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Abstract. We claim that divisible residuated lattices (DRLs) can act
as a unifying evaluation framework for soft constraint satisfaction prob-
lems (soft CSPs). DRLs form the algebraic semantics of a large family
of substructural and fuzzy logics [13, 15], and are therefore natural can-
didates for this role. As a preliminary evidence in support to our claim,
along the lines of Cooper et al. and Larrosa et al. [11, 18], we describe a
polynomial-time algorithm that enforces k-hyperarc consistency on soft
CSPs evaluated over DRLs. Observed that, in general, DRLs are neither
idempotent nor totally ordered, this algorithm accounts as a general-
ization of available enforcing algorithms over commutative idempotent
semirings and fair valuation structures [4, 11].

1 Introduction

A constraint satisfaction problem (CSP) is the problem of deciding, given a
collection of constraints on variables, whether or not there is an assignment to the
variables satisfying all the constraints. In the crisp setting [19], any assignment
satisfying all the constraints provides a solution, and any solution is as good
as any other. In the soft setting [5], more generally, each constraint maps the
assignments to a valuation structure, which is a bounded poset equipped with a
suitable combination operator; the task is to find an assignment such that the
combination of its images under all the constraints is maximal in the order of
the valuation structure. Formal definitions are given in Section 2.

In its general formulation, the soft CSP is NP-complete, so that research
effort is currently aimed to characterize tractable cases [7, 6], and investigating
constraints processing heuristics; amongst the latter, enforcing algorithms are
of the foremost importance. 1 A typical enforcing algorithm takes in input a soft
CSP and enforces a local consistency property over it, producing two possible
outcomes: either the input problem is found locally inconsistent, implying its
global inconsistency; or else, the input problem is transformed into an equivalent
problem (called closure), possibly inconsistent but easier, that is, with a smaller
solution space. Despite their incompleteness as inconsistency tests, enforcing
algorithms are useful as subprocedures in the exhaustive search for an optimal
1 For further background on constraint processing, we refer the reader to [12].
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solution, for instance in branch and bound search. The generalization of local
consistency notions and techniques from the crisp to the soft setting plays a
central role in the algorithmic investigation of the soft CSP: for this reason,
any class of structures that allows for an easy migration of local consistency
techniques in the soft setting deserves consideration [4, 18, 11].

Not surprisingly, the weaker the properties of the valuation structure are,
the harder it is to migrate a local consistency technique from the crisp to the
soft setting. Indeed, a crisp CSP is equivalent to a soft CSP over a valuation
structure with very strong properties: the algebra ({0, 1},≤,�,⊥,>), where ⊥ =
0 ≤ 1 = > and x � y = 1 if and only if x = y = 1. At the other extreme, the
weakest possible valuation structure has to be a bounded poset, with top element
> and bottom element ⊥, equipped with a commutative, associative operation
x� y which is monotone over the order (x ≤ y implies x� z ≤ y � z), has > as
identity (x�> = x) and ⊥ as annihilator (x�⊥ = ⊥). Intuitively, an assignment
mapped to > by a constraint is entirely satisfactory, and an assignment mapped
to ⊥ is entirely unsatisfactory; if two assignments are mapped to x and y, in
case x ≤ y, the latter is preferred to the former, and in case x ‖ y, none is
preferred over the other; the operator � combines constraints in such a way that
adding constraints shrinks the solution space (as boundary cases, > does not
shrink the solution space, and ⊥ empties the solution space). In this setting,
two options arise: whether or not to allow incomparability (formally, whether
or not to admit non-totally ordered valuation structures); and, whether or not
to keep into account repetitions (formally, whether or not to allow for valuation
structures with nonidempotent combination operators). 2 The aforementioned
algebra ({0, 1},≤,�,⊥,>) is strong in the sense that it is totally ordered and
idempotent.

In this paper, we propose (commutative bounded) divisible residuated lattices
(in short, DRLs) as a unifying evaluation framework for soft constraints. Despite
DRLs form an intensively studied algebraic variety since [22], they have never
been proposed as an evaluation framework for soft constraints. However, there
are robust motivations for considering DRLs in the soft CSP setting, coming from
logic and algebra. As already mentioned, the soft CSP is a generalization of the
crisp CSP. Conversely, the crisp CSP can be seen as a particular soft CSP, evalu-
ated over the algebra ({0, 1},≤,�,⊥,>), that is, a reduct of the familiar Boolean
algebra 2 (taking � as ∧). Since 2 and the meet operation in 2 form the algebraic
counterparts of Boolean logic and Boolean conjunction respectively, it is natural
to intend the combination operator � in a valuation structure as a generaliza-
tion of the meet operation in 2, and to investigate the algebraic counterparts
of logics that generalize Boolean conjunction as candidate valuation structures
for soft CSPs. Intriguingly, a central approach in the area of mathematical fuzzy
logic, popularized by Hájek [15], relies on the idea of generalizing Boolean logic
starting from a generalization of Boolean conjunction by means of a class of
functions called (continuous) triangular norms [17]. The idea is the following.
A triangular norm ∗ is an associative, commutative, continuous binary function

2 In the idempotent case x� x = x, so that repetitions do not matter.
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over the real interval [0, 1]; moreover, ∗ is monotone over the (total, dense and
complete) order of reals in [0, 1], has 1 as identity and 0 as annihilator. Given a
(continuous) triangular norm ∗, there exists a unique binary function→∗ on [0, 1]
satisfying the residuation equivalence x∗z ≤ y if and only if z ≤ x→∗ y, namely,
x→∗ y = max{z | x ∗ z ≤ y}. This function is called residuum, and is a general-
ization of Boolean implication. Corresponding to any triangular norm ∗, a propo-
sitional fuzzy logic L∗ = ([0, 1],∧,∨,�,→,¬,⊥,>) is obtained by interpreting
propositional variables over [0, 1], ⊥ over 0, � over ∗,→ over→∗, and eventually
by defining ¬x = x → ⊥, > = ¬⊥ = 1, x ∧ y = x � (x → y) = min(x, y), and
x∨y = ((x→ y)→ y)∧((y → x)→ x) = max(x, y). Boolean logic can be readily
recovered from L∗ by restricting the domain and the connectives to {0, 1}. As
much as Boolean algebras form the equivalent algebraic semantics of Boolean
logic, the variety of BL-algebras (defined in Section 3) forms the algebraic se-
mantics of Hájek’s basic logic, the logic of all continuous triangular norms and
their residua [15, 10].

Therefore, BL-algebras can be regarded as a first candidate evaluation frame-
work for soft CSPs. We shall see that, as far as we are concerned with the
implementation of local consistency techniques, for instance the k-hyperarc con-
sistency enforcing algorithm presented in Section 4, prelinearity turns out to be
redundant. Since prelinearity is exactly the property that specializes BL-algebras
inside the class of DRLs [16], we are led to the latter as a defensible level of gen-
erality for our unifying evaluation framework. On the logical side, the variety
of DRLs forms the algebraic semantics of an intersecting common fragment of
basic logic and intuitionistic logic, called generalized basic logic [3].

We shall observe that DRLs, in general lattice ordered and nonidempotent,
“subsume” preeminent valuation structures where local consistency techniques
succeeded, namely, commutative idempotent semirings, lattice ordered and idem-
potent [4], and fair valuation structures, totally ordered and nonidempotent [11].
Compare Proposition 1 and Proposition 2 in Section 3.

As a preliminary, initial evidence in support of the proposal of DRLs as
valuation structures for soft CSPs, we shall prove that DRLs readily host a
polynomial-time algorithm that enforces a useful local consistency property,
called k-hyperarc consistency (compare Definition 5 and Theorem 5 in Section 4).
This property guarantees that any consistent assignment to a variable i extends
to an assignment to any other ≤ k − 1 variables constrained by i, without pro-
ducing additional costs. We insist that our algorithm works uniformly over every
DRL, including the aforementioned, previously investigated structures as special
cases.

DRLs allow for an extensive, smooth migration of constraint processing tech-
niques from the crisp to the soft setting, far beyond the technical result presented
in Section 4, which is intended as a first, concrete example of this new research
line. For instance, we reasonably expect that the problem of finding efficiently
optimal closures (in a suitable sense, required to embed enforcing algorithms
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into branch and bound exhaustive search) can be formalized in purely algebraic
and logical terms in the setting proposed in this paper. 3

We remark that analogous local consistency techniques have been investi-
gated by Bistarelli and Gadducci over tropical residuated semirings [2], and we
encourage a future comparison of the two settings in terms of unifying poten-
tial, structural insight, and computational viability. We also remark that the
idea of formalizing soft constraints consistency techniques as many-valued logics
refutations appears in the work of Ansótegui et al. [1].

Outline. The paper is organized as follows. In Section 2, we define soft CSPs and
valuation structures. In Section 3, we define divisible residuated lattices, and we
list a number of properties qualifying DRLs as suitable and natural valuation
structures for soft constraints. Then, we describe the relation between evaluation
frameworks such as commutative idempotent semirings and fair valuation struc-
tures, and DRLs. In Section 4 we present the main technical contribution of this
paper, that is a uniform polynomial-time algorithm for k-hyperarc consistency
enforcing on soft CSPs evaluated over DRLs. For background on partial orders
and universal algebra, we refer the reader to any standard reference.

2 Soft Constraint Satisfaction Problems

In this section, we define formally the notions of soft CSPs, valuation structure,
and optimal solution to a soft CSP.

A (soft) constraint satisfaction problem (in short, CSP) is a tuple P =
(X, D, P, A) specified as follows. X = {1, . . . , n} = [n] is a set of variables,
and D = {Di}i∈[n] is a set of finite domains over which variables are assigned,
variable i being assigned over domain Di. Let Y ⊆ X. We let

l(Y ) =
∏
i∈Y

Di

denote all the assignments of variables in Y onto the corresponding domains
(tuples). If Y = ∅, then l(Y ) contains only the empty tuple. For any Z ⊆ Y , we
denote by t|Z the projection of t onto the variables in Z. For every i ∈ Y , a ∈ Di

and t ∈ l(Y \ {i}), we let t · a denote the tuple t′ in l(Y ) such that t′|{i} = a and
t′|Y \{i} = t (if Y = {i}, then t · a = a).

A is an algebra with domain A and signature including a binary relation ≤,
a binary operation � and constants >, ⊥, such that the reduct (A,≤,>,⊥) is a
bounded poset (that is, ≤ is a partial order with greatest element > and least
element ⊥), and the reduct (A,�,>) is a commutative monoid (that is, � is
commutative and associative and has identity >) where � is monotone over ≤,
that is x ≤ y implies x� z ≤ y� z. A is called the valuation structure of P, and
� is called the combination operator over A.
3 This key problem has been recently solved over fair valuation structures [8]. An-

other, weaker consistency property, to be investigated in the DRLs setting, is virtual
consistency [9].
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P is a finite multiset 4 of constraints. Each constraint CY ∈ P is defined over
a subset Y ⊆ X as a map

CY :
∏
i∈Y

Di → A.

A constraint CY has scope Y and arity |Y |.
Let (CY1 , . . . , CYm

) be an m-tuple of constraints in P , and let f be an m-ary
operation on A. Then, f(CY1 , . . . , CYm) is the constraint with scope Y1∪· · ·∪Ym

defined by putting, for every t ∈ l(Y1 ∪ · · · ∪ Ym):

f(CY1 , . . . , CYm
)(t) = f(CY1(t|Y1), . . . , CYm

(t|Ym
)).

The set S(P) of (optimal) solutions to P is equal to the set of t ∈ l(X) such
that

⊙
CY ∈P CY (t|Y ) is maximal in the poset:{ ⊙

CY ∈P

CY (t|Y )

∣∣∣∣∣ t ∈ l(X)

}
⊆ A,

where an element x is maximal in a poset if there is no element y > x in the poset
(notice that maximal elements in a poset form an antichain). If S(P) = {⊥}, we
say that P is inconsistent.

Let P = (X,D, P, A) and P′ = (X, D, P ′, A) be CSPs. We say that P and
P′ are equivalent (in short, P ≡ P′) if and only if for every t ∈ l(X),⊙

CY ∈P

CY (t|Y ) =
⊙

CY ∈P ′

CY (t|Y ).

In particular, if P ≡ P′, then S(P) = S(P′).
In the sequel we shall assume the following, without loss of generality: P

contains at most one constraint with scope Y 6= ∅ for every Y ⊆ X (other-
wise, we replace any pair of constraints C ′Y , C ′′Y by the constraint CY defined
by CY (t|Y ) = C ′Y (t|Y ) � C ′′Y (t|Y ) for every t ∈ l(Y )); P contains all the con-
straints C{i} for i = 1, . . . , n (otherwise, we add the constraint C{i} stipulating
that C{i}(a) = > for every a ∈ Di); C{i}(a) > ⊥ for every a ∈ Di (other-
wise, we remove a from Di, declaring the problem inconsistent if Di becomes
empty). Moreover, we shall assume that constraints are implemented as tables,
such that entries can be both retrieved and modified, and that algebraic oper-
ations over the valuation structure are polynomial-time computable in the size
of their inputs.

3 Divisible Residuated Lattices

In this section, we introduce the variety of DRLs and some of its subvarieties,
which are interesting with respect to soft CSPs. We give the logical interpretation
of each mentioned algebraic variety, and we formalize the relation between DRLs
and, commutative idempotent semirings and fair valuation structures.
4 Multisets are necessary to support nonidempotent combinations of constraints.
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Definition 1 (Divisible Residuated Lattice, DRL). A divisible residuated
lattice 5 is an algebra (A,∨,∧,�,→,>,⊥) such that: (i) (A,�,>) is a commu-
tative monoid; (ii) (A,∨,∧,>,⊥) is a bounded lattice (we write x ≤ y if and only
if x∧ y = x); (iii) residuation holds, that is, x� z ≤ y if and only if z ≤ x→ y;
(iv) divisibility holds, that is, x∧y = x�(x→ y). A DRL is called a DRL-chain
if its lattice reduct is totally ordered.

We remark that residuation can be readily rephrased in equational terms, so
that DRLs form a variety. Notice that divisible residuated chains are not closed
under direct products, thus they do not form a variety. As a matter of fact, the
lattice reduct of a DRL is distributive, that is, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

The monoidal operation of a DRL matches the minimal requirements im-
posed over the combination operator of a valuation structure in Section 2, as
summarized by the following fact [14].

Fact 1 (DRLs Basic Properties) Let A be a DRL. For every x, y, z ∈ A: (i)
x� (y � z) = (x� y)� z, x� y = y � x, x�> = x, and x�⊥ = ⊥; (ii) x ≤ y
implies x� z ≤ y � z (in particular, x� x ≤ x).

We exploit the following facts from [14].

Fact 2 (DRLs Extra Properties) Let A be a DRL. For every x, y, z ∈ A:
(i) x ≤ y if and only if x → y = >; (ii) y ≤ x implies x � (x → y) = y; (iii)
y ≤ z implies (x� z)� (z → y) = x� y; (iv) x� (y ∨ z) = (x� y) ∨ (x� z).

Fact 3 [20] Let (A,∨,∧,>,⊥) be a complete bounded lattice, and let � be a com-
mutative monotone 6 operation over A such that � distributes over ∨. There
exists a unique operation x → y satisfying residuation, namely, x → y =∨
{z | x� z ≤ y}.

In the rest of this section, we discuss the relation between commutative idem-
potent semirings and fair valuation structures, and DRLs. We first introduce
some subvarieties of DRLs.

Definition 2 (DRLs Subvarieties). A BL-algebra is a DRL satisfying pre-
linearity, that is, (x→ y)∨ (y → x) = >. A Heyting algebra is a DRL satisfying
idempotency, that is, x� x = x. A Gödel algebra is an idempotent BL-algebra.
A Heyting algebra (or a Gödel algebra) is a Boolean algebra if it satisfies invo-
lutiveness, that is, ¬¬x = x where ¬x = x→ ⊥.

As we mentioned in the introduction, the variety of BL-algebras form the
equivalent algebraic semantics of Hájek’s basic logic. Analogously, the varieties
of Heyting algebras, Gödel algebras, and Boolean algebras respectively, form the
equivalent algebraic semantics of intuitionistic logic, Gödel logic, and classical
logic [21, 15].
5 To our aims, we can restrict to commutative and bounded residuated lattices. We

refer the reader to [16] for a general definition.
6 Monotonicity of � on both arguments is sufficient.
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We consider first commutative idempotent semirings. The restriction to the
idempotent case is motivated in this context, since local consistency techniques
succeed only over idempotent semirings [5].

Definition 3 (Commutative Idempotent Semiring, CIS). A commutative
idempotent semiring is an algebra (A,∨,�,>,⊥) such that: (i) ∨ is commuta-
tive, associative, idempotent, x ∨ ⊥ = x and x ∨ > = >; (ii) � is commutative,
associative, idempotent, x � > = x and x � ⊥ = ⊥; (iii) � distributes over ∨,
that is x� (y ∨ z) = (x� y) ∨ (x� z).

Fact 4 [4, Theorem 2.9, Theorem 2.10] Let A = (A,∨,�,>,⊥) be a CIS. Then,
(A,∨,∧,>,⊥), where x ∧ y = x� y, is a complete bounded distributive lattice.

Proposition 1. Let A = (A,∨,�,>,⊥) be a CIS. Then, the expansion A′ =
(A,∨,∧,�,→,>,⊥) of A, where x ∧ y = x� y and x→ y =

∨
{z | x� z ≤ y},

is a Heyting algebra.

Proof. It is sufficient to prove that (A,∨,∧,>,⊥) is a bounded distributive lat-
tice, and that → is the residuum of ∧. The first part is given by Fact 4. The
second part is given by Fact 3: indeed, (A,∨,�,>,⊥) is complete by Fact 4, �
is monotone by [4, Theorem 2.4], and � distributes over ∨ by Definition 3(iii),
hence the operation → is the uniquely determined residuum of ∧. ut

Next we consider fair valuation structures. Accordingly to [11], a fair val-
uation structure is a structure (A,≤,⊕,	,>,⊥) such that (A,≤,>,⊥) is a
bounded chain, the combination operator ⊕ is commutative, associative, mono-
tone, with identity ⊥ and annihilator >, and the structure is fair, that is,
for every x ≤ y ∈ A there exists a maximum z ∈ A, denoted by y 	 x,
such that x ⊕ z = y. The fairness property is crafted ad hoc to preserve the
soundness of constraints processing inside the adopted nonidempotent frame-
work [11, Section 4]. Technically, the authors have to guarantee that z ≤ y
implies x⊕ y = (x⊕ z)⊕ (y	 z). We propose here a different, dual definition of
a fair valuation structure.

Definition 4 (Dual Fair Valuation Structure, FVS). A (dual) fair valua-
tion structure is an algebra A = (A,∨,∧,�,→,>,⊥) such that (A,∨,∧,>,⊥) is
a bounded chain, (A,�,>) is a commutative monoid, and A satisfies residuation
and divisibility.

Remarkably, the aforementioned technical condition, which in our setting be-
comes y ≤ z implies x�y = (x�z)�(z → y), holds by divisibility. The proposed
dualization is defensible in logical terms, since the operation of combining soft
constraints is intended as a conjunction, and the monoidal operation of a DRL is
in fact a generalization of Boolean conjunction. In [11], the authors explicitly re-
late their combination operator with triangular conorms. The latter operations,
dual to triangular norms, are customarily intended as generalizations of Boolean
disjunction.
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Proposition 2. A FVS is a DRL-chain.

We conclude this section mentioning that the soft CSP evaluation framework
known as fuzzy CSP [4], which has the form ([0, 1],∨,∧,>,⊥), can be extended
to the Gödel chain ([0, 1],∨,∧,�,→,>,⊥) putting x � y = x ∧ y and x → y
equal to y if y > x and to > otherwise. This chain singly generates the variety
of Gödel algebras.

4 Enforcing k-Hyperarc Consistency on Soft CSPs
over Divisible Residuated Lattices

In this section, we define a property of local consistency, called k-hyperarc con-
sistency, and we describe a polynomial-time algorithm that enforces k-hyperarc
consistency on soft CSPs evaluated over DRLs. Syntactically, the pseudocode
is almost identical to that presented in [11, 18]; the important and nontrivial
point here is to show that it is sound over weaker structures, namely, DRLs
(Lemma 2). 7

Definition 5 (k-Hyperarc Consistency). Let P = (X, D, P, A) be a CSP.
Let Y ⊆ X such that 2 ≤ |Y | ≤ k and CY ∈ P . We say that Y is k-hyperarc
consistent if for each i ∈ Y and each a ∈ Di such that C{i}(a) > ⊥, there exists
t ∈ l(Y \ {i}) such that,

C{i}(a) = C{i}(a)� CY (t · a). (1)

We say that P is k-hyperarc consistent if every Y ⊆ X such that 2 ≤ |Y | ≤ k
and CY ∈ P is k-hyperarc consistent.

Notice that equation (1) holds if CY (t · a) = >. In words, Y is k-hyperarc
consistency if each assignment a ∈ Di of variable i ∈ Y such that C{i}(a) > ⊥,
extends to an assignment t ∈ l(Y \ {i}) of variables Y \ {i} without producing
additional costs.

The idea beyond enforcing algorithms is to explicitate implicit constraints
induced by the problem over certain subsets of variables, thus possibly discov-
ering a local unsatisfiability at the level of these variables. As a specialization
of this strategy, our algorithm shifts costs from constraints of arity greater than
one to constraints of arity one, thus it possibly reveals the unsatisfiability of the
subproblem induced over a single variable (or else, it possibly shrinks the domain
of that variable). Such a local unsatisfiability implies the unsatisfiability of the
whole problem, as the following proposition shows.

Proposition 3. Let P = (X,D, P, A) be a CSP and let i ∈ [n] be such that
C{i} ∈ P and C{i}(a) = ⊥ for every a ∈ Di. Then, P is inconsistent.

7 A technical advance of the present procedure, compared with the analogous proce-
dure presented by Bistarelli and Gadducci over tropical residuated semirings [2], is
termination.
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Proof. First recall that for every x ∈ A it holds that x � ⊥ = ⊥. But then,
C{i}(t|{i}) = ⊥ for every t ∈ l(X), so that

⊙
CY ∈P CY (t|Y ) = ⊥. Therefore,

S(P) = {⊥} and P is inconsistent. ut

Algorithm: k-HyperarcConsistency
Input: A CSP P = (X, D, P, A).
Output: ⊥ or a k-hyperarc consistent CSP P′ = (X, D, P ′, A) equivalent to P.

k-HyperarcConsistency((X, D, P, A))
1 Q← {1, . . . , n}
2 while Q 6= ∅ do
3 i← Pop(Q)
4 foreach Y ⊆ X such that 2 ≤ |Y | ≤ k, i ∈ Y and CY ∈ P do
5 domainShrinks ← Project(Y, i)
6 if C{i}(a) = ⊥ for each a ∈ Di then
7 return ⊥
8 else if domainShrinks then
9 Push(Q, i)
10 endif
11 endforeach
12 endwhile
13 return (X, D, P ′, A)

Project(Y, i)
14 domainShrinks ← false
15 foreach a ∈ Di such that C{i}(a) > ⊥ do
16 x← a maximal element in {CY (t · a) | t ∈ l(Y \ {i})}
17 C{i}(a)← C{i}(a)� x
18 if C{i}(a) = ⊥ then
19 domainShrinks ← true
20 endif
21 foreach t ∈ l(Y \ {i}) do
22 CY (t · a)← (x→ CY (t · a))
23 endforeach
24 endforeach
25 return domainShrinks

As already discussed in the introduction, enforcing k-hyperarc consistency
over the k-hyperarc inconsistent problem P may return in output several distinct
k-hyperarc consistent problems, depending on the choices made on Lines 1, 3, 4
and 16.

In the rest of this section, we prove that the algorithm runs in polynomial-
time (Lemma 1) and is sound (Lemma 2), leading to our main technical result
(Theorem 5).

Lemma 1 (Complexity). Let P = (X,D, P, A) be a CSP, where X = [n],
d = maxi∈[n] |Di| and e = |P |. Then, k-HyperarcConsistency terminates in
at most O(e2 · dk+1) time.
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Proof. The main loop in Lines 2-12 iterates at most n(d + 1) ≤ e(d + 1) times,
since n ≤ e without loss of generality and each i ∈ [n] is added to Q once on
Line 1 and at most d times on Line 9 (once for each shrink of domain Di of size
≤ d). Each iteration of the main loop involves at most e iterations of the loop
nested in Lines 4-11, since there are at most e constraints satisfying the condition
in Line 4 with respect to any given i ∈ [n]. Each such nested iteration amounts
to an invocation of Project and an iteration over domain Di of size ≤ d. Any
invocation of Project amounts to an iteration over domain Di of size ≤ d on
Line 15, and for each such iteration, two iterations over all the ≤ dk−1 tuples
t ∈ l(Y \ {i}), observing that 1 ≤ |Y \ {i}| ≤ k − 1 (Line 16 and Lines 21-23).
Summarizing, the algorithm executes at most

(e(d + 1))e(d + d(2dk−1))

many iterations, so that it terminates in at most O(e2 · dk+1) time. ut

Lemma 2 (Soundness). Let P = (X, D, P, A) be a CSP, and consider the
output of k-HyperarcConsistency(P):

(i) if it is ⊥, then P is inconsistent;
(ii) otherwise, it is a k-hyperarc consistent CSP equivalent to P.

Proof. First we show that the subprocedure Project preserves equivalence, in
the following sense. Let R′ be the multiset of constraints before the jth invocation
of Project in Line 5, let Y and i be the parameters of such invocation, and let
R′′ be the multiset of constraints computed by the jth execution of Lines 14-25.
We aim to show that for every t ∈ l(X),⊙

CY ∈R′

CY (t|Y ) =
⊙

CY ∈R′′

CY (t|Y ), (2)

that is, problems (X, D, R′, A) and (X, D, R′′, A) are equivalent.
Let t ∈ l(X) and let t|{i} = a ∈ Di such that C{i}(a) > ⊥ (Line 15). Clearly,

t|Y \{i} ∈ l(Y \ {i}). In Line 16, x is settled to a maximal element in the poset

{CY (t|Y \{i} · t|{i}) | t|Y \{i} ∈ l(Y \ {i})},

so that by construction CY (t|Y ) ≤ x. By Line 17, the constraint C{i}(t|{i}) in
R′ becomes

C{i}(t|{i})� x

in R′′, and by Line 22, at some iteration of the loop in Lines 21-23, the constraint
CY (t|Y ) in R′ becomes

x→ CY (t|Y )

in R′′. Now, we claim that:

C{i}(t|{i})� CY (t|Y ) = (C{i}(t|{i})� x)� (x→ CY (t|Y )).
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Indeed, in light of Fact 2(iii) and the aforementioned fact that CY (t|Y ) ≤ x,

(C{i}(t|{i})� x)� (x→ CY (t|Y )) = C{i}(t|{i})� (x� (x→ CY (t|Y )))
= C{i}(t|{i})� (x ∧ CY (t|Y ))
= C{i}(t|{i})� CY (t|Y ).

Eventually, Project does not modify constraints CZ ∈ R′ such that Z 6= {i}
and Z 6= Y , so that,⊙

CZ∈R′,Z 6={i},Z 6=Y

CZ(t|Z) =
⊙

CZ∈R′′,Z 6={i},Z 6=Y

CZ(t|Z).

Thus, since z′ = z′′ implies z � z′ = z � z′′ in A for every z, z′, z′′ ∈ A by
Fact 1(ii), we conclude that (2) holds.

Now suppose that the algorithm outputs ⊥ in Line 7. We claim that the input
problem P = (X, D, P, A) is inconsistent. Indeed, let j be such that after the jth
execution of Project, say over parameters Y and i, it holds that C{i}(a) = ⊥
for each a ∈ Di. Let P ′ be the multiset of constraints computed by such jth ex-
ecution. Since Project preserves equivalence, P′ = (X, D, P ′, A) is equivalent
to P. But, by Proposition 3, P′ is inconsistent, so that P is inconsistent too.

Next suppose that the algorithm outputs P′ = (X, D, P ′, A) in Line 13. We
claim that the output problem is k-hyperarc consistent and equivalent to the
input problem P = (X,D, P, A). For equivalence, simply note that Project
preserves equivalence. For k-hyperarc consistency, first note that every i ∈ [n]
is such that C{i}(a) > ⊥ for some a ∈ Di. Indeed, this holds in the input
problem P without loss of generality, and each execution of Project, which
possibly pushes some C{i}(a) down to ⊥ in Line 17, is followed by the check of
Lines 18-20.

Now, let Y ⊆ X be such that 2 ≤ |Y | ≤ k, i ∈ Y and CY ∈ P ′, and let
a ∈ Di be such that C{i}(a) > ⊥. We claim that there exists t ∈ l(Y \ {i}) such
that

C{i}(a) = C{i}(a)� CY (t · a).

Note that, by Fact 1(i), equality holds if CY (t · a) = >. Let R′ and R′′ be
respectively the multisets of constraints before and after the last execution of
Project on input Y and i. Let t ∈ l(Y \ {i}) be such that CY (t · a) is the
maximal element in {CY (t · a) | t ∈ l(Y \ {i})} assigned to x in Line 16. Thus,
at some iteration of loop in Lines 21-23, we have that the constraint CY (t · a) in
R′ is updated to x→ CY (t · a) in R′′. But, by Fact 2(i),

x→ CY (t · a) = CY (t · a)→ CY (t · a) = >,

therefore, CY (t ·a) = > in R′′. Noticing that subsequent assignments to CY (t ·a)
during the main loop have the form x → >, which is equal to > by Fact 2(i),
the claim is settled. ut

Theorem 5. Let P be a CSP, and let P′ = k-Hyperarc-Consistency(P).
Then, P′ is a k-hyperarc consistent CSP equivalent to P, computed in polynomial
time in the size of P.
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