Skip to main content

The Tile Complexity of Linear Assemblies

  • Conference paper
Automata, Languages and Programming (ICALP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Included in the following conference series:

Abstract

The conventional Tile Assembly Model (TAM) developed by Winfree using Wang tiles is a powerful, Turing-universal theoretical framework which models varied self-assembly processes. We describe a natural extension to TAM called the Probabilistic Tile Assembly Model (PTAM) to model the inherent probabilistic behavior in physically realized self-assembled systems. A particular challenge in DNA nanoscience is to form linear assemblies or rulers of a specified length using the smallest possible tile set. These rulers can then be used as components for construction of other complex structures. In TAM, a deterministic linear assembly of length N requires a tile set of cardinality at least N. In contrast, for any given N, we demonstrate linear assemblies of expected length N with a tile set of cardinality Θ(logN) and prove a matching lower bound of Ω(logN). We also propose a simple extension to PTAM called κ-pad systems in which we associate κ pads with each side of a tile, allowing abutting tiles to bind when at least one pair of corresponding pads match and prove analogous results. All our probabilistic constructions are free from co-operative tile binding errors and can be modified to produce assemblies whose probability distribution of lengths has arbitrarily small tail bounds dropping exponentially with a given multiplicative factor increase in number of tile types. Thus, for linear assembly systems, we have shown that randomization can be exploited to get large improvements in tile complexity at a small expense of precision in length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothemund, P.: Folding DNA to Create Nanoscale Shapes and Patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  2. Yan, H., Yin, P., Park, S.H., Li, H., Feng, L., Guan, X., Liu, D., Reif, J., LaBean, T.: Self-assembled DNA Structures for Nanoconstruction. American Institute of Physics Conference Series, vol. 725, pp. 43–52 (2004)

    Google Scholar 

  3. Zhang, D.Y., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  4. Wang, H.: Proving Theorems by Pattern Recognition II (1961)

    Google Scholar 

  5. Berger, R.: The Undecidability of the Domino Problem, vol. 66, pp. 1–72 (1966)

    Google Scholar 

  6. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  7. Robinson, R.: Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones Mathematicae 12, 177–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1981)

    MATH  Google Scholar 

  9. Lewis, H., Papadimitriou, C.: Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  10. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and Self-Assembly of Two-Dimensional DNA Crystals. Nature 394, 539–544 (1999)

    Article  Google Scholar 

  11. Adleman, L.: Towards a mathematical theory of self-assembly. Technical report, University of Southern California (2000)

    Google Scholar 

  12. Winfree, E.: DNA Computing by Self-Assembly. In: NAE’s The Bridge, vol. 33, pp. 31–38 (2003)

    Google Scholar 

  13. Rothemund, P., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: STOC, pp. 459–468 (2000)

    Google Scholar 

  14. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running Time and Program Size for Self-Assembled Squares. In: STOC, pp. 740–748 (2001)

    Google Scholar 

  15. Barish, R., Rothemund, P., Winfree, E.: Two Computational Primitives for Algorithmic Self-Assembly: Copying and Counting. Nano Letters 5(12), 2586–2592 (2005)

    Article  Google Scholar 

  16. Yan, H., Feng, L., LaBean, T., Reif, J.: Parallel Molecular Computation of Pair-Wise XOR using DNA String Tile. Journal of the American Chemical Society (125) (2003)

    Google Scholar 

  17. Winfree, E.: Simulations of Computing by Self-Assembly. Technical report, Caltech CS Tech Report (1998)

    Google Scholar 

  18. Schulman, R., Lee, S., Papadakis, N., Winfree, E.: One Dimensional Boundaries for DNA Tile Self-Assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 108–126. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Park, S.H., Yin, P., Liu, Y., Reif, J., LaBean, T., Yan, H.: Programmable DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters 5, 729–733 (2005)

    Article  Google Scholar 

  20. Aggarwal, G., Goldwasser, M., Kao, M.Y., Schweller, R.: Complexities for Generalized Models of Self-Assembly. In: SODA, pp. 880–889 (2004)

    Google Scholar 

  21. Kao, M.Y., Schweller, R.: Randomized Self-Assembly for Approximate Shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Lagoudakis, M., LaBean, T.: 2D DNA Self-Assembly for Satisfiability. In: DIMACS Workshop on DNA Based Computers (1999)

    Google Scholar 

  23. Becker, F., Rapaport, I., Rémila, É.: Self-assemblying classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Reif, J.: Local parallel biomolecular computation. In: NA-Based Computers, III, pp. 217–254. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  25. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged Self-assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J., Seeman, N.: Construction, Analysis, Ligation, and Self-Assembly of DNA Triple Crossover Complexes. Journal of the American Chemical Society 122(9), 1848–1860 (2000)

    Article  Google Scholar 

  27. Mao, C., LaBean, T., Reif, J., Seeman, N.: Logical Computation Using Algorithmic Self-Assembly of DNA Triple-Crossover Molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  28. Gillespie, D.: Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81, 2340–2361 (1977)

    Article  Google Scholar 

  29. Soloveichik, D., Winfree, E.: Complexity of Self-Assembled Shapes. SIAM Journal of Computing 36(6), 1544–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Winfree, E., Bekbolatov, R.: Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Gordan, H.: Discrete Probability. Springer, Heidelberg (1997)

    Book  Google Scholar 

  33. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandran, H., Gopalkrishnan, N., Reif, J. (2009). The Tile Complexity of Linear Assemblies. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics