Skip to main content

On the Effectiveness of Diversity When Training Multiple Classifier Systems

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Abstract

Discussions about the trade-off between accuracy and diversity when designing Multiple Classifier Systems is an active topic in Machine Learning. One possible way of considering the design of Multiple Classifier Systems is to select the ensemble members from a large pool of classifiers focusing on predefined criteria, which is known as the Overproduce and Choose paradigm. In this paper, a genetic algorithm is proposed to design Multiple Classifier Systems under this paradigm while controlling the trade-off between accuracy and diversity of the ensemble members. The proposed algorithm is compared with several classifier selection methods from the literature on different UCI Repository datasets. This paper specifies several conditions for which it is worth using diversity during the design stage of Multiple Classifier Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2001)

    MATH  Google Scholar 

  2. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  4. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Information Fusion 6, 5–20 (2005)

    Article  Google Scholar 

  6. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  7. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning 40, 139–157 (2000)

    Article  Google Scholar 

  9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  10. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  11. Gacquer, D., Delmotte, F., Delcroix, V., Piechowiak, S.: A genetic approach for training diverse classifier ensembles. In: Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), Malaga, Spain, pp. 798–805 (2008)

    Google Scholar 

  12. Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  13. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 832–844 (1998)

    Article  Google Scholar 

  14. Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Proceedings of the 1st Iberian Conference on Pattern Recognition and Image Analysis, pp. 1126–1138 (2003)

    Google Scholar 

  15. Kuncheva, L.I., Whitaker, C.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51, 181–207 (2003)

    Article  MATH  Google Scholar 

  16. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  17. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proceedings 14th International Conference on Machine Learning, pp. 211–218 (1997)

    Google Scholar 

  18. Melville, P., Mooney, R.J.: Creating diversity in ensembles using artificial data. Information Fusion 6, 99–111 (2005)

    Article  Google Scholar 

  19. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  20. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  21. Partridge, D., Yates, W.B.: Engineering multiversion neural-net systems. Neural Computation 8, 869–893 (1996)

    Article  Google Scholar 

  22. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  23. Quinlan, J.R.: Bagging, boosting, and c4.5. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 725–730 (1996)

    Google Scholar 

  24. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1619–1630 (2006)

    Article  Google Scholar 

  25. Roli, F., Giacinto, G., Vernazza, G.: Methods for designing multiple classifier systems. In: Proceedings of the 2nd International Workshop on Multiple Classifier Systems, Cambridge, UK, pp. 78–87 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gacquer, D., Delcroix, V., Delmotte, F., Piechowiak, S. (2009). On the Effectiveness of Diversity When Training Multiple Classifier Systems. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics