted as W . Function w can be extended to any propositional
sentence in LPS in the usual way, w : LPS → {0, 1}. w is a model of (or satisfies) φ
iff w(φ) = 1, denoted as w |= φ. We use Mod(φ) to denote the set of models for φ.

For any set A, a pre-order ≤ is a reflexive and transitive relation over A × A. ≤ is
total iff for all elements a, b ∈ A, either a ≤ b or b ≤ a holds. Conventionally, a strict
order < and an indifferent relation = can be induced by ≤ such that ∀a, b ∈ A, a < b
iff a ≤ b but b 6≤ a, and a = b iff a ≤ b and b ≤ a. We use max(A,≤) to denote the
set {a ∈ A|@b ∈ A, b > a} and min(A,≤) for {a ∈ A|@b ∈ A, b < a}.

2.1 Flat/Stratified/Prioritized KBs
A (flat) KB K is a finite set of propositions. K is consistent iff there is at least one
interpretation that satisfies all propositions in K.

A SKB K is a set of propositions with a pre-order≤ on K, where φ ≤ ϕ means φ is
more important (plausible) than ϕ. Commonly, it is written as K = (S1, . . . , Sn) where
each Si (called a stratum) is a set of propositions with all the most important (plausible)
elements in K \⋃i−1

j=1 Sj , i.e., Si = min(K \⋃i−1
j=1 Sj ,≤), where φ < ϕ if φ ∈ Si and

ϕ ∈ φj s.t., i < j.
A knowledge profile E is a multi-set of KBs such that E = {K1, . . . , Kn} where

Ki, 1 ≤ i ≤ n, is a flat or stratified KB. KE = K1

⊔
...

⊔
Kn denotes the set union of

Kis.
In [DDL06], the concept of prioritized observation base (POB) is introduced. A

POB K is in the form K = 〈σ1, ..., σn〉 with n ≥ 1, where each σi is a set of propo-
sitional formulae with reliability level i and formulae with higher reliability levels are
more important than those with lower reliability levels (we require that each σi is not
empty without losing generality). Obviously, a POB K = 〈σ1, ..., σn〉 induces a SKB
K = (S1, ..., Sn) such that Si = σn+1−i.

Knowledge from a single source (e.g., an expert) can either be represented as a SKB
or a POB. However a POB can also be used to represent a collection of knowledge from
multiple sources/observations (e.g., a knowledge profile) as discussed in [DDL06]. In
this case, a POB is equivalent to a knowledge profile, that is a POB contains all the
formulae from a knowledge profile, and each formula is assigned with a reliability value
if KBs in the profile are stratified.

For simplicity and consistency, in the rest of the paper, we use K = 〈S1, ..., Sn〉 to
stand for a POB without explicitly considering priority levels, because we do not need
the values of these levels in the rest of the paper. Such a K can be taken as consisting
of formulae from a knowledge profile of stratified bases where S1 contains all the most
reliability formulae. We still use K = (S1, ..., Sn) to denote a single SKB. We also
follow the notations below for a prioritized base [DDL06].

1. Ki→j = 〈Si, . . . , Sj〉, 1 ≤ i ≤ j ≤ n, particularly K1→n = K, Ki = Ki→i = Si.
2.

∧
Si =

∧
φ∈Si

φ,
∧

Ki→j =
∧t=j

t=i St.
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3. If K = 〈S1, . . . , Sn〉 and K ′ = 〈S′1, . . . , S′p〉, then (K, K ′) is the concatenation of
K and K ′ such that (K, K ′) = 〈S1, . . . , Sn, S′1, . . . , S

′
p〉.

4. Cons(K) is the set of consistent subsets of K, that is, the set of all POBs K ′ =
〈S′1, . . . , S′n〉 such that

∧
K ′ is consistent and S′i ⊆ Si, 1 ≤ i ≤ n.

2.2 Non-Archimedean Field
Now we give a brief introduction to the non-Archimedean fields [Rob73].
Definition 1 ([Ham99]) An ordered field 〈F, +, ·, 0, 1, >〉 is a set F together with:

1. the two algebraic operations + (addition) and · (multiplication);
2. the two corresponding identity elements 0 and 1;
3. the transitive and irreflexive total order > on F satisfying 1 > 0.

Moreover, the setFmust be closed under + and ·. Addition and multiplication both have
to be commutative and associative; the distributive law must hold. And every element
x ∈ F must have both an additive inverse −x and a multiplicative inverse 1/x, except
that x/0 is undefined. The order > must be such that y > z ↔ y − z > 0. Also, the set
F+ of positive elements in F must be closed under both addition and multiplication.

Both the real line R and the rationals Q are obvious examples of ordered fields.
The name “non-Archimedean” stems from the following Archimedes’ Axiom.

Axiom 1 For any ordered field F, and 0 < a < b, a, b ∈ F, ∃n ∈ N, s.t., na > b.
Thus a non-Archimedean field is a field dissatisfying the Archimedes’ Axiom.
The non-Archimedean fields contain real numbers and also infinite numbers and

infinitesimals (infinitely small). In this paper, we adopt the smallest non-Archimedean
field generated by combining the real line R and a single infinitesimal ε, denoted as
R(ε) [Rob73]. An infinitesimal ε is positive but smaller than any positive real number.
If ε is an infinitesimal, then εi is also an infinitesimal when i > 0. Moreover, for any
positive real numbers a, b, we have aεi+1 < bεi as ε < b/a (as b/a is a positive real
number). Note that if ε is an infinitesimal, then 1/ε is an infinite number (larger than
any positive real number), and vice versa. As R(ε) is an ordered field, it is also closed
under + and ·. Moreover, the usual arithmetic properties also apply in R(ε).

The non-Archimedean field, especially the non-standard probability (i.e., the proba-
bility values can involve infinitesimals), has already been introduced in the literature of
uncertainty reasoning. For example, in [Spo88], Spohn demonstrated the relationship
between his ordinal conditional function and the non-standard probability. In [Pea94],
Pearl used the non-standard probability to model non-monotonic reasoning.
Definition 2 (≤ε) Let x =

∑s
i=1 aiε

bi and y =
∑t

j=1 cjε
dj be two polynomial repre-

sentations of infinitesimals, where all ai, cj are positive real numbers, bi, dj are inte-
gers, and b1 < . . . < bs, d1 < . . . < dt. We write x ≤ε y iff b1 ≥ d1. For convenience,
we also write 0 <ε x as 0 can be seen as 0 = ε+∞.

The ≤ε relation is not the usual mathematical ≤ relation, rather it aims to compare
the order of the infinitesimal ε, namely, we view x as O(εb1) and y as O(εd1).
Example 1 Let x = 2ε2 + 4ε4, y = ε2 + 3ε3, then we have x =ε y. That is, x and y
both can be seen as O(ε2).

We have the following result.

Proposition 1 Let x, y be two polynomial representations of infinitesimals, we have: if
x <ε y, then x < y, if x ≥ y, then x ≥ε y.
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2.3 The DA2 Merging Operators
In [KLM04], a family of merging operators, called the DA2 merging operators, was
proposed to generalize both model-based and syntax-based merging operators. The DA2

merging operators, consisting of a distance relation between interpretations and two
aggregation functions, are defined below.

Definition 3 ([KLM04], distance) A distance relation between interpretations is a total
function d from W ×W to N s.t. for every w1, w2 ∈ W
1. d(w1, w2) = d(w2, w1), 2. d(w1, w2) = 0 iff w1 = w2.

The distance d between interpretations can be extended to be a distance between an
interpretation and a formula as d(w, φ) = minw′|=φd(w, w′).

Definition 4 ([KLM04], aggregation function) An aggregation function is a total func-
tion ⊕ associating a nonnegative integer to every finite tuple of nonnegative integers
and verifying (non-decreasingness), (minimality) and (identity).

non-decreasingness If x ≤ y, then ⊕(x1, . . . , x, . . . , xn) ≤ ⊕(x1, . . . , y, . . . , xn).
minimality ⊕(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0.
identity For every nonnegative integer x, ⊕(x) = x.

Definition 5 ([KLM04], DA2 merging operators) Let d be a distance between interpre-
tations and ⊕ and ¯ be two aggregation functions. For every knowledge profile E =
{K1, . . . ,Kn} and every integrity constraint IC, a DA2 merging operator 4d,⊕,¯

IC (E)
is defined in a model-theoretical way by:

Mod
(4d,⊕,¯

IC (E)
)

= min
(
IC,≤d,⊕,¯

E

)
.

≤d,⊕,¯
E is defined as w ≤d,⊕,¯

E w′ iff d(w, E) ≤ d(w′, E), where

d(w,E) = ¯(
d(w, K1), . . . , d(w, Kn)

)
,

and for every Ki = {φi,1, . . . , φi,ni}, d(w, Ki) = ⊕(
d(w, φi,1), . . . , d(w, φi,ni)

)
.

An example of distance function is the drastic distance defined as

dD(w1, w2) =
{

0 if w1 = w2,
1 otherwise.

For the drastic distance dD, we can easily get dD(w, φ) = 0 for w |= φ and dD(w, φ) =
1 otherwise. Thus it is the characterization function of Mod(φ). The commonly used
aggregation functions are max and sum with usual meanings.
3 NAP Representation of Interpretations
In this section, we discuss how to obtain non-Archimedean polynomials (NAPs) from
SKBs. With the non-Archimedean fields, we associate each stratum in a stratified base
with an infinitesimal of degree i (the level of the stratum in the base) , so the prioritized
information is represented. We then define a NAP for each interpretation w based on
the given SKB making use of the representation of prioritized information. This way,
the three ordering strategies can be easily simulated using NAPs of interpretations and
their relationships can be easily established and proved.

Let K = (S1, . . . , Sn) be a SKB, the three widely used ordering strategies are best
out, maxsat and leximin and they are defined as follows:
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best out ordering [B+93] Let rBO(w) = mini{w 6|= Si}. Conventionally, mini∅ =
+∞. w ≤bo w′ iff rBO(w) ≥ rBO(w′).

maxsat ordering [Bre04] Let rMO(w) = mini{w |= Si}. w ≤maxsat w′ iff rMO(w) ≤
rMO(w′).

leximin ordering [B+93] Let Ki(w) = {φ ∈ Si|w |= φ}. w ≤leximin w′ iff
1. |Ki(w)| = |Ki(w′)| for all i, or
2. ∃i such that |Ki(w)| > |Ki(w′)|, and |Kj(w)| = |Kj(w′)| for all j < i.

Definition 6 (NAP) Let K = (S1, . . . , Sn) be a SKB, d be a distance and ⊕ be an
aggregation function, then the NAP of an interpretation w is defined as

NAd,⊕
K (w) =

n∑

i=1

(d(w,Si)εi) (1)

where for Si = {φi1, . . . , φini
}, d(w, Si) = ⊕(d(w, φi1), . . . , d(w, φini

)).

Eq. 1 defines a family of NAPs of an interpretation w, e.g., NAdD,max
K (w) is one spe-

cific polynomial where d = dD and ⊕ = max. In the following, when there is no
confusion, we simplify NAd,⊕

K (w) as NAK(w).
If a SKB has {>} as its first stratum, then we have the following proposition.

Proposition 2 Let K be a SKB, then ∀w ∈ W , NA({>},K)(w) = εNAK(w).

Now, we use NAPs to induce the above ordering strategies.

Definition 7 (best out simulation) For a SKB K, the best out simulation polynomial
bo(w) is defined as bo(w) = NAdD,max

K (w).
When d = dD and ⊕ = max in Def. 6, we have d(w, Si) = maxφ∈Si(d(w, φ)) =

0 iff ∀φ ∈ Si, d(w, φ) = 0 (i.e., w |= Si). Therefore, bo(w) is actually simplified as

bo(w) =
{

εt +
∑n

i=t+1 d(w,Si)εi, if rBO(w) = t < ∞;
0, if rBO(w) = ∞.

bo(w) captures the best out strategy by making the most important stratum that w
falsifies as the largest ε−term.

In Definition 7, we can also let ⊕ = +, thus we get bo+(w) = NAdD,+
K (w). Based

on the pre-order ≤ε defined in Definition 2, we have

Proposition 3 w ≤bo w′ iff bo(w) ≤ε bo(w′) iff bo+(w) ≤ε bo+(w′).

Definition 8 (maxsat simulation) For a SKB K, the maxsat simulation polynomial
maxsat(w) is defined as: maxsat(w) =∼ NAdD,max

K (w) where for a polynomial
x =

∑n
i=1 aiε

i, ∼ x =
∑n

i=1∼ aiε
i s.t. ∼ ai = 1 if ai = 0 and ∼ ai = 0 otherwise.

For any w, if rMO(w) = t, we get NAdD,max
K (w) =

∑t−1
i=1 εi +

∑n
i=t+1 d(w, Si)εi,

then we have maxsat(w) =∼ NAdD,max
K (w) = εt +

∑n
i=t+1∼ d(w, Si)εi.

maxsat(w) captures the maxsat strategy by making the most important stratum that
w satisfies as the largest ε-term from the ∼ operation.

Proposition 4 w ≤maxsat w′ iff maxsat(w) ≥ε maxsat(w′).
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From Definitions 7 and 8, given any stratified base K, the following should hold

bo(w) + maxsat(w) =
n∑

i=1

εi. (2)

For the leximin ordering strategy, we also define the leximin simulation.
Definition 9 (leximin simulation) For a SKB K, the leximin simulation polynomial
leximin(w) is defined as leximin(w) = NAdD,+

K (w).
Obviously, we have bo+(w) = leximin(w). As for leximin simulation, because of

its lexicographic nature, we cannot use the ≤ε relation to compare two leximin simu-
lation polynomials, instead, the usual mathematical comparative relation ≤ should be
used. Namely, we have the following result.
Proposition 5 w ≤leximin w′ iff leximin(w) ≤ leximin(w′).

With the help of NAPs, the three ordering strategies are represented in a very similar
form as shown by Propositions 3, 4 and 5, and the results in the following proposition
are immediate following Proposition 1 and Equation 2.

Proposition 6 [Bre04] Let w, w′ ∈ W , then the following relationships hold:

1. w <bo w′ implies w <leximin w′.
2. w <bo w′ implies w ≤maxsat w′ and w <maxsat w′ implies w ≤bo w′.

In fact, as bo+(w) = leximin(w), from w <bo w′, we get leximin(w) <ε leximin(w′),
thus from Proposition 1, we immediately get leximin(w) < leximin(w′) which im-
plies w <leximin w′. From w <bo w′ and Proposition 1, we get bo(w) < bo(w′), from
Equation 2, we have maxsat(w) > maxsat(w′), thus Proposition 1 gives maxsat(w) ≥ε

maxsat(w′) which implies w ≤maxsat w′.

Example 2 Let K = {{p}, {q}, {¬p ∧¬q}, {¬p ∧ q}} be a SKB, and let w = ¬p ∧ q,
w′ = ¬p ∧ ¬q be two possible worlds. Then we have

bo(w) = leximin(w) = ε + ε3, maxsat(w) = ε2 + ε4,
bo(w′) = leximin(w′) = ε + ε2 + ε4, maxsat(w′) = ε3.

Hence we get w =bo w′, w <maxsat w′ and w <leximin w′.

4 The Non-Archimedean Polynomial Merging Operators
Since a prioritized observation base (POB) is taken as containing formulae from a set of
SKBs, the issue of merging a set of SKBs becomes manipulating formulae in a single
POB to obtain a consistent formula (or a set of consistent formulae). To this end, we
define the non-Archimedean polynomial (np for short) merging operators for a POB as
follows (similar to Def. 5).

Definition 10 Let d be a distance relation between interpretations and ⊕ be an aggre-
gation function. For a POB K = 〈S1, . . . , Sn〉, a np merging operator 4d,⊕(K) is
defined in a model-theoretical way by:

Mod
(4d,⊕(K)

)
= min

(
W,≤d,⊕

K

)
.

≤d,⊕
K is defined as w ≤d,⊕

K w′ iff NAK(w) ≤ NAK(w′), where NAK is the NAP for
POB K by Definition 6.
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Since the syntactic form of a POB K is the same as that of a SKB K ′, we can define
the NAP NAK(w) from a POB K based on the definition NAK′(w) from a SKB K ′.

When d and ⊕ are assigned with different distances and different aggregation func-
tions respectively, we get a family of prioritized merging operators.

Other families of prioritized merging operators can be obtainable in terms of NAPs.
For example, ¹d,⊕

K defined as w ¹d,⊕
K w′ iff NAK(w) ≤ε NAK(w′) gives us a new

family of prioritized merging operators. Due to space limitation, in this paper we only
consider the np merging operator defined in Definition 10.

A number of desirable properties for prioritized merging were proposed in [DDL06].
Let K be a POB and 4 be a prioritized merging operator, these properties are

PMon For every i < n, 4(K1→i+1) ` 4(K1→i).
Succ 4(K) ` 4(K1).
Cons 4(K) is consistent.
Taut 4({>}, K) = 4(K).
Opt If

∧
K is consistent, then 4(K) =

∧
(K).

IS If K ≡ K ′, then 4(K) = 4(K ′).
RA 4(K1→i) = 4(4(K1→i−1),Ki).

Note: because we represent a prioritized base as K = 〈S1, ..., Sn〉 with S1 having
the most reliable formulae, and S1 is equivalent to σn in the original definition of a
prioritized base, the RA (Right Associativity) property looks like a Left Associativity
property.

Proposition 7 Let 4d,⊕ be any np merging operator defined in Definition 10, then it
satisfies (PMon), (Succ), (Cons), (Taut), (Opt), (IS) and (RA).

Some existing prioritized merging operators, e.g., the 4linear and the 4leximin merg-
ing operators defined below are special cases of 4d,⊕.

Definition 11 (linear, [DP91,Neb94]) Let K = 〈S1, . . . , Sn〉, and 4linear be defined
inductively by: 4linear() = >, and for j ≥ 1,

4linear(K1→j) =

{∧
Sj

∧4linear(K1→j−1) if consistent,
4linear(K1→j−1) otherwise.

Definition 12 (leximin, [B+93,Leh95]) Let K = 〈S1, . . . , Sn〉. For K1,K2 ∈ Cons(K),
define K2 >leximin K1 iff ∃j such that

1. |K1→j ∩K2| > |K1→j ∩K1|,
2. ∀i < j, |K1→i ∩K2| = |K1→i ∩K1|.

Then 4leximin(K) =
∨{∧ K ′, s.t., K ′ ∈ Max(>leximin, Cons(K))}.

Proposition 8 Let d = dD and ⊕ = max in Definition 10, then 4d,⊕ = 4linear.

Proposition 9 Let d = dD and ⊕ = + in Definition 10, then 4d,⊕ = 4leximin.

However, not all the prioritized merging operators proposed so far in the literature
can be induced from the family of np merging operators. For instance,the discrimin
operator [B+93], as it makes use of set inclusion, cannot be represented by NAPs.

8



5 Non-Archimedean Polynomial for Merging RKBs

In this section, we use NAPs to represent the merging of RKBs. That is, we aim to rep-
resent and further interpret the Egalitarist Fusion of incommensurable RKBs [BLR07].

A RKB K is a set of ranked propositions, i.e., K = {(φ1, r1), . . . , (φn, rn)}. ri is
the rank of φi, ri ∈ N ∪ {+∞}, 1 ≤ i ≤ n. Here a proposition with a higher rank
is more important (prioritized) than the one with a lower rank. The notion of RKB is
a generalization of SKBs. Each RKB induces a SKB in which formulae with the same
rank are in the same stratum and formulae with the highest rank are in the first stratum.
First, we recall some results in [BLR07].

Definition 13 (Ranking functions) A ranking function κK associated with a RKB K is
a function: W → N ∪ {0} such that:

κK(w) =
{

0 if ∀(φi, ri) ∈ K, w |= φi,
max(ri : w 6|= φi) otherwise.

With the help of κK(w), a strict order /E
Max can be defined between interpretations.

Definition 14 [BLR07] Let E = {K1, . . . , Kn} be a knowledge profile of RKBs and
w, w′ ∈ W be two interpretations, then we have:

w /E
Max w′ iff max(κKi(w) : 1 ≤ i ≤ n) < max(κKi(w

′) : 1 ≤ i ≤ n).

Example 3 Let E = {K1,K2} such that K1 = {(p, 4), (¬q, 2)} and K2 = {(q, 3), (p, 1)},
then we have the following

p q κK1(w) κK2(w) max
w0 0 0 4 3 4
w1 0 1 4 1 4
w2 1 0 0 3 3
w3 1 1 2 0 2

Obviously, w3 is the smallest w.r.t. /E
Max.

In [BLR07], it is explicitly stated that the scales used in different RKBs are not
required to be commensurable. To merge incommensurable ranked bases, a scaling
method is proposed as follows.

Definition 15 ([BLR07], Compatible scaling) Let E = {K1, . . . ,Kn} be a profile of
ranked bases, a scaling S is defined as (

⊔
represents the union of multi-sets):

S : K1

⊔
. . .

⊔
Kn → N (φij , rij) 7→ S(φij).

S is said to be compatible with E iff ∀Ki ∈ E, we have ∀(φ, r), (φ′, r′) ∈ Ki,
r ≤ r′ iff S(φ) ≤ S(φ′).

Given a compatible scaling S, KS (resp. ES ) is used to denote the ranked base
(resp. profile of ranked bases) obtained from K (resp. E) by replacing each pair (φi, ri)
with (φi,S(φi)) (resp. replacing each Ki ∈ E with KS

i ).
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Example 4 (Exam. 3 cont.) Let E = {K1,K2}, then a scaling s1 produces Ks1
1 =

{(p, 2), (¬q, 1)} and Ks1
2 = {(q, 5), (p, 2)} is a compatible scaling. However, a scaling

s2 with Ks2
1 = {(p, 2), (¬q, 3)} and Ks2

2 = {(q, 5), (p, 2)} is not a compatible scaling
as s2(p) < s2(¬q) for Ks2

1 .

Definition 16 ([BLR07], Compatible scaling ordering) Let E = {K1, . . . ,Kn}, SE be
the set of all compatible scalings with E, then a partial order <E

∀ is defined on W as

∀w, w′ ∈ W,w <E
∀ w′iff ∀S ∈ SE , w /ES

Max w′.

Example 5 (Exam. 3 cont.) In Example 3, we have w2 /E
Max w1. But after using the

compatible scaling s1 in Example 4, we get w1 /Es1

Max w2, thus w2 6<E
∀ w1. It shows the

difference between /E
Max and <E

∀ .

Definition 17 ([BLR07], Pareto-like ordering) Let E = {K1, . . . ,Kn}, we denote
w /Pareto w′ iff the following conditions are satisfied:
1. ∃i ∈ {1, . . . , n}, κKi

(w′) 6= 0.
2. ∀i ∈ {1, . . . , n}, κKi

(w) = κKi
(w′) = 0, or κKi

(w) < κKi
(w′).

The main result in [BLR07] is the proof of equivalence between Pareto-like ordering
and the compatible scaling ordering as stated in the following proposition.

Proposition 10 ([BLR07], Prop. 16) ∀w, w′ ∈ W , we have w <E
∀ w′ iff w /Pareto w′.

Here we show that strict orders /E
Max and <E

∀ can be represented by NAPs.

Definition 18 (NAPs from RKBs) Let d be a distance function, for every RKB K =
{(φ1, r1), . . . , (φn, rn)}, we define the NAP of an interpretation w as NAd

K(w) =∑n
i=1(d(w, φi)ε−ri).

When a SKB K = (S1, . . . , Sn) is viewed as a RKB
K∗ = {(φ11,−1), . . . , (φ1|S1|,−1), . . . , (φn1,−n), . . . , (φn|Sn|,−n)}

where φij ∈ Si, 1 ≤ j ≤ |Si|, 1 ≤ i ≤ n, the NAPs from K is exactly the same as that
from K∗, thus the above definition derives Definition 6 when the aggregation operation
⊕ is ‘+’. For simplicity, we write NAi(w) instead of NAd

Ki
(w), and use NAE(w) for∑|E|

i=1 NAi(w) in the rest of the section.

Definition 19 (non-Archimedean pre-order relation) Let E = {K1, . . . ,Kn} and w, w′

be two interpretations. We denote w <Ki

NA w′ iff NAi(w) < NAi(w′). w <E
NA w′ iff

NAE(w) <ε NAE(w′).

Note that <Ki

NA deploys < while <E
NA deploys <ε.

Example 6 (Exam. 3 Cont.) Let E = {K1,K2}, then we have the following

p q NA1(w) NA2(w) NAE(w)
w0 0 0 ε−4 ε−3 + ε−1 ε−4 + ε−3 + ε−1

w1 0 1 ε−4 + ε−2 ε−1 ε−4 + ε−2 + ε−1

w2 1 0 0 ε−3 ε−3

w3 1 1 ε−2 0 ε−2

We can see that w0 <K1
NA w1, w0 >K2

NA w1, etc., and w3 is the smallest w.r.t. <E
NA.
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Definition 20 Let E = {K1, . . . , Kn} and w, w′ be two interpretations. We denote
w <Com

NA w′ iff
∑n

i=1 aiNAi(w) <ε
∑n

i=1 aiNAi(w′) where ai = εκKi
(w′) is a

commensurable coefficient.

We call <Com
NA the commensurable non-Archimedean pre-order relation because

for each i, εκKi
(w′)NAi(w′) has a minimum degree 0 for ε. That is, for any i, j ∈

[1, n], εκKi
(w′)NAi(w′) and εκKj

(w′)NAj(w′) are somehow commensurable. This is
illustrated by the following simple example.

Example 7 Let E = {K1, K2} s.t. K1 = {(p, 4), (¬q, 2)} and K2 = {(q, 3), (p, 1)}
and w′ = ¬p∧q be a possible world. We have NA1(w′) = ε−2+ε−4, and NA2(w′) =
ε−1. Obviously, the minimum degrees for ε in NA1(w′) and in NA2(w′) are not the
same. Now as κK1(w

′) = 4 and κK2(w
′) = 1, we get εκK1 (w′)NA1(w′) = 1 + ε2 and

εκK2 (w′)NA2(w′) = 1, both having 0 as the minimum degree for ε (as 1 = ε0).
The following theorems show that the egalitarist fusion can be characterized by the

non-Archimedean pre-orders.
Theorem 1 Let E be a profile of RKBs, ∀w, w′ ∈ W , we have w/E

Maxw′ iff w <E
NA w′.

Theorem 2 Let E be a profile of RKBs, ∀w,w′ ∈ W , we have w <E
∀ w′ iff w/Paretow′

and iff w <Com
NA w′.

These theorems show that the egalitarist fusion for the incommensurable RKBs can
be described by our non-Archimedean approaches. Furthermore, from Theorem 2, it
shows that the egalitarist fusion can in particular be described by our commensurable
pre-order relation. Therefore, it is not surprising why the egalitarist fusion does not need
the commensurable assumption to deal with the incommensurable RKBs.

6 Conclusion

In this paper, we have proposed a new method to model stratified/ranked KBs. Un-
like the commonly used logical approaches, our method is largely numerical. We used
the non-Archimedean representation for stratified/ranked KBs to represent the ordering
strategies, to define new merging operators, and to simulate the egalitarist fusion for
incommensurable RKBs. This wide range coverage shows that the non-Archimedean
representation is very suitable for modeling stratified/ranked KBs.

In [Pap01], a polynomial representation for each possible world w was proposed
which associates w and each epistemic state Φ (which assigns w an ordinal as its weight)
with a polynomial pΦ(w) =

∑n
i=0 pi(w)xi. Here coefficients pi(w) ∈ {0, 1}, 0 ≤ i ≤

n, encodes the binary representation, read in reverse order of the weight assigned to
w [B+02], e,g, if the weight of w is 6, then its binary form is 110, so p0(w) = 0 and
p1(w) = p2(w) = 1. The interpretation of such polynomials differs from NAPs in the
following aspects. Papini’s polynomials consider epistemic states and their coefficients
are 0 or 1, representing the binary form of the weight of w provided by the epistemic
states whilst NAPs are for SKBs with each coefficient standing for the aggregation
result of distances of formulae in the same level to w, and is not limited to {0, 1}.
Therefore, Papini’s polynomial and NAP are very different.

Our new framework of prioritized merging operators based on NAPs is the coun-
terpart of the DA2 [KLM04] framework of flat merging operators. For each stratum
of stratified bases, NAP representation also uses the distance and aggregation function
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to obtain an aggregated effect which is also used in the DA2 framework. Thus, our
framework can be seen as an extension of the DA2 framework for SKBs.

The non-Archimedean field is not an entirely new idea in artificial intelligence re-
search. It appeared in the nonstandard probabilities [Spo88,Pea94], in decision making
[Leh98] to model utilities to provide a unified theory for qualitative and quantitative
decision theories, and in data envelopment analysis [TN09] to define merit functions.
However, it has never been used to manipulate stratified/ranked KBs. Our work there-
fore is novel and significant. There are still many aspects that can be further developed,
such as, the relationship between various prioritized merging operators in the literature.
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