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Abstract

Given an undirected graphG = (V,E) and subset of terminalsT ⊆ V , the element-connectivity
κ′

G
(u, v) of two terminalsu, v ∈ T is the maximum number ofu-v paths that are pairwise disjoint in

both edges and non-terminalsV \ T (the paths need not be disjoint in terminals). Element-connectivity is
more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellermann [21]
gave a graph reduction step that preserves theglobal element-connectivity of the graph. We show that this
step also preserveslocal connectivity, that is, all the pairwise element-connectivities of the terminals. We
give two applications of this reduction step to connectivity and network design problems.

• Given a graphG and disjoint terminal setsT1, T2, . . . , Tm, we seek a maximum number of element-
disjoint Steiner forests where each forest connects eachTi. We prove that if eachTi is k element
connected then there existΩ( k

log h logm
) element-disjoint Steiner forests, whereh = |

⋃

i
Ti|. If G

is planar (or more generally, has fixed genus), we show that there existΩ(k) Steiner forests. Our
proofs are constructive, giving poly-time algorithms to find these forests; these are the first non-trivial
algorithms for packing element-disjoint Steiner Forests.

• We give a very short and intuitive proof of a spider-decomposition theorem of Chuzhoy and Khanna
[12] in the context of the single-sinkk-vertex-connectivityproblem; this yields a simple and alternative
analysis of anO(k log n) approximation.

Our results highlight the effectiveness of the element-connectivity reduction step; we believe it will find
more applications in the future.

1 Introduction

In this paper we consider several connectivity and network design problems. Given an undirected graphG and
two nodesu, v we letλG(u, v) andκG(u, v) denote the edge and vertex connectivities betweenu andv in G. It
is well-known that edge-connectivity problems are “easier” than their vertex-connectivity counterparts. Vertex-
connectivity exhibits less structure than edge-connectivity and this often translates into significant differences
in the algorithmic and computational difficulty of the corresponding problems. As an example, consider the
well-known survivable network design problem (SNDP): the input consists of an undirected edge-weighted
graphG and connectivity requirementsr : V × V → Z+ between each pair of vertices. The goal is to find a
min-cost subgraphH of G such that each pairu, v hasr(u, v) disjoint paths between them inH. If the paths are
required to be edge-disjoint (λH(u, v) ≥ r(u, v)) then the problem is referred to as EC-SNDP and if the paths
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are required to be vertex-disjoint the problem is referred to as VC-SNDP. Jain [23] gave a2-approximation
for EC-SNDP based on the powerful iterated rounding technique. On the other hand, VC-SNDP is known to
be hard to within polynomial factors [28, 4]. To address thisgap, Jainet al. [25] introduced a connectivity
measure intermediate to edge and vertex connectivities known aselement-connectivity. The vertices are parti-
tioned into terminalsT ⊆ V and non-terminalsV \ T . The element-connectivity between two terminalsu, v,
denoted byκ′G(u, v) is defined to be the maximum number of paths betweenu andv that are pairwise disjoint
in edges and non-terminals (the paths can share terminals).In some respects, element-connectivity resembles
edge-connectivity: For example,κ′(u,w) ≥ min(κ′(u, v), κ′(v,w)) for any three terminalsu, v, w; this trian-
gle inequality holds for edge-connectivity but does not forvertex-connectivity. In element-connectivity SNDP
(ELC-SNDP) the requirements are only between terminals andthe goal is to find a min-cost subgraphH such
that κ′H(u, v) ≥ r(u, v) for eachu, v ∈ T . Fleischer, Jain and Williamson [16] (see also [11]) generalized
the iterated rounding technique of Jain for EC-SNDP to give a2-approximation for ELC-SNDP. In other re-
spects, element-connectivity is related to vertex connectivity. One class of problems motivating this paper is on
generalizing the classical theorem of Menger ons-t vertex-connectivity; we discuss this below.

In studying element-connectivity, we often assume withoutloss of generality that there are no edges be-
tween terminals (by subdividing each such edge) and henceκ′(u, v) is the maximum number of non-terminal
disjoint u-v paths. Menger’s theorem shows that the maximum number of internally vertex-disjoints-t paths
is equal toκ(s, t). Hind and Oellermann [21] considered a natural generalization to multiple terminals. Given
a terminal setT ⊆ V , what is the maximum number of trees that each containT and are disjoint inV \ T?
The natural upper bound here is the element connectivity ofT in G, in other words,k = minu,v∈T κ′(u, v). In
[21] a graph reduction step was introduced to answer this question. Cheriyan and Salavatiour [9] called this the
problem of packing element-disjoint Steiner trees; crucially using the graph reduction step, they showed that
there always existΩ(k/ log |T |) element-disjoint Steiner trees and moreover, this bound istight (up to constant
factors) in the worst case. In contrast, if we seek edge-disjoint Steiner trees then Lau [32] has shown that ifT
is 26k edge-connected inG, there arek edge-disjoint trees each of which spansT .

Finally, we remark that in some recent work Chuzhoy and Khanna [12] gave anO(k log |T |) approximation
for the special case of VC-SNDP in which a terminal setT needs to bek-vertex-connected (this is equivalent to
the single-sink problem). Their algorithm and analysis arebased on a structural characterization of feasible so-
lutions — they use element-connectivity (they call it weak connectivity) as a key stepping stone. Subsequent to
this paper, Chuzhoy and Khanna [13] gave a simple and elegantreduction from the thegeneralVC-SNDP prob-
lem to ELC-SNDP, obtaining anO(k3 log n)-approximation and reinforcing the connection between element-
and vertex-connectivity.

The discussion above suggests that it is fruitful to study element-connectivity as a way to generalize edge-
connectivity and attack problems on vertex-connectivity.In this paper we consider the graph reduction step for
element-connectivity introduced by Hind and Oellermann [21] (and rediscovered by Cheriyan and Salavatipour
[9]). We generalize the applicability of the step and demonstrate applications to several problems.

A Graph Reduction Step Preserving Element Connectivity:The well-knownsplitting-off operation intro-
duced by Lovász [34] is a standard tool in the study of (primarily) edge-connectivity problems. Given an undi-
rected multi-graphG and two edgessu andsv incident tos, the splitting-off operation replacessu andsv by
the single edgeuv. Lovász proved the following theorem on splitting-off to preserveglobal edge-connectivity.

Theorem 1.1(Lovász). LetG = (V ∪ {s}, E) be an undirected multi-graph in whichV is k-edge-connected
for somek ≥ 2 and degree ofs is even. Then for every edgesu there is another edgesv such thatV is
k-edge-connected after splitting-offsu andsv.

Mader strengthened the above theorem to show the existence of a pair of edges incident tos that when
split-off preserve thelocal edge-connectivity of the graph.
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Theorem 1.2(Mader [35]). LetG = (V ∪ {s}, E) be an undirected multi-graph, wheredeg(s) 6= 3 ands is
not incident to a cut edge ofG. Thens has two neighboursu andv such that the graphG′ obtained fromG by
replacingsu andsv byuv satisfiesλG′(x, y) = λG(x, y) for all x, y ∈ V \ {s}.

Generalization to directed graphs are also known [35, 17, 26]. The splitting-off theorems have numerous
applications in graph theory and combinatorial optimization. See [34, 18, 31, 24, 6, 32, 33, 27] for various
pointers and applications. Although splitting-off techniques can be sometimes be used in the study of vertex-
connectivity, their use is limited and no generally applicable theorem akin to Theorem 1.2 is known. On the
other hand, Hind and Oellermann [21] proved an elegant theorem on preserving global element connectivity.
In the sequel we useκ′G(S) to denoteminu,v∈S κ′G(u, v) andG/pq to denote the graph obtained fromG by
contracting verticesp, q.

Theorem 1.3(Hind & Oellermann [21]). LetG = (V,E) be an undirected graph andT ⊆ V be a terminal-set
such thatκ′G(T ) ≥ k for each pairu, v ∈ T . Let (p, q) beanyedge wherep, q ∈ V \ T . Thenκ′G1

(T ) ≥ k or
κ′G2

(T ) ≥ k whereG1 = G− pq andG2 = G/pq.

This theorem has been used in two applications on element-connectivity [9, 27]. We generalize it to handle
local connectivity, increasing its applicability.

Reduction Lemma. LetG = (V,E) be an undirected graph andT ⊆ V be a terminal-set. Let(p, q) beany
edge wherep, q ∈ V \T and letG1 = G−pq andG2 = G/pq. Then one of the following holds: (i)∀u, v ∈ T ,
κ′G1

(u, v) = κ′G(u, v) (ii) ∀u, v ∈ T , κ′G2
(u, v) = κ′G(u, v).

Remark 1.4. The Reduction Lemma, applied repeatedly, transforms a graph into another graph in which the
non-terminals form a stable set. Moreover, the reduced graph is a minor of the original graph.

We give applications of the Reduction Lemma (using additional ideas) to two problems that we had briefly
alluded to already. We discuss these below.

Packing Element-Disjoint Steiner Trees and Forests:There has been much interest in the recent past on
algorithms for (integer) packing of disjoint Steiner treesin both the edge and element-connectivity settings
[31, 24, 32, 33, 8, 9, 6]. (ASteiner treeis simply a tree containing the entire terminal setT .) See [20] for
applications of Steiner tree packing to VLSI design. An outstanding open problem is Kriesell’s conjecture
which states that if the terminal setT is 2k-edge-connected then there arek-edge-disjoint Steiner trees each of
which spansT ; this would generalize a classical theorem of Nash-Williams and Tutte on edge-disjoint spanning
trees. Lau made substantial progress [32] and proved that26k-connectivity suffices fork edge-disjoint Steiner
trees; he extended his result for packing Steiner forests [33]. We remark that Mader’s splitting-off theorem
plays an important role in Lau’s work. The element-disjointSteiner tree packing problem was first considered
by Hind and Oellermann. As we mentioned, Cheriyan and Salavatipour [9] gave a nearly tight bound for
this problem. Their result relies crucially on Theorem 1.3 followed by a simple randomized coloring algorithm
whose analysis extends a similar algorithm for computing the domatic number of a graph [15]. In [3] the random
coloring idea was shown to apply more generally in the context of packing bases of an arbitrary monotone
submodular function; in addition, a derandomization was provided in [3] via the use of min-wise independent
permutations. It is also known that the problem of packing element-disjoint Steiner trees is hard to approximate
to within anΩ(log n) factor [8]. Here, we consider the more general problem of packing Steiner forests that
was posed by [9]. The input consists of a graphG = (V,E) and disjoint terminal setsT1, T2, . . . , Tm, such that
κ′G(Ti) ≥ k for 1 ≤ i ≤ k. What is the maximum number of element disjoint forests suchthat in each forestTi

is connected for1 ≤ i ≤ k? Our local connectivity reduction step is primarily motivated by this question. For
general graphs we prove that there existΩ(k/(log |T | logm)) element disjoint forests, whereT =

⋃

i Ti. This
can also be viewed as anO(log |T | logm) approximation for the problem. We apply the Reduction Lemma
to obtain a graph in which the non-terminals are a stable set.We cannot however apply the random coloring
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approach directly — in fact we can show that it does not work. Instead we decompose the graph into highly
connected subgraphs and then apply the random coloring approach in each subgraph separately.

We also study the packing problem in planar graphs and graphsof fixed genus, and prove substantially
stronger results. Here too, the first step is to use the Reduction Lemma (recall that the reduced graph is a minor
of the original graph and hence is also planar). After the reduction step, we employ a very different approach
from the one for general graphs. Our main insight is that planarity restricts the ability of non-terminals to
provide high element-connectivity to the terminals. We formalize this intuition by showing that there are some
two terminalsu, v that haveΩ(k) parallel edges between them which allows us to contract themand recurse.
Using these ideas, for planar graphs we prove that there exist ⌈k/5⌉−1 disjoint forests. Our method also extends
to give anΩ(k) bound for graphs of a fixed genus, and we conjecture that one can findΩ(k) disjoint forests
in graphs excluding a fixed minor; we give evidence for this byproving it for packing Steiner trees in graphs
of fixed treewidth. Note that these bounds also imply corresponding approximation algorithms for maximizing
the number of disjoint forests. These are the first non-trivial bounds for packing element-disjoint Steiner forests
in general graphs or planar graphs. Since element-connectivity generalizes edge-connectivity, our bounds in
planar graphs are considerably stronger than those of givenby Lau [32, 33] foredge-connectivity. Our proof
is simple, however, we remark that the simplicity of the proof comes from thinking about element-connectivity
(using the Reduction Lemma) instead of edge-connectivity!Our proof also gives the strong property that the
non-terminals in the forests all have degree2.

Single-Sink k-vertex-connectivity: Polynomial factor inapproximability results for VC-SNDP [28, 4] have
focused attention on restricted, yet useful, special casesof the problem. In recent work Chakraborty, Chuzhoy
and Khanna [4] considered the single-sinkk-vertex-connectivity problem for smallk; the goal is tok-vertex-
connect a set of terminalsT to a given rootr. This problem is approximation-equivalent to the subsetk-
connectivity problem in whichT needs to bek-connected [4]. Ifk = 1, this is the NP-Hard Steiner tree problem
and a2-approximation is well-known. Fork = 2, a 2-approximation follows from [16] whose algorithm can
handle the more general VC-SNDP with requirements in{0, 1, 2}. Fork > 2 the first non-trivial approximation
algorithm was given in [4]; the approximation ratio waskO(k2) log4 n. Improvements were given in [12, 5]
with Chuzhoy and Khanna [12] achieving the currently best known approximation ratio ofO(k log |T |). The
algorithms are essentially the same in [4, 12, 5] and build upon the insights from [4]; the analysis in [12] relied
on a beautiful decomposition result fork-connectivity which is independently interesting from a graph theoretic
view point. The proof of this theorem in [12] is long and complicated although it is based on only elementary
operations. Using the Reduction Lemma, we give an alternateproof of the main technical result which is only
half a page long! We mention that the decomposition theorem has applications to more general network design
problems such as the rent-or-buy and buy-at-bulk network design problems as shown in [5]. Due to space
constraints we omit these applications in this paper.

Related Work: We have already mentioned most of the closely related papers. Our work on packing Steiner
forests in planar graphs was inspired by a question by JosephCheriyan [7]. Independent of our work, Aazami,
Cheriyan and Jampani [1] proved that if a terminal setT is k-element-connected in a planar graph then there
exist k/2 − 1 element-disjoint Steiner trees, and moreover this is tight. They also prove that it is NP-hard
to obtain a(1/2 + ε) approximation for this problem. Our bound for packing Steiner Trees in planar graphs
is slightly weaker than theirs; however, our algorithms andproofs are simple and intuitive, and generalize to
packing Steiner forests. Their algorithm uses Theorem 1.3,followed by a reduction to a theorem of Franket
al. [19] that uses Edmonds’ matroid partition theorem. One could attempt to pack Steiner forests using their
approach (with the stronger Reduction Lemma in place of Theorem 1.3), but the theorem of [19] does not
have a natural generalization for Steiner forests. The techniques of both [1] and this paper extend to graphs
of small genus or treewidth; we discuss this further in Section 3.2. We refer the reader to [4, 12, 5] for more
discussion of recent work on single-sink vertex connectivity, including hardness results [4] and extensions to
related problems such as the node-weighted case [12] and buy-at-bulk network design [5]. Nutov [36] has
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recently given alternate algorithms, based on the primal-dual method, for the single-sink vertex-connectivity
network design with approximation ratios comparable to those from [12]. These algorithms do not have have
the advantage of the structural decomposition of [12]. We mention that ifT = V , that is, we wish to find a
min-cost subgraph ofG that isk-connected then anO(log2 k) approximation is known [14, 30, 10]. We also
refer the reader to a survey on network design by Kortsarz andNutov [29].

2 The Reduction Lemma

Let G(V,E) be a graph, with a given setT ⊆ V (G) of terminals. For ease of notation, we subsequently refer
to terminals asblackvertices, and non-terminals (also called Steiner vertices) aswhite. The elements ofG are
white vertices and edges; two paths areelement-disjointif they have no white vertices or edges in common.
Recall that the element-connectivity of two black verticesu and v, denoted byκ′G(u, v), is the maximum
number of element-disjoint (that is, disjoint in edges and white vertices) paths betweenu andv in G. We omit
the subscriptG when it is clear from the context.

For this section, to simplify the proof, we will assume thatG has no edges between black vertices; any such
edge can be subdivided, with a white vertex inserted betweenthe two black vertices. It is easy to see that two
paths are element-disjoint in the original graph iff they are element-disjoint in the modified graph. Thus, we
can say that paths are element disjoint if they share no whitevertices, or thatu andv arek-element-connected
if the smallest set of white vertices whose deletion separatesu from v has sizek.

Recall that our lemma generalizes Theorem 1.3 on preservingglobal connectivity. We remark that our proof
is based on a cutset argument unlike the path-based proofs in[21, 9] for the global case.

Reduction Lemma. GivenG(V,E) andT , let pq ∈ E(G) be any edge such thatp andq are both white. Let
G1 = G− pq andG2 = G/pq be the graphs formed fromG by deleting and contractingpq respectively. Then,
(i) ∀u, v ∈ T, κ′G1

(u, v) = κ′G(u, v) or (ii) ∀u, v ∈ T, κ′G2
(u, v) = κ′G(u, v).

Proof: Consider an arbitrary edgepq. Deleting or contracting an edge can reduce the element-connectivity of
a pair by at most1. Suppose the lemma were not true; there must be pairss, t andx, y of black vertices such
thatκ′G1

(s, t) = κ′G(s, t)− 1 andκ′G2
(x, y) = κ′G(x, y)− 1. The pairs have to be distinct since it cannot be the

case thatκ′G1
(u, v) = κ′G2

(u, v) = κ′G(u, v)− 1 for any pairu, v. (To see this, if one of theκ′G(u, v) u-v paths
usespq, contracting the edge will not affect that path, and will leave the other paths untouched. Otherwise,
no path usespq, and so it can be deleted.). Note that one ofs, t could be the same vertex as one ofx, y; for
simplicity we will assume that{s, t} ∩ {x, y} = ∅, but this does not change our proof in any detail. We show
that our assumption on the existence ofs, t andx, y with the above properties leads to a contradiction. Let
κ′G(s, t) = k1 andκ′G(x, y) = k2. We use the following facts several times.

1. Any cutset of size less thank1 that separatess andt in G1 cannot includep or q. (If it did, it would also
separates andt in G.)

2. κ′G1
(x, y) = k2 sinceκ′G2

(x, y) = k2 − 1.

We define a vertex tri-partition of a graphG as follows:(A,B,C) is a vertex tri-partition ofG if A,B, and
C partitionV (G), B contains only white vertices, and there are no edges betweenA andC. (That is, removing
the white vertices inB disconnectsA andC.)

Sinceκ′G1
(s, t) = k1 − 1, there is a vertex-tri-partition(S,M, T ) such that|M | = k1 − 1 ands ∈ S and

t ∈ T . From Fact 1 above,M cannot containp or q. For the same reason, it is also easy to see thatp andq
cannot be both inS (or both inT ); otherwiseM would be a cutset of sizek1 − 1 in G. Therefore, assume
w.l.o.g. thatp ∈ S, q ∈ T .
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Similarly, sinceκ′G2
(x, y) = k2− 1, there is a vertex-tri-partition(X,N ′, Y ) in G2 with |N ′| = k2− 1 and

x ∈ X andy ∈ Y . We claim thatN ′ contains the contracted vertexpq for otherwiseN ′ would be a cutset of
sizek2 − 1 in G. Therefore, it follows that(X,N, Y ) whereN = N ′ ∪ {p, q} − {pq} is a vertex-tri-partition
in G that separatesx from y. Note that|N | = k2 andN includesbothp andq. For the latter reason we note
that(X,N, Y ) is a vertex-tri-partition also inG1.

Subsequently, we work with the two vertex tri-partitions(S,M, T ) and(X,N, Y ) in G1 (we stress that we
work in G1 and not inG or G2). Recall thats, p ∈ S, andt, q ∈ T , and thatM has sizek1 − 1; also,N
separatesx from y, andp, q ∈ N . Fig. 1 (a) below shows these vertex tri-partitions. SinceM andN contain
only white vertices, all terminals are inS or T , and inX or Y . We say thatS ∩X is diagonally oppositefrom
T ∩Y , andS∩Y is diagonally opposite fromT ∩X. LetA,B,C,D denoteS∩N,X ∩M,T ∩N andY ∩M
respectively, withI denotingN ∩M ; note thatA,B,C,D, I partitionM ∪N .

S M T

X

N

Y

A

B

C

D

Ip q

(a)

N

M

A

B

C

D

Ip q

S ∩X T ∩X

S ∩ Y T ∩ Y

x

y t

(b)

N

M

A

B

C

D

Ip q

S ∩X T ∩X

S ∩ Y T ∩ Y

x

s y

t

(c)
Figure 1: Part (a) illustrates the vertex tri-partitions(S,M, T ) and(X,N, Y ).

In parts (b) and (c), we consider possible locations of the terminalss, t, x, y.

We assume w.l.o.g. thatx ∈ S. If we also havey ∈ S, thenx ∈ S∩X andy ∈ S∩Y ; therefore, one ofx, y
is diagonally opposite fromt, suppose this isx. Fig. 1 (b) illustrates this case. Observe thatA∪I∪B separatesx
from y; sincex andy arek2-connected and|N = A∪I∪C| = k2, it follows that|B| ≥ |C|. Similarly,C∪I∪D
separatest from s, and sinceC containsq, Fact 1 implies that|C ∪ I ∪D| ≥ k1 > |B ∪ I ∪D = M | = k1− 1.
Therefore,|C| > |B|, and we have a contradiction.

Hence, it must be thaty /∈ S; soy ∈ T ∩ Y . The argument above shows thatx andt cannot be diagonally
opposite, sot must be inT ∩ X. Similarly, s andy cannot be diagonally opposite, sos ∈ S ∩ Y . Fig. 1 (c)
shows the required positions of the vertices. Now,N separatess from t and containsp, q; therefore, from fact
1, |N | ≥ k1 > |M |. ButM separatesx from y, and fact 2 implies thatx, y arek2-connected inG1; therefore,
|M | ≥ k2 = |N |, and we have a contradiction. �

3 Packing Element-Disjoint Steiner Trees and Forests

Consider a graphG(V,E), with its vertex setV partitioned intoT1, T2, . . . Tm,W . We refer to eachTi as
a group ofterminals, andW as the set of Steiner or white vertices; we useT =

⋃

i Ti to denote the set of
all terminals. A Steiner Forest for this graph is a forest that is a subgraph ofG, such that eachTi is entirely
contained in a single tree of this forest. (Note thatTi andTj can be in the same tree.) For any groupTi of
terminals, we defineκ′(Ti), the element-connectivity ofTi, as the largestk such that for everyu, v ∈ Ti, the
element-connectivity ofu andv in the graphG is at leastk.

We say two Steiner Forests forG are element-disjoint if they share no edges or Steiner vertices. (Every
Steiner Forest must contain all the terminals.) The SteinerForest packing problem is to find as many element-
disjoint Steiner Forests forG as possible. By inserting a Steiner vertex between any pair of adjacent terminals,
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we can assume that there are no edges between terminals, and then the problem of finding element-disjoint
Steiner forests is simply that of finding Steiner forests that do not share any Steiner vertices. A special case is
whenm = 1 in which case we seek a maximum number of element-disjoint Steiner trees.

Proposition 3.1. If k = mini κ
′
G(Ti), there are at mostk element-disjoint Steiner Forests inG.

Cheriyan and Salavatipour [9] proved that if there is a single groupT of terminals, withκ′(T ) = k, then
there always existΩ(k/ log |T |) Steiner trees. Their algorithm proceeds by using Theorem 1.3, the global
element-connectivity reduction of [21], to delete and contract edges between Steiner vertices, while preserving
κ′(T ) = k. Then, once we obtain a bipartite graphG′ with terminals on one side and Steiner vertices on the
other side, randomly color the Steiner vertices usingk/6 log |T | colors; they show that w.h.p., each color class
connects the terminal setT , giving k/6 log |T | trees. The bipartite case can be cast as a special case of packing
bases of a polymatroid and a variant of the random coloring idea is applicable in this more general setting
[3]; a derandomization is also provided in [3], thus yielding a deterministic polynomial time algorithm to find
Ω(k/ log |T |) element-disjoint Steiner trees.

In this section, we give algorithms for packing element-disjoint Steiner Forests, where we are givenm
groups of terminalsT1, T2, . . . Tm. The approach of [9] encounters two difficulties. First, we cannot reduce to
a bipartite instance, using only the global-connectivity version of the Reduction Lemma. In fact, our strength-
ening of the Reduction Lemma to preserve local connectivitywas motivated by this; using it allows us once
again assume that we have a bipartite graphG′(T ∪ W,E). Second, we cannot apply the random coloring
algorithm on the bipartite graphG′ directly; we give an example in Appendix A to show that this approach does
not work. One reason for this is that, unlike the Steiner treecase, it is no longer a problem of packing bases of
a submodular function. To overcome this second difficulty weuse a decomposition technique followed by the
random coloring algorithm to prove that there always existΩ(k/(log |T | logm)) element-disjoint forests. We
believe that the bound can be improved toΩ(k/ log |T |).

We also consider the packing problem in restricted classes of graphs, in particular planar graphs. We obtain
a much stronger bound, showing the existence of⌈k/5⌉ − 1 Steiner forests. The (simple) technique extends to
graphs of fixed genus to prove the existence ofΩ(k) Steiner forests where the constant depends mildly on the
genus. We believe that there existΩ(k) Steiner forests in anyH-minor-free graph whereH is fixed; it is shown
in [1] that there existΩ(k) Steinertrees in H-minor-free graphs. Our technique for planar graphs does not
extend directly, but generalizing this technique allows usto make partial progress; by using our general graph
result and some related ideas, in Section 3.3, we prove that in graphs of any fixed treewidth, there existΩ(k)
element-disjoint Steiner Trees if the terminal set isk-element-connected.

3.1 AnO(log |T | logm)-approximation for Packing in General Graphs

In order to pack element-disjoint Steiner forests we borrowthe basic idea from [6] in theedge-connectivity
setting for Eulerian graphs; this idea was later used by Lau [33] in the much more difficult non-Eulerian case.
The idea at a high level is as follows: If all the terminals arek-connected then we can treat the terminals
as forming one group and reduce the problem to that of packingSteiner trees. Otherwise, we can find a cut
(S, V \ S) that separates some groups from others. If the cut is chosen appropriately we may be able to treat
one side, sayS, as containing a single group of terminals and pack Steinertrees in themwithout using the
edges crossing the cut. Then we can shrinkS and find Steiner forests in the reduced graph; unshrinking ofS
is possible since we have many trees onS. In [6, 33] this scheme works to giveΩ(k) edge-disjoint Steiner
forests. However, the approach relies strongly on properties of edge-connectivity as well as the properties of
the packing algorithm for Steiner trees. These do not generalize easily for element-connectivity. Nevertheless,
we show that the basic idea can be applied in a slightly weakerway (resulting in the loss of anO(logm) factor
over the Steiner tree packing factor). We remark that the reduction to a bipartite instance using the Reduction
Lemma plays a critical role. A key definition is the notion of agood separator given below.
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Definition 3.2. Given an graphG(V,E) with terminal setsT1, T2, . . . Tm, such that for alli, κ′(Ti) ≥ k, we
say that a setS of white vertices is agood separatorif (i) |S| ≤ k/2 and (ii) there is a component ofG− S in
which all terminals arek/2 logm-element-connected.

Note that the empty set is a good separator if all terminals arek/2 logm-element-connected.

Lemma 3.3. For any instance of the Steiner Forest Packing problem, there is a polynomial-time algorithm that
finds a good separator.

Proof: LetG(V,E) be an instance of the Steiner Forest packing problem, with terminal setsT1, T2, . . . Tm such
that eachTi is k-element-connected. IfT is k

2 logm -element connected, the empty setS is a good separator.

Otherwise, there is some set of white vertices of size less than k
2 logm that separates some of the terminals

from others. LetS1 be a minimal such set, and consider the two or more componentsof G−S1. Note that each
Ti is entirely contained in a single component, sinceTi is at leastk-element-connected, and|S1| < k. Among
the components ofG − S1 that contain terminals, consider a componentG1 with the fewest sets of terminals;
G1 must have at mostm/2 sets fromT1, . . . Tm. If the set of all terminals inG1 is k

2 logm connected, we stop,

otherwise, find inG1 a set of white verticesS2 with size less than k
2 logm that separates terminals ofG1. Again,

find a componentG2 of G1 − S2 with fewest sets of terminals, and repeat this procedure until we obtain some
subgraphGℓ in which all the terminals are k

2 logm -connected. We can always find such a subgraph, since the
number of sets of terminals is decreasing by a factor of2 or more at each stage, so we find at mostlogm
separating setsSj. Now, we observe that the setS =

⋃ℓ
j=1 Sj is a good separator. It separates the terminals in

Gℓ from the rest ofT , and its size is at mostlogm × k
2 logm = k/2; it follows that each set of terminalsTi is

entirely withinGℓ, or entirely outside it. By construction, all terminals inGℓ are k
2 logm connected. �

We can now prove our main result, that we can always find a packing ofΩ( k
log |T | logm) Steiner forests.

Theorem 3.4. Given a graphG(V,E), with terminal setsT1, T2, . . . Tm, such that for alli, κ′(Ti) ≥ k, there
is a polynomial-time algorithm to packΩ(k/ log |T | logm) element-disjoint Steiner Forests inG.

Proof: The proof is by induction onm. The base case ofm = 1, follows from [9, 3];G contains at least k
6 log |T |

element-disjoint SteinerTrees, and we are done.

We may assumeG is bipartite by using the Reduction Lemma. Find a good separator S, and a component
Gℓ of G−S in which all terminals are k

2 logm -connected. Now, since the terminals inGℓ are k
2 logm -connected,

use the algorithm of [9] to find k
12 logm log |T | element-disjoint Steiner trees containing all the terminals in Gℓ;

none of these trees uses vertices ofS. Number these trees from 1 to k
12 logm log |T | ; let Tj denote thejth tree.

The setS separatesGℓ from the terminals inG−Gℓ. If S is not a minimal such set, discard vertices until it
is. If we deleteGℓ from G, and add a clique between the white vertices inS to form a new graphG′, it is clear
that the element-connectivity between any pair of terminals inG′ is at least the element-connectivity they had in
G. The graphG′ hasm′ ≤ m− 1 groups of terminals; by induction, we can find k

12 log |T | logm < k
12 log |T | logm′

element-disjoint Steiner forests for the terminals inG′. As before, number the forests from 1 to k
12 logm log |T | ;

we useFj to refer to thejth forest. These Steiner Forests may use the newly added edges between the vertices
of S; these edges do not exist inG. However, we claim that the Steiner ForestFj of G′, together with the
Steiner treeTj in Gℓ gives a Steiner Forest ofG. The only way this might not be true is ifFj uses some
edge added between verticesu, v ∈ S. However, every vertex inS is adjacent to a terminal inGℓ, and all the
terminals ofGℓ are in every one of the Steiner trees we generated. Therefore, there is a path fromu to v in Tj.
Hence, deleting the edge betweenu andv fromFj still leaves each component ofFj ∪ Tj connected.

Therefore, for each1 ≤ j ≤ k
12 logm log |T | , the vertices inFj ∪ Tj induce a Steiner Forest forG. �
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3.2 Packing Steiner Trees and Forests in Planar Graphs

We now prove much improved results for restricted classes ofgraphs, in particular planar graphs. IfG is
planar, we show the existence of⌈k/5⌉ − 1 element-disjoint Steiner Forests.1 The intuition and algorithm are
easier to describe for the Steiner tree packing problem and we do this first. We achieve the improved bound by
observing that planarity restricts the use of many white vertices as “branch points” (that is, vertices of degree
≥ 3) in forests. Intuitively, even in the case of packing trees,if there are terminalst1, t2, t3, . . . that must
be in every tree, and white verticesw1, w2, w3 . . . that all have degree 3, it is difficult to avoid aK3,3 minor.
Note, however, that degree2 white vertices behave like edges and do not form an obstruction. We capture this
intuition more precisely by showing that there must be a pairof terminalst1, t2 that are connected byΩ(k)
degree-2 white vertices; we can contract these “parallel edges”, and recurse.

We describe below an algorithm for packing Steiner Trees. Through the rest of the section, we assume
k > 10; otherwise,⌈k/5⌉ − 1 ≤ 1, and we can always find 1 Steiner Tree in a connected graph.

Given an instance of the Steiner Tree packing problem in planar graphs, we construct areduced instance
as follows: Use the Reduction Lemma to delete and contract edges between white vertices to obtain a planar
graph with vertex setT ∪W , such thatW is a stable set. Now, for each vertexw ∈ W of degree 2, connect
the two terminals that are its endpoints directly with an edge, and deletew. (All edges have unit capacity.) We
now have a planarmultigraph, though the only parallel edges are between terminals, as these were the only
edges added while deleting degree-2 vertices inW . Note that this reduction preserves the element-connectivity
of each pair of terminals; further, any set of element-disjoint trees in this reduced instance corresponds to a set
of element-disjoint trees in the original instance. We needthe following technical result:

Theorem 3.5(Borodin, [2]). If G is a planar graph with minimum degree3, it has an edge of weight at most
13, where the weight of an edge is the sum of the degrees of its endpoints.

Lemma 3.6. In a reduced instance of the Planar Steiner Tree Packing problem, ifT is k-element-connected,
there are two terminalst1, t2 with at least⌈k/5⌉ − 1 parallel edges between them.

Proof: We prove this lemma in Appendix A.1; here, we give a proof showing the weaker result that there exist
terminalst1, t2 with ⌈k/10⌉ edges between them. LetG be the planar multigraph of the reduced instance. Since
T is k-element-connected inG, every terminal has degree at leastk in G. Construct a planar graphG′ from G
by keeping only a single copy of each edge. We argue below thatsome terminalt1 ∈ T has degree at most10
in G′; it follows thatG must contain at least⌈k/10⌉ copies of some edge incident tot1, ast1 has degree at least
k in G. These edges must be incident to another terminalt2, completing the proof.

To see that some terminalt1 has degree at most10 in G′, we first assume that no terminal has degree≤ 2,
or we are already done. Now, as every vertex ofW in a reduced instance has degree at least3, we may use
Theorem 3.5; this implies thatG′ has an edgee, such that the sum of the degrees of the endpoints ofe is at most
13. The edgee must be incident to a terminalt1, as the white vertices are a stable set. The other endpoint ofe
has degree at least3, so the degree oft1 is at most10. �

It is now easy to prove by induction that we can pack⌈k/5⌉ − 1 disjoint trees.

Theorem 3.7. Given an instance of the Steiner Tree packing problem on a planar graphG with terminal set
T , if κ′(T ) ≥ k, there is a polynomial-time algorithm to find at least⌈k/5⌉ − 1 element-disjoint Steiner trees
in G. Moreover, in each tree, the white (non-terminal) verticesall have degree2.

Proof: We prove this theorem by induction on|T |; if |T | = 2, there arek disjoint pathsin G from one terminal
to the other, so we are done (including the guarantee of degree 2 for white vertices).

1Note that in the special case of packing Steiner Trees, the paper of Aazamiet al.[1] shows that there are⌊k/2⌋−1 element-disjoint
Steiner Trees.
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Otherwise, apply the Reduction Lemma to construct a reducedinstanceG′, preserving the element-connectivity
of T . Now, from Lemma 3.6, there exist a pair of terminalst1, t2 that have⌈k/5⌉ − 1 parallel edges between
them (Note that the parallel edges betweent1 andt2 may have non-terminals on them in the original graph but
they have degree2.). Contractt1, t2 into a single terminalt, and consider the new instance of the Steiner Tree
packing problem with terminal setT ′ = T ∪ {t} − {t1, t2}. It is easy to see that the element-connectivity of
the terminal set is still at leastk; by induction, we can find⌈k/5⌉ − 1 Steiner trees containing all the terminals
of T ′, with the property that all non-terminals have degree2. Taking these trees together with⌈k/5⌉ − 1 edges
betweent1 andt2 gives⌈k/5⌉ − 1 trees inG′ that span the original terminal setT . �

Packing Steiner Forests in Planar Graphs:The algorithm described above for packing Steiner trees encoun-
ters a technical difficulty when we try to extend it to Steinerforests. Lemma 3.6 can be used at the start to
merge some two terminals. However, as the algorithm proceeds it may get stuck in the following situation: it
merges all terminals from some groupTi into a single terminal. Now this terminal does not require any more
connectivity to other terminals although other groups are not yet merged together. In this case we term this ter-
minal as dead. In the presence of dead terminals Lemma 3.6 no longer applies; we illustrate this with a concrete
example in Appendix A.2. We overcome this difficulty by showing that a dead terminal may be replaced by a
grid of white vertices — the grid is necessary to ensure that the resulting graph is still planar. We can then apply
the Reduction Lemma to remove edges between the newly added white vertices and proceed with the merging
process. See Appendix A.2 for details.

Extensions:Our result for planar graphs can be generalized to graphs of fixed genus; Ivanco [22] generalized
Theorem 3.5 to show that a graphG of genusg has an edge of weight at most2g+13 if 0 ≤ g ≤ 3 and an edge
of weight at most4g+7 otherwise. This allows us to prove that there exist⌈k/c⌉ forests wherec ≤ 4g+8; we
have not attempted to optimize this constantc. Aazamiet al. [1] also give algorithms for packing Steiner Trees
in these graph classes, and graphs excluding a fixed minor. Wethus make the following natural conjecture:

Conjecture 1. LetG = (V,E) be aH-minor-free graph, with terminal setsT1, T2, . . . Tm, such that for alli,
κ′(Ti) ≥ k. There existΩ(k/c) element-disjoint Steiner forests inG, wherec depends only on the size ofH.

We note that Lemma 3.6 fails to hold forH-minor-free graphs, and in fact fails even for bounded treewidth
graphs. Thus, our approach cannot be directly generalized.However, instead of attempting to contract together
just two terminals connected by many parallel edges, we may be able contract together a constant number of
terminals that are “internally” highly connected. Using Theorem 3.4 and other ideas, we prove in the next
section that this approach suffices to pack many trees in graphs with small treewidth. We believe that these
ideas together with the structural characterization ofH-minor-free graphs by Robertson and Seymour [37]
should lead to a positive resolution of Conjecture 1.

3.3 Packing Trees in Graphs of Bounded Treewidth

LetG(V,E) be a graph of treewidth≤ r− 1, with terminal setT ⊆ V such thatκ′(T ) ≥ k. In this section, we
give an algorithm to find, for any fixedr, Ω(k) element-disjoint Steiner Trees inG. Our approach is similar to
that for packing Steiner Trees in planar graphs, where we argued in Lemma 3.6 that there exist two terminals
t1, t2 with Ω(k) parallel edges between them, so we could contract them together and recurse on a smaller
instance. In graphs of bounded treewidth, this is no longer the case; see the end of Appendix A for an example
in which no pair of terminals is connected by many parallel edges. However, we argue that there exists a small
set of terminalsT ′ ⊂ T that is highly “internally connected”, so we can findΩ(k) disjoint trees connecting all
terminals inT ′, without affecting the connectivity of terminals inT −T ′. We can then contract togetherT ′ and
the white vertices used in these trees to form a single new terminal t, and again recurse on a smaller instance.
The following lemma captures this intuition:
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Lemma 3.8. If G(V,E) is a bipartite graph of treewidth at mostr − 1, with terminal setT ⊂ V such that
T ≥ 2r, κ′(T ) ≥ k, there exists a setS ⊆ V − T such that there is a componentG′ of G − S containing
k/12r2 log(3r) element-disjoint Steiner trees for the (at least 2) terminals in G′. Moreover, these trees inG′

can be found in polynomial time.

Given this lemma, we prove below that for any fixedr, we can packΩ(k) element-disjoint trees in graphs
of treewidth at mostr − 1. The proof combines ideas of Theorem 3.7 and Theorem 3.4.

Theorem 3.9. Let G = (V,E) be a graph of treewidth at mostr − 1. For any terminal setT ⊆ V with
κ′G(T ) ≥ k, there existΩ(k/12r2 log(3r)) element-disjoint Steiner trees onT .

Proof: As for Theorem 3.7, we prove this theorem by induction. LetG be a graph of treewidth at mostr − 1,
with terminal setT . If |T | ≤ 2r, we havek/6 log |T | ≥ k/6r element-disjoint trees from the tree-packing
algorithm of Cheriyan and Salavatipour [9] inarbitrary graphs.

Otherwise, we use the Reduction Lemma to ensure thatG is bipartite. LetS be a set of white vertices
guaranteed to exist from Lemma 3.8. IfS is not a minimal such set, discard vertices until it is. Now, find
k/12r2 log(3r) element-disjoint trees containing all terminals in some componentG′ of G− S; note that each
vertex ofS is incident to some terminal inG′, and hence to every tree. (This follows from the minimality of S
and the fact thatG is bipartite.) ModifyG by contracting all ofG′ to a single terminalt, and make it incident
to every vertex ofS. It is easy to see that all terminals in the new graph arek-element-connected; therefore,
we now have an instance of the Steiner Tree packing problem ona graph with fewer terminals. The new graph
has treewidth at mostr − 1, so by induction, we havek/12r2 log(3r) element-disjoint trees for the terminals
in this new graph; taking these trees together with thek/12r2 log(3r) trees ofG′ givesk/12r2 log(3r) trees of
the original graphG. �

We devote the rest of this section to proving the crucial Lemma 3.8. Subsequently, we may assume, w.l.o.g.
(after using the Reduction Lemma) that the graphG is bipartite; we may further assume thatk ≥ 12r2 log(3r)
and|T | ≥ 2r. First, observe thatG has a small cutset that separates a few terminals from the rest.

Proposition 3.10. G has a cutsetC of size at mostr such that some component ofG − C contains betweenr
and2r terminals.

Proof Sketch: Fix a tree-decompositionT of G; every non-leaf node ofT corresponds to a cutset, and each
node ofT contains at mostr vertices ofG. Start at a leaf ofT , and walk upwards until reaching a nodev such
that the subtree ofT rooted at some child ofv contains betweenr and2r terminals. (This is always possible
since walking up one step only gives at mostr more terminals.) �

We find the setS and component ofG − S in which we contract together a small number of terminals by
focusing on the cutsetC and component ofG − C that are guaranteed to exist from the previous proposition.
We introduce some notation before proceeding with the proof:

1. LetC be a cutset of size at mostr, and letV ′ be the vertices of a component ofG−C containing between
r and2r terminals.

2. Since terminals inV ′ arek-connected to the terminals in the rest of the graph, and|C| ≤ r ≪ k, C
contains at least one black vertex. LetC ′ be the set of black vertices inC.

3. LetG′ = G[V ′ ∪ C ′] be the graph induced byV ′ andC ′.

We omit a proof of the following straightforward proposition; the second part of the statement follows from
the fact that each terminal inV ′ is k-connected to terminals outsideG′, and these paths to terminals outsideG′

must go through the cutsetC ′ of size at mostr.
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Proposition 3.11. The graphG′ contains betweenr and3r terminals (asC ′ may contain up tor terminals),
and each terminal inV ′ is at leastk/r-connected to some terminal inC ′.

LetT ′ be the set of terminals inG′. If κ′G′(T ′) ≥ k/2r2, we can easily find a set of white vertices satisfying
Lemma 3.8: LetS be the set of vertices ofG that are adjacent (inG) to vertices ofG′. It is obvious thatS
separatesG′ from the rest ofG, and all terminals inT ′ are highly connected; from the tree packing result of [9],
we can find the desired disjoint trees inG′. Finally, note that all vertices ofS are white, as the only neighbors
of G′ are either white vertices of the cutsetC or the neighbors of the black vertices inC, all of which are white
asG is bipartite.

However, it may not be the case that all terminals ofT ′ are highly connected inG′. In this event, we use the
following simple algorithm (very similar to that in the proof of Lemma 3.3) to find a highly-connected subset
of T ′: Begin by finding a setS1 of at mostk/2r2 white vertices inG′ that separates terminals ofT ′. Among
the components ofG′ − S1, pick a componentG1 with at least one terminal ofV ′. If all terminals ofG1 are
k/2r2 connected, stop; otherwise, find inG1 a setS2 of at mostk/2r2 white vertices that separates terminals
of G1, pick a componentG2 of G1 − S2 that contains at least one terminal ofV ′, and proceed in this manner
until finding a componentGℓ in which all terminals arek/2r2 connected.

Claim 3.12. We perform at mostr iterations of this procedure before we stop, having found some subgraphGℓ

in which all the (at least 2) terminals arek/2r2 connected.

Proof: At least one terminal ofC ′ must be lost every time we find such a setSi; if this is true, the claim
follows. To see that this is true, observe that when we find a cutsetSi+1 in Gi, there is a component that we do
not pick that contains a terminalt. If this terminalt is inC ′, we are done; otherwise, it must be inV ′. But from
Proposition 3.11 all terminals inV ′ arek/r connected to some terminal inC ′, and so some terminal ofC ′ must
be in the same component ast. When we stop with the subgraphGℓ, it contains at least one terminalt′ ∈ V ′,
and at least one terminal ofC ′ to whicht′ is highly connected; therefore,Gℓ contains at least 2 terminals.�

All terminals in the subgraphGℓ arek/2r2-connected, and there are at most3r of them, so we can find
k/12r2 log(3r) disjoint treesin Gℓ that connect them, using the tree-packing result of [9]. LetS be the set of
vertices ofG that are adjacent (inG) to vertices ofGℓ; obviously,S separatesGℓ from the rest ofG, and to
satisfy Lemma 3.8, it merely remains to verify thatS only contains white vertices. Every terminal inG′ −Gℓ

was separated fromGℓ by white vertices in someSi, and terminals inG − G′ can only be incident to white
vertices of the cutsetC, which are not inG′, let aloneGℓ. This completes the proof of Lemma 3.8.

4 Single-Sink Vertex-Connectivity

Recall that in the SS-k-CONNECTIVITY problem, one is given an undirected graphG = (V,E) with edge
costs, a specified sink/root vertexr, and a subset of terminalsT ⊆ V , with |T | = h. The goal is to find a
minimum cost subgraphH that containsk vertex-disjoint paths from each terminalt ∈ T to the root. In this
section we give a very simple proof of the main technical result in [12] using the Reduction Lemma. We lead
up to the technical lemma via a description of the (simple) algorithm for SS-k-CONNECTIVITY.

The basic algorithmic idea comes from [4]; this is the idea ofusingaugmentation. Let T ′ ⊆ T be a subset
of terminals and letH ′ be a subgraph ofG that is feasible forT ′. For a terminalt ∈ T \ T ′, a set ofk paths
p1, . . . , pk is said to be an augmentation fort with respect toT ′ if (i) pi is a path fromt to some vertex in
T ′ ∪ {r} (ii) the paths are internally vertex disjoint and (iii) a terminal t′ ∈ T ′ is the endpoint of at most one of
thek paths. Note that the root is allowed to be the endpoint of morethan one path. The following proposition
is easy to prove via a simple min-cut argument.

Proposition 4.1. If p1, p2, . . . , pk is an augmentation fort with respect toT ′ andH ′ is a feasible solution for
theSS-k-CONNECTIVITY instance with terminal setT ′, thenH ∪ (

⋃

i pi) is a feasible solution forT ′ ∪ {t}.
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Given T ′ and t, the augmentation cost oft with respect toT ′ is the cost of a min-cost set of paths that
augmentt w.r.t. toT ′. We can find the augmentation cost for a terminalt by solving a simple min-cost flow
problem. The key theorem in [12] is the following.

Theorem 4.2(Vertex-Connectivity, [12]). If OPTdenotes the cost of an optimal solution toSS-k-CONNECTIVITY,
andAugCost(t) the cost of an augmentation for terminalt w.r.t. T − {t},

∑

tAugCost(t) ≤ 8k · OPT.

We now briefly describe the algorithm of [5] for SS-k-CONNECTIVITY; a variant is used in [4, 12].

Permute the terminals randomly; lettj denote thejth terminal in the permutation and letTj = {t1, . . . , tj}.
SubgraphH ← ∅
For i = 1 to |T |.

Add toH a min-cost augmentation ofti with respect toTi−1.
Output the subgraphH.

Note that the above is a greedy algorithm except for the initial randomization. Interestingly, as noted in [5],
the randomization is key; even fork = 2 there exist permutations that yield a solution of costΩ(|T | · OPT).
Using Theorem 4.2 it is easy to prove that the above algorithmis a randomizedO(k log |T |)-approximation
for SS-k-CONNECTIVITY: simply observe that theexpectedaugmentation cost for the last terminal in the
permutation is at most8kOPT/|T |; a straightforward inductive argument then completes the proof.

The main ingredient in the proof of Theorem 4.2, as shown by [12], is the following weaker statement
involving paths that areelement-disjoint, as opposed to vertex-disjoint.

Lemma 4.3(Element-Connectivity, [12]). Given an instance ofSS-k-CONNECTIVITY, let ElemCost(t) de-
note the minimum cost of a set ofk internally vertex-disjoint paths from any terminalt to T ∪ {r} − t. Then,
∑

t∈T ElemCost(t) ≤ 2OPT, whereOPT is the cost of an optimal solution to this instance.

It is shown in [12] that one can prove Theorem 4.2 by repeatedly invoking Lemma 4.3 to obtain a large
collection of paths from eacht ∈ T to other terminals, and applying a flow-scaling argument. The heart of
the proof of the crucial Lemma 4.3, is a structural theorem of[12] on spiders: A spider is a tree containing at
most a single vertex of degree greater than 2. If such a vertexexists, it is referred to as theheadof the spider,
and each leaf is referred to as afoot. Thus, a spider may be viewed as a collection of disjoint paths (called
legs) from its feet to its head. If the spider has no vertex of degree 3 or more, any vertex of the spider may be
considered its head. Vertices that are not the head or feet are called intermediate vertices of the spider. The
Reduction Lemma allows us to give an extremely easy inductive proof of the Spider Decomposition Theorem
below,2 greatly simplifying the proof of [12].

Theorem 4.4([12]). LetG(V,E) be a graph with a setB ⊆ V of black vertices such that every pair of black
vertices isk-element connected. There is a subgraphH of G whose edges can be partitioned into spiders such
that:

1. For each spider, its feet are distinct black vertices, andall intermediate vertices are white.

2. Each black vertex is a foot of exactlyk spiders, and each white vertex appears in at most one spider.

3. If a white vertex is the head of a spider, the spider has at least two feet.

Before giving the formal short proof we remark that if the graph is bipartite then the collection of spiders
is trivial to see: they are simply the edges between the blackvertices and the stars rooted at each white vertex!

2In the decomposition theorem of [12], the spiders satisfy a certain additional technical condition; the proof of Theorem 4.2 in [12]
relies on this condition. We give a modified proof of Theorem 4.2 that does not require the condition.
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Thus the Reduction Lemma effectively allows us to reduce theproblem to a trivial case.

Proof: We prove this theorem by induction on the number of edges between white vertices inG. As the base
case, we have a graphG with no edges between white vertices; therefore,G is bipartite. (Recall that there are
no edges between black vertices.) Each pair of black vertices isk-element connected, and hence every black
vertex has at leastk white neighbors. Let everyb ∈ B markk of its (white) neighbors arbitrarily. Every white
vertexw that is marked at least twice becomes the head of a spider, thefeet of which are the black vertices that
markedw. For each white vertexw marked only once, letb be its neighbor that marked it, andb′ be another
neighbor. We letb−w− b′ be a spider with footb and headb′. It is easy to see that the spiders are disjoint, and
that they satisfy all the other desired conditions.

For the inductive step, consider a graphG with an edgepq between white vertices. If all black vertices are
k-element connected inG1 = G − pq, then we can apply induction, and find the desired subgraph ofG1 and
hence ofG. Otherwise, by Theorem 1, we can find the desired set of spiders inG2 = G/pq. If the new vertex
v = pq is not in any spider, this set of spiders exists inG, and we are done. Otherwise, letS be the spider
containingv. If v is not the head ofS, let x, y be its neighbors inS. Eitherx andy are both adjacent top, or
both adjacent toq, or (w.l.o.g.)x is adjacent top andy to q. Therefore, we can replace the pathx− v − y in S
with one ofx − p − y, x − q − y, or x − p − q − y. If v is the head ofS, we know that it has at least 2 feet.
If at least 2 legs ofS are incident to each ofp andq, we can create two new spidersSp andSq, with headsp
andq respectively;Sp contains the legs ofS incident top, andSq the legs incident toq. If all the legs ofS are
incident top, we letp be the head of the spider inG; the case in which all legs are incident toq is symmetric. If
neither of these cases holds, it follows that (w.l.o.g.) exactly one legℓ of S is incident top, with the remaining
legs being incident toq. We letq be the head of the new spider, and addp to the legℓ. �

The authors of [12] showed that, once we have the Spider Decomposition Theorem, it is very easy to prove
Lemma 4.3.

Proof of Lemma 4.3:([12]) In an optimal solutionH to an instance of SS-k-CONNECTIVITY, every terminal
is k-vertex-connected to the root. Let the terminals be black vertices, and non-terminals be white; it follows
that all the terminals arek-element connected to the root inH, and hence to each other. Therefore, we can find
a subgraph ofH of total cost at most OPT which can be partitioned into spiders as in Theorem 4.4. For each
spiderS and every terminalt that is a foot ofS, we find a path entirely contained withinS from t to another
terminal. Each edge ofS is in at most two such paths; since the spiders are disjoint and each terminal is a foot
of k spiders, we obtain the desired result.

If the head ofS is a terminal, the path for each foot is simply the leg ofS from that foot to the head. Each
edge ofS is in a single path. If the head ofS is a white vertex, it has at least two feet. Fix an arbitrary ordering
of the feet ofS; the path for footi follows legi from the foot to the head, and then legi + 1 from the head to
foot i+ 1. (The path for the last foot follows the last leg, and then leg1 from the head to the foot.) It is easy to
see that each edge ofS is in exactly two paths; this completes the proof. �

Finally, we give a proof of Theorem 4.2 that relies only on thestatement of Lemma 4.3. Our proof is
a technical modification of the one in [12] and as previously remarked, does not need rely on the additional
condition on the spiders that [12] guarantees. Our proof also gives a slightly stronger bound on

∑

tAugCost(t)
(8k · OPT instead of(18k + 3) · OPT).

Proof of Theorem 4.2: We give an algorithm to find an augmentation for each terminalthat proceeds in4k2

iterations: In each iteration, for every terminalt, it finds a set ofk internally vertex-disjoint paths fromt to
other terminals or the root. LetPi(t) denote the set of paths found for terminalt in iterationi. These paths have
the following properties:

1. For each terminalt, every other terminal is an end-point of fewer than4k2 + 2k paths in
⋃

i Pi(t).

2. In each iterationi,
∑

t Cost(Pi(t)) ≤ 4kOPT.
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Given these two properties, we can prove the theorem as follows: Separately for each terminalt, send 1 unit
of flow along each of the paths in

⋃

i Pi(t); we thus have a flow of4k2 · k units fromt to other terminals. Scale
this flow down by4k2 · (k + 1

2)/k, to obtain a flow of k2

k+1/2 > k − 1/2 from t to other terminals. After the
scaling step, the net flow through any vertex (terminal or non-terminal) is at most 1, since the maximum flow
through a vertex before scaling was4k2+2k. LetFlowCost(t) denote the cost of this scaled flow for terminal
t; if we now scale the flowup by a factor of 2, we obtain a flow of value greater than2k − 1 from t to other
terminals, in which the flow through any vertex besidest is at most 2. Therefore, by the integrality of min-cost
flow, we can find an integral flow of2k− 1 units fromt to other terminals, of total cost at most2FlowCost(t).
Let Et be the set of edges used in this integral flow; it follows thatcost(Et) ≤ 2FlowCost(t). It is also easy
to see thatEt containsk disjoint paths fromt to k distinct terminals, by observing that a hypothetical cutset of
sizek − 1 contradicts the existence of the flow of value2k − 1 in which the flow through a vertex is at most 2.

Therefore, we have foundk disjoint paths fromt to k other terminals, of total cost2FlowCost(t). To
bound the cost over all terminals, we note that from the second property above, we have

∑

t FlowCost(t) ≤

4k2 · 4kOPT/
(

4k2 k+1/2
k

)

, which is less than4kOPT. It follows that the total cost of the set of paths is at

most2
∑

t FlowCost(t) < 8kOPT.

It remains only to show that we can find a set of paths for each terminal in every iteration that satisfies the
two desired properties. The proof below uses induction on the number of iterationsi to prove property 1: After
i iterations, for each terminalt, every other terminal is an end-point of fewer thani+ 2k paths in

⋃

i Pi(t).

In iteration i, for each terminalt, let Blocked(t) denote the set of terminals inT − t that have been the
endpoints of at least(i− 1) + k paths in

⋃i−1
j=1Pj(t). (Note that the rootr is never in anyBlocked(t).) Since

the total number of paths that have been found so far is(i− 1)k, |Blocked(t)| < k. Construct a directed graph
D on the set of terminals, with edges from each terminalt to the terminals inBlocked(t). Since the out-degree
of each vertex inD is at mostk − 1, there is a vertex of in-degree at mostk − 1; therefore, the digraphD is
2k − 2 degenerate and so can be colored using2k − 1 colors. LetC1, C2, . . . C2k−1 denote the color classes
in a proper coloring ofD; if t1, t2 ∈ Cj , then in iterationi, t1 /∈ Blocked(t2) and t2 /∈ Blocked(t1). For
each color classCj in turn, consider the terminals ofCj as black, and the non-terminals and terminals of other
classes as white. There is a graph of cost OPT in which every terminal ofCj is k-vertex-connected to the root,
soCj is k-element-connected to the root in this graph even if terminals not inCj are regarded as white vertices.
From Lemma 4.3, for everyCj, we can find a set of internally disjoint paths from eacht ∈ Cj toCj ∪{r}−{t}
of total cost at most2OPT. If these paths contain other terminals inT −Cj as intermediate vertices, trim them
at the first terminal they intersect. It follows that

∑

j

∑

t∈Cj
Cost(Pi(t)) < 4kOPT, establishing property 2

above.

To conclude, we show that for each terminalt, after iterationi, every other terminal is an end-point of fewer
thani + 2k paths in

⋃i
j=1Pj(t). Let C be the color class containingt; if t′ ∈ Blocked(t), at most one new

path inPi(t) ends int′, as the paths fort are disjoint except at terminals inC, andt′ /∈ C. By induction, before
this iterationt′ was the endpoint of fewer than(i − 1) + 2k paths fort, and so after this iteration, it cannot be
the endpoint ofi + 2k paths fort. If t′ /∈ Blocked(t), it was the endpoint of at most(i − 1) + k − 1 paths
for t before this iteration; even if all thek paths fort in this iteration ended att′, it is the endpoint of at most
i+ 2k − 2 paths fort after the iteration. This gives us the desired property 1, completing the proof. �

Theorem 4.2 and Lemma 4.3 have applications to more general problems including the node-weighted
version of SS-k-CONNECTIVITY [12] and rent-or-buy and buy-at-bulk network design [5]. Weomit discussion
of these applications in this version of the paper.
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5 Conclusions

Having generalized the reduction step of [21] to handle local element connectivity, we demonstrated applica-
tions of this stronger Reduction Lemma to packing element (and edge) disjoint Steiner trees and forests, and
also to SS-k-CONNECTIVITY. We believe that the Reduction Lemma will find other applications in the future.
We close with several open questions:

• We believe that our bound on the number of element-disjoint Steiner forests in a general graph can be
improved fromΩ(k/(log |T | logm)) to Ω(k/ log |T |).

• Prove or disprove Conjecture 1, on packing disjoint SteinerForests in graphs excluding a fixed minor.

• In a natural generalization of the Steiner Forest packing problem, each non-terminal/white vertex has a
capacity, and the goal is to pack forests subject to these capacity constraints. In general graphs, it is
easy to reduce this problem to the uncapacitated/unit-capacity version (for example, by replacing a white
vertex of capacityc by a clique of sizec), but this is not necessarily the case for restricted classes of
graphs. In particular, it would be interesting to packΩ(k) forests for the capacitated planar Steiner Forest
problem.

• The known hardness of approximation factor for SS-k-CONNECTIVITY isΩ(log n) whenk is a polyno-
mial function ofn, the number of vertices [28]. Can the current ratio ofO(k log |T |) be improved?
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asking about planar packing of Steiner Trees which inspiredour work on that problem. We also thank Oleg
Borodin, Dan Cranston, Alexandr Kostochka and Doug West forpointers to structural results on planar graphs.
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A Packing Element-Disjoint Trees and Forests

A Counterexample to the Random Coloring algorithm for packing Steiner Forests.

We first define a graphHk, which we use subsequently.Hk has two black verticesx andy, andk white vertices,
each incident to bothx andy. (That is, there arek disjoint paths of white vertices fromx to y.) Given a graph
G, we define the operation of insertingHk along an edgepq ∈ E(G) as follows: Add the vertices and edges of
Hk to G, delete the edgepq, and add edges fromp to x andq to y. (If we collapsedHk to a single vertex, we
would have subdivided the edgepq.) Figure 2 below showsH4 and the effect of insertingH4 along an edge.

We now describe the construction of our counterexample. We begin with 2 black verticess andt, andk
vertex-disjoint paths between them, each of lengthk + 1; there are no edges besides the ones just described.
Each of thek2 vertices besidess andt is white. It is obvious thats andt arek-element-connected in this graph.
Now, to form our final graphGk, insert a copy ofHk along each of thek(k − 1) edges between a pair of white
vertices. Fig. 3 below shows the construction ofG3.

The following claims are immediate:
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Figure 2: On the left, the graphH4. On the right, inserting it along a single edgepq.
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Figure 3: The construction ofG3.

• The verticess andt arek-element-connected inGk.

• For every copy ofHk, the verticesx andy arek-white connected inGk.

• The graphGk is bipartite, with the white vertices and the black verticesforming the two parts.

We useGk as an instance of the Steiner-forest packing problem;s andt form one group of terminals, and
for each copy ofHk, the verticesx andy of that copy form a group. From our claims above, each group is
k-element-connected.

If we use the algorithm of Cheriyan and Salavatipour, there are no edges between white vertices to be
deleted or contracted, so we move directly to the coloring phase. If colors are assigned to the white vertices
randomly, it is easy to see that no color class is likely to connect ups andt. The probability that a white vertex
is given colori is c log |T |

k , for some constantc. The verticess and t can be connected iff the same color is
assigned to all the white vertices on one of thek paths froms to t in the graph formed fromGk by contracting
eachHk to a single vertex. The probability thateveryvertex on such a path will receive the same color is
(

c log |T |
k

)k
; using the union bound over thek paths gives us the desired result.

A.1 Packing Trees in Planar Graphs

Lemma A.1. LetG(T ∪W,E) be a planar graph with minimum degree 3, in whichW is a stable set. There
exists a vertext ∈ T of degree at most10, with at most5 neighbors inT .

Proof: Our proof uses thedischargingtechnique. Assume, for the sake of contradiction, that every vertex
t ∈ T has degree at least 11, or has at least 6 neighbors inT . By multiplying Euler’s formula by 4, we observe
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that for a planar graphG(V,E) with face setF , (2|E| − 4|V |) + (2|E| − 4|F |) = −8. We rewrite this as
∑

v∈V (d(v)− 4) +
∑

f∈F (l(f)− 4) = −8, whered(v) andl(f) denote the degree of vertexv and length of
facef respectively.

Now, in our given graphG, assignd(v)− 4 units ofchargeto each vertexv ∈ T ∪W , and assignl(f)− 4
units of charge to each facef : Note that the net charge on the graph is negative. (It is equal to−8.) We describe
rules for redistributing the charge through the graph such that after redistribution, if every vertext ∈ T has
degree at least 11 or has at least 6 neighbors inT , the charge at each vertex and face will be non-negative. But
no charge is added or removed (it is merely rearranged), and so we obtain a contradiction.

We use the following rules for distributing charge:

1. Every terminalt ∈ T distributes1/3 unit of charge to each of its neighbors inW .

2. Every terminalt ∈ T distributes1/2 unit of charge to each triangular facef it is incident to, unless the
face contains 3 terminals. In this case, it distributes1/3 unit of charge to the face.

We now observe that every vertex ofW and every face has non-negative charge. Each vertexu ∈ W has
degree at least3 (the graph has minimum degree3), so its initial charge was at least−1. It did not give up
any charge, and rule 1 implies that it received1/3 from each of its (at least3) neighbors, all of which are in
T . Therefore,u has non-negative charge after redistribution. If a facef has length4 or more, it already had
non-negative charge, and it did not give up any. Iff is a triangle, it starts with charge−1. It is incident to at
least2 terminals, sinceW is a stable set; we argue that it gains1 unit of charge, to end with charge0. From
rule 2, if f is incident to 2 terminals, it gains1/2 unit from each of them, and if it is adjacent to3 terminals, it
gains1/3 unit from each of them.

It remains only to argue that each terminalt ∈ T has non-negative charge after redistribution. For ease
of analysis, we describe a slightly modified version of the discharging in which each terminal loses at least as
much charge as under the original rules, and show that each terminal has non-negative charge under the new
discharging rules, listed below:

1. Every terminalt gives1/3 unit of charge toeveryneighbor.

2. Every terminalt ∈ T gives1/3 unit of charge to each adjacent triangle.

3. Every terminalt gets back1/3 unit of charge from each facef such that botht’s neighbors onf are
black.

We first prove that every terminalt loses at least as much charge as under the original rules; seealso Fig. 4.
The terminalt is now giving1/3 unit of charge to all its black neighbors, besides giving this charge to its
white neighbors. It is giving less charge (1/3 instead of1/2) to some triangular neighbors, but every triangle is
incident to a black vertext′ besidest; this neighbor oft received an extra1/3 unit of charge fromt, and it can
give 1/6 = 1/2 − 1/3 to each face incident to the edget − t′. That is, the extra charge of1/3 given byt to
t′ is enough to compensate for the fact thatt may give1/6 units less charge to the two faces incident tot− t′.
Finally, note that if botht’s neighbors on some facef are black, the original rules requiret to give only1/3
unit to f , which it also does under the new rules. However, it has given1/3 unit of charge to these two black
neighbors, and they do not need to use this to compensate fort giving too little charge tof ; therefore, they may
each return1/6 unit of charge tot.

We now argue that every terminal has non-negative charge under the new rules. Lett ∈ T have degreed;
we consider three cases:
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(a): Old Rules.
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(c): New Rules.
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(d): Old Rules.
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(e): Equivalence of the rules

1/3 1/3

1/3 1/3

1/3 1/3

(f): New Rules.

Figure 4: Terminals lose at least as much charge under the newrules.
Part (a) shows the charge given away by a terminal under the original rules, while part (c) shows the charge given
away under the new rules; the triangles now receive less charge. Part (b) shows that the extra 1/3 unit of charge
given to the black neighbor under the new rules can be split equally among the two triangles, which has the same
effect as giving 1/2 unit to the triangles. Similarly, part (d) shows the charge given away by a terminal under the
original rules, while part (f) shows the charge under the newrule 3: The central triangular face receives 1/3 unit
of charge, but also returns 1/3 charge to the terminal as bothits neighbors on this face are black. Part (e) shows
that the extra 1/3 unit of charge given to each black neighborunder the new rules can be split among the trian-
gles, so the effect is the same as giving 1/3 unit of charge to the central face, and 1/2 to each of the other faces.

1. If d ≥ 12, t gives away1/3 to each of itsd neighbors andd incident faces, so the total charge it gives
away is2d/3. (It may also receive some charge, but we ignore this.) Therefore, the net charge ont is
(d− 4)− 2d/3 = (d/3) − 4; asd ≥ 12, this cannot be negative.

2. If d = 11, we count the number of triangles incident tot. If there are 10 or fewer,t gives away1/3 unit
of charge to each of its 11 neighbors, and at most10/3 to its adjacent triangles, so the net charge ont
is at least(11 − 4) − 11/3 − 10/3 = 0. If t is incident to 11 triangles, it must be adjacent to at least 6
black vertices, as each triangle incident tot must be adjacent to a black neighbor oft, and no more than
2 triangles incident tot can share a neighbor oft. Sincet has degree 11 and at least 6 black neighbors,
some pair of black neighbors oft are on a common face, andt must receive1/3 unit of charge from this
face. It follows that the charge ont is at least(11− 4)− 11/3 − 11/3 + 1/3 = 0.

3. If d ≤ 10, t has at least 6 black neighbors by hypothesis. It has at mostd − 6 white neighbors, so there
are at least6 − (d − 6) = 12 − d facesf such that botht’s neighbors onf are black. (Delete the white
neighbors; there are at least6 faces incident tot on which both its neighbors are black. When each white
vertex is added back, it can only decrease the number of such faces by 1.) The terminalt gives away
1/3 unit of charge to each of itsd neighbors and at mostd incident triangles, and receives1/3 unit of
charge from each face on which both its neighbors are black. Therefore, the net charge ont is at least
(d− 4)− 2d/3 + (12 − d)/3 = 0. �

Proof of Lemma 3.6:Our argument is very similar to that of the proof in Section 3.2 that there are two terminals
with at least⌈k/10⌉ edges between them, except that here we use Lemma A.1 insteadof Theorem 3.5.

LetG be the planar multigraph of the reduced instance; every terminal has degree at leastk in G. Construct
a planar graphG′ from G by keeping a single copy of each edge; from Lemma A.1 above, some terminal
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t has degree at most 10, and at most 5 black neighbors. Letw denote the number of white neighbors oft,
andb the number of black neighbors. Since each white vertex is incident to only a single copy of each edge
in G, there must be at least⌈(k − w)/b⌉ copies inG of some edge betweent and a black neighbor. But
b ≤ 5 and b + w ≤ 10; it is easy to verify sincek ≥ 10, the smallest possible value of⌈(k − w)/b⌉ is
⌈(k − 5)/5⌉ = ⌈k/5⌉ − 1. �

A.2 An Algorithm for Packing Steiner Forests in Planar and Bounded-genus Graphs

For the Planar Steiner Forest Packing problem, we use an algorithm very similar to that for packing Steiner Trees
in Section 3.2. Now, as input, we are given setsT1, . . . Tm of terminals that are each internallyk-connected, but
someTi andTj may be poorly connected. Precisely as before, as long as eachTi contains at least 2 terminals,
Lemma 3.6 is true, so we can contract some pair of terminalst1, t2 that have⌈k/5⌉ − 1 parallel edges between
them. Note that ift1, t2 are in the sameTi, after contraction, we have an instance in whichTi contains fewer
terminals, and we can apply induction. Ift1, t2 are in different setsTi, Tj , then after contracting, all terminals
in Ti andTj are pairwisek-connected, so we can merge these two groups into a single set.

In proving the crucial Lemma 3.6, we argued that in the multigraph G of the reduced instance, every
terminal has degree at leastk (since it isk-element-connected to other terminals), and in the graphG′ in which
we keep only a single copy of each edge, some terminal has degree at most 10; therefore, there are⌈k/10⌉
copies of some edge. However, in the Steiner Forest problem,someTi may contain only a single terminalt
(after several contraction steps). The terminalt may be poorly connected to the remaining terminals; therefore,
it may have degree less thank in the multigraphG. If t is the unique low-degree terminal inG′, we may not
be able to find a pair of terminals with a large number of edges between them. As a concrete example, consider
the graphGk defined at the beginning of this appendix. (See also Fig. 3, and note thatGk is planar.) We have
one terminal setT1 = {s, t}, and other setsTi containing the two terminals of each copy ofHk. After several
contraction steps, each copy ofHk may have been contracted together to form a single terminal;each such
terminal is only 2-connected to the rest of the graph. In the reduced instance, there is only a single copy of each
edge, and Lemma 3.6 does not hold.

We solve this problem by eliminating a setTi when it has only a single terminal; at this point, we can apply
induction and proceed. We formalize this intuition in the following lemma:

Lemma A.2. LetG(V,E) with a givenT ⊆ V be a planar graph, andt ∈ T be an arbitrary terminal of degree
d. LetG′ be the graph constructed fromG by deletingt, and inserting ad× d grid of white vertices, with the
edges incident tot in G made incident to distinct vertices on one side of the new gridin G′. Then:

1. G′ is planar.

2. For every pairu, v of terminals inG′, κ′G′(u, v) = κ′G(u, v).

3. Any set of element-disjoint subgraphs ofG′ corresponds to a set of element-disjoint subgraphs ofG.

Proof Sketch: See Figure 5 showing this operation; it is easy to observe that given a planar embedding of
G, one can construct a planar embedding ofG′. It is also clear that a set of element-disjoint subgraphs inG′

correspond to such a set inG; every subgraph that uses a vertex of the grid can contain theterminalt.

It remains only to argue that the element-connectivity of every other pair of terminals is preserved. Letu, v
be an arbitrary pair of terminals; we show that their element-connectivity inG′ is at least their connectivity
κ′(u, v) in G. Fix a set ofκ′(u, v) paths inG from u to v; let P be the paths that use the terminalt, and
let ℓ = |P|. We locally modify theseℓ paths inP by routing them through the grid, so we obtainκ′(u, v)
element-disjoint paths inG′.

Let Pu denote the set of prefixes fromu to t of theℓ paths inP, and letPv denote the suffixes fromt to v
of these paths. LetH denote thed× d grid that replacest in G′; we useP ′

u andP ′
v to denote the corresponding
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Figure 5: Replacing a terminal by a grid of white vertices preserves planarity and element-connectivity.

paths inG′ from u to vertices ofH, and from vertices inH to v respectively. LetI andO denote the vertices
of H incident to paths inP ′

u andP ′
v. It is not difficult to see that there are a set of disjoint paths in the gridH

connecting theℓ distinct vertices inI to those inO; using the paths ofP ′
u, together with the paths throughH

and the paths ofP ′
v gives us a set of disjoint paths inG′ from u to v. �

A Counterexample to the existence of 2 terminals withΩ(k) “Parallel edges” between them: Recall that
in the case of planar graphs (or graphs of bounded genus), we argued that there must be two terminalst1, t2
with Ω(k) “parallel edges” between them. (That is, there areΩ(k) degree-2 white vertices adjacent tot1 and
t2.) This is not necessarily the case even in graphs of treewidth 3: The graphK3,k, the complete bipartite graph
with 3 vertices on one side andk on the other, has treewidth 3. If the three vertices on one side are the terminal
setT and thek vertices of the other side are non-terminals, it is easy to see thatκ′(T ) = k, but every white
vertex has degree 3.

In this example, there are only 3 terminals, so the tree-packing algorithm of Cheriyan and Salavatipour [9]
would allow us to findΩ(k/ log |T |) = Ω(k) trees connecting them. Adding more terminals incident to all the
white vertices would raise the treewidth, so this example does not immediately give us a low-treewidth graph
with a large terminal set such that there are few parallel edges between any pair of terminals. However, we can
easily extend the example by defining a graphGm as follows: LetT1, T2, . . . Tm be sets of 2 terminals each,
let W1,W2, . . . Wm−1 each be sets ofk white vertices, and let all the vertices in eachWi be adjacent to both
terminals inTi and both terminals inTi+1. (See Fig. 6 below.) The graphGm has2m terminals,T =

⋃

i Ti

is k-element-connected, and it is easy to verify thatGm has treewidth 4. However, every white vertex has
degree 4, so there are no “parallel edges” between terminals. (One can modify this example to construct a
counterexample graphGm with treewidth 3 by removing one terminal from each alternateTi.)

T1 W1 T2 W2 T3 W3 T4 W4 T5

Figure 6: A graph of treewidth 4 with many terminals, but no “parallel edges”.
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