Skip to main content

A Bayesian Random Split to Build Ensembles of Classification Trees

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5590))

  • 1295 Accesses

Abstract

Random forest models [1] consist of an ensemble of randomized decision trees. It is one of the best performing classification models. With this idea in mind, in this section we introduced a random split operator based on a Bayesian approach for building a random forest. The convenience of this split method for constructing ensembles of classification trees is justified with an error bias-variance decomposition analysis. This new split operator does not clearly depend on a parameter K as its random forest’s counterpart, and performs better with a lower number of trees.

This work has been jointly supported by Spanish Ministry of Education and Science under project TIN2007-67418-C03-03, by European Regional Development Fund (FEDER), by the Spanish research programme Consolider Ingenio 2010: MIPRCV (CSD2007-00018), and by the FPU scholarship programme (AP2004-4678).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  2. Mingers, J.: An empirical comparison of selection measures for decision-tree induction. Mach. Learn. 3(4), 319–342 (1989)

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139–157 (2000)

    Article  Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)

    Google Scholar 

  6. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  7. Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3), 801–824 (1998)

    Article  MATH  Google Scholar 

  8. Kohavi, R., Wolpert, D.: Bias plus variance decomposition for zero-one loss functions. In: ICML, pp. 275–283 (1996)

    Google Scholar 

  9. Buntine, W.: Learning classification trees. Statistics and Computing (2), 63–73 (1992)

    Google Scholar 

  10. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  11. Abellán, J., Masegosa, A.R.: Combining decision trees based on imprecise probabilities and uncertainty measures. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 512–523. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Andrés Cano, A.M., Moral, S.: A bayesian approach to estimate probabilities in classification trees. In: Jaeger, M., Nielsen, T.D. (eds.) Proceedings of the Fourth European Workshop on Probabilistic Graphical Models, pp. 49–56 (2008)

    Google Scholar 

  13. Consortium, E.: Elvira: An environment for probabilistic graphical models. In: Gámez, J., Salmerón, A. (eds.) Proceedings of the 1st European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)

    Google Scholar 

  14. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  15. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc. of 13th Int. Joint Conf. on AI (1993)

    Google Scholar 

  16. Webb, G.I., Conilione, P.: Estimating bias and variance from data (2006)

    Google Scholar 

  17. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cano, A., Masegosa, A.R., Moral, S. (2009). A Bayesian Random Split to Build Ensembles of Classification Trees. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics