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Abstract

Given an undirected grapf = (V, E) and subset of terminal§ C V, the element-connectivity
kg (u,v) of two terminalsu,v € T is the maximum number of-v paths that are pairwise disjoint in
both edges and non-termindfs\ 7" (the paths need not be disjoint in terminals). Element-ectivity is
more general than edge-connectivity and less general thidexvconnectivity. Hind and Oellermarin [21]
gave a graph reduction step that preservegtbbal element-connectivity of the graph. We show that this
step also preservdgcal connectivity, that is, all the pairwise element-connetiég of the terminals. We
give two applications of this reduction step to connegtigitd network design problems.

e Given a graphG and disjoint terminal set®;, Ts, . .., T;,, we seek a maximum number of element-
disjoint Steiner forests where each forest connects &achWe prove that if eaclT; is k& element
connected then there ex@(m) element-disjoint Steiner forests, whete= ||J, Ti|. If G
is planar (or more generally, has fixed genus), we show tleaethxistQ(k) Steiner forests. Our
proofs are constructive, giving poly-time algorithms talfthese forests; these are the first non-trivial
algorithms for packing element-disjoint Steiner Forests.

e We give a very short and intuitive proof of a spider-deconipmstheorem of Chuzhoy and Khanna
[12] in the context of the single-sinkvertex-connectivitproblem; this yields a simple and alternative
analysis of arO(k log n) approximation.

Our results highlight the effectiveness of the elementreativity reduction step; we believe it will find
more applications in the future.

1 Introduction

In this paper we consider several connectivity and netwesigh problems. Given an undirected gra&pland

two nodesu, v we let\¢ (u, v) andkg (u, v) denote the edge and vertex connectivities betweandv in G. It

is well-known that edge-connectivity problems are “eddiaain their vertex-connectivity counterparts. Vertex-
connectivity exhibits less structure than edge-conniggtand this often translates into significant differences
in the algorithmic and computational difficulty of the ca@pending problems. As an example, consider the
well-known survivable network design problem (SNDP): thput consists of an undirected edge-weighted
graphG and connectivity requirements: V x V — Z* between each pair of vertices. The goal is to find a
min-cost subgraplif of G such that each pair, v hasr(u, v) disjoint paths between them H. If the paths are
required to be edge-disjoinif (u,v) > r(u,v)) then the problem is referred to as EC-SNDP and if the paths
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are required to be vertex-disjoint the problem is refereég VC-SNDP. Jain_[23] gave Zzapproximation
for EC-SNDP based on the powerful iterated rounding teakmidOn the other hand, VC-SNDP is known to
be hard to within polynomial factors [28] 4]. To address tpgp, Jairet al. [25] introduced a connectivity
measure intermediate to edge and vertex connectivitieskmaselement-connectivityThe vertices are parti-
tioned into terminalg” C V and non-terminald” \ 7. The element-connectivity between two terminal®,
denoted by, (u, v) is defined to be the maximum number of paths betweandwv that are pairwise disjoint
in edges and non-terminals (the paths can share terminalshme respects, element-connectivity resembles
edge-connectivity: For examplg)(u, w) > min(x'(u, v), &' (v, w)) for any three terminals, v, w; this trian-
gle inequality holds for edge-connectivity but does notfertex-connectivity. In element-connectivity SNDP
(ELC-SNDP) the requirements are only between terminalstiaagoal is to find a min-cost subgraphsuch
that k' (u,v) > r(u,v) for eachu,v € T. Fleischer, Jain and Williamsoh [16] (see alsol[11]) geliezd
the iterated rounding technique of Jain for EC-SNDP to gieapproximation for ELC-SNDP. In other re-
spects, element-connectivity is related to vertex corivigctOne class of problems motivating this paper is on
generalizing the classical theorem of Mengersanvertex-connectivity; we discuss this below.

In studying element-connectivity, we often assume witHoas of generality that there are no edges be-
tween terminals (by subdividing each such edge) and heffegv) is the maximum number of non-terminal
disjoint u-v paths. Menger’s theorem shows that the maximum number efrially vertex-disjoints-¢ paths
is equal tox(s,t). Hind and Oellermann [21] considered a natural gener&izab multiple terminals. Given
a terminal sef” C V, what is the maximum number of trees that each corifaand are disjoint i/ \ 7'?
The natural upper bound here is the element connectivi§y iof G, in other wordsk = min,, yer &/(u,v). In
[21] a graph reduction step was introduced to answer thistgpre Cheriyan and Salavatiour [9] called this the
problem of packing element-disjoint Steiner trees; ciyciasing the graph reduction step, they showed that
there always exis®(k/ log |T'|) element-disjoint Steiner trees and moreover, this boutighs (up to constant
factors) in the worst case. In contrast, if we seek edgeidisfteiner trees then Lau [32] has shown that if
is 26k edge-connected i@, there aré: edge-disjoint trees each of which spans

Finally, we remark that in some recent work Chuzhoy and Khdag] gave arO (k log |T'|) approximation
for the special case of VC-SNDP in which a terminal’Beteeds to bé&-vertex-connected (this is equivalent to
the single-sink problem). Their algorithm and analysistased on a structural characterization of feasible so-
lutions — they use element-connectivity (they call it weakigectivity) as a key stepping stone. Subsequent to
this paper, Chuzhoy and Khanna|[13] gave a simple and eleganttion from the thgeneralVC-SNDP prob-
lem to ELC-SNDP, obtaining a®(k? log n)-approximation and reinforcing the connection betweemela-
and vertex-connectivity.

The discussion above suggests that it is fruitful to stuéyneint-connectivity as a way to generalize edge-
connectivity and attack problems on vertex-connectivitythis paper we consider the graph reduction step for
element-connectivity introduced by Hind and Oellermantj [and rediscovered by Cheriyan and Salavatipour
[Q]). We generalize the applicability of the step and dentrais applications to several problems.

A Graph Reduction Step Preserving Element Connectivity: The well-knownsplitting-off operation intro-
duced by LovaszZ [34] is a standard tool in the study of (prityjaedge-connectivity problems. Given an undi-
rected multi-graphG and two edgesu and sv incident tos, the splitting-off operation replaces: andsv by
the single edgewv. Lovasz proved the following theorem on splitting-off teperveglobal edge-connectivity.

Theorem 1.1(Lovasz) LetG = (V U {s}, FE) be an undirected multi-graph in whid# is k-edge-connected
for somek > 2 and degree ok is even. Then for every edge there is another edgev such thatV is
k-edge-connected after splitting-aff, and sv.

Mader strengthened the above theorem to show the existére@air of edges incident te that when
split-off preserve théocal edge-connectivity of the graph.



Theorem 1.2(Mader [35]) LetG = (V U {s}, E') be an undirected multi-graph, whetleg(s) # 3 ands is
not incident to a cut edge @f. Thens has two neighbours andv such that the grapli=’ obtained fromG by
replacingsu and sv by uv satisfies\¢/ (z,y) = Ag(z,y) forall z,y € V' \ {s}.

Generalization to directed graphs are also knawn [[35], 1, PBe splitting-off theorems have numerous
applications in graph theory and combinatorial optimmati See([34, 18, 31, 24| 6,132,133, 27] for various
pointers and applications. Although splitting-off teaiunés can be sometimes be used in the study of vertex-
connectivity, their use is limited and no generally apdlieatheorem akin to Theorem 1.2 is known. On the
other hand, Hind and Oellermann [21] proved an elegant &éman preserving global element connectivity.
In the sequel we use,(.S) to denotemin,, ,¢5 ki (u, v) andG/pq to denote the graph obtained froghby
contracting verticep, q.

Theorem 1.3(Hind & Oellermannl[21]) LetG = (V, E) be an undirected graph aril C V' be a terminal-set
such that,(T') > k for each pairu,v € T'. Let(p, q) beanyedge where,q € V' \ T'. Thenxg, (T') > k or
kg, (T) > kwhereGy = G — pgandGy = G /pg.

This theorem has been used in two applications on elememtectivity [9,[27]. We generalize it to handle
local connectivity, increasing its applicability.

Reduction Lemma. LetG = (V, E)) be an undirected graph ariffi C V' be a terminal-set. Lep, ¢) beany
edge wherg, ¢ € V' \ T and letG; = G — pg andGy = G//pq. Then one of the following holds: @, v € T,
kg, (U,v) = Kg(u,v) (i) Yu,v € T, kg, (u,v) = kg (u,v).

Remark 1.4. The Reduction Lemma, applied repeatedly, transforms algmsip another graph in which the
non-terminals form a stable set. Moreover, the reduced lyia@a minor of the original graph.

We give applications of the Reduction Lemma (using addiietieas) to two problems that we had briefly
alluded to already. We discuss these below.

Packing Element-Disjoint Steiner Trees and Forests:There has been much interest in the recent past on
algorithms for (integer) packing of disjoint Steiner traesboth the edge and element-connectivity settings
[31,124,[32] 33| 8,19,16]. (ASteiner treds simply a tree containing the entire terminal &} See [20] for
applications of Steiner tree packing to VLSI design. An tanding open problem is Kriesell's conjecture
which states that if the terminal sétis 2k-edge-connected then there &redge-disjoint Steiner trees each of
which spand’; this would generalize a classical theorem of Nash-WilBaand Tutte on edge-disjoint spanning
trees. Lau made substantial progress [32] and prove@@iatonnectivity suffices fok edge-disjoint Steiner
trees; he extended his result for packing Steiner foredp [8/e remark that Mader’s splitting-off theorem
plays an important role in Lau’s work. The element-disjdteiner tree packing problem was first considered
by Hind and Oellermann. As we mentioned, Cheriyan and S@ewa [9] gave a nearly tight bound for
this problem. Their result relies crucially on Theorem hifofved by a simple randomized coloring algorithm
whose analysis extends a similar algorithm for computiregdibmatic number of a graph [15]. (A [3] the random
coloring idea was shown to apply more generally in the candéypacking bases of an arbitrary monotone
submodular function; in addition, a derandomization wawisled in [3] via the use of min-wise independent
permutations. Itis also known that the problem of packirmgrednt-disjoint Steiner trees is hard to approximate
to within anQ2(log n) factor [8]. Here, we consider the more general problem okipacSteiner forests that
was posed by [9]. The input consists of a grépk- (V, E') and disjoint terminal sets;, 15, . . ., T;,,, such that
/{’G(Ti) > kfor1 <1i¢ < k. What is the maximum number of element disjoint forests shahin each forest;

is connected fot < ¢ < k? Our local connectivity reduction step is primarily mote@ by this question. For
general graphs we prove that there eisk /(log |T'| log m)) element disjoint forests, wheflé = ( J, 7;. This
can also be viewed as @(log |T'|log m) approximation for the problem. We apply the Reduction Lemma
to obtain a graph in which the non-terminals are a stable\&etcannot however apply the random coloring
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approach directly — in fact we can show that it does not worlstdad we decompose the graph into highly
connected subgraphs and then apply the random coloringagpin each subgraph separately.

We also study the packing problem in planar graphs and grapfiged genus, and prove substantially
stronger results. Here too, the first step is to use the Rietucemma (recall that the reduced graph is a minor
of the original graph and hence is also planar). After theicédn step, we employ a very different approach
from the one for general graphs. Our main insight is that aoiéy restricts the ability of non-terminals to
provide high element-connectivity to the terminals. Warialize this intuition by showing that there are some
two terminalsu, v that haveQ2(k) parallel edges between them which allows us to contract #esrecurse.
Using these ideas, for planar graphs we prove that there[éxi5] — 1 disjoint forests. Our method also extends
to give an{2(k) bound for graphs of a fixed genus, and we conjecture that amdéircd(2(%) disjoint forests
in graphs excluding a fixed minor; we give evidence for thigpbyving it for packing Steiner trees in graphs
of fixed treewidth. Note that these bounds also imply comadmng approximation algorithms for maximizing
the number of disjoint forests. These are the first nonarivounds for packing element-disjoint Steiner forests
in general graphs or planar graphs. Since element-conitgajieneralizes edge-connectivity, our bounds in
planar graphs are considerably stronger than those of @iydrau [32, 33] foredgeconnectivity. Our proof
is simple, however, we remark that the simplicity of the prammes from thinking about element-connectivity
(using the Reduction Lemma) instead of edge-connectiv@yr proof also gives the strong property that the
non-terminals in the forests all have degiee

Single-Sink k-vertex-connectivity: Polynomial factor inapproximability results for VC-SNDP§,[4] have
focused attention on restricted, yet useful, special casése problem. In recent work Chakraborty, Chuzhoy
and Khannal[4] considered the single-sikertex-connectivity problem for smali;, the goal is tok-vertex-
connect a set of terminal§ to a given rootr. This problem is approximation-equivalent to the subiset
connectivity problem in whicl’ needs to bé&-connected [4]. & = 1, this is the NP-Hard Steiner tree problem
and a2-approximation is well-known. Fat = 2, a2-approximation follows from[[16] whose algorithm can
handle the more general VC-SNDP with requirementin, 2}. Fork > 2 the first non-trivial approximation
algorithm was given in_[4]; the approximation ratio wad (k) log* n. Improvements were given in [12] 5]
with Chuzhoy and Khanna [12] achieving the currently besivkm approximation ratio o (k log |T'|). The
algorithms are essentially the samelin [4,[12, 5] and buithuthe insights from [4]; the analysis in [12] relied
on a beautiful decomposition result flerconnectivity which is independently interesting from apn theoretic
view point. The proof of this theorem ih [12] is long and coiated although it is based on only elementary
operations. Using the Reduction Lemma, we give an alterpratef of the main technical result which is only
half a page long! We mention that the decomposition theorasaipplications to more general network design
problems such as the rent-or-buy and buy-at-bulk netwosigdeproblems as shown inl[5]. Due to space
constraints we omit these applications in this paper.

Related Work: We have already mentioned most of the closely related pagaiswork on packing Steiner
forests in planar graphs was inspired by a question by JoaSephyan [7]. Independent of our work, Aazami,
Cheriyan and Jampanil[1] proved that if a terminal’Bés k-element-connected in a planar graph then there
existk/2 — 1 element-disjoint Steiner trees, and moreover this is tigfttey also prove that it is NP-hard
to obtain a(1/2 + ) approximation for this problem. Our bound for packing Steifirees in planar graphs
is slightly weaker than theirs; however, our algorithms anmobfs are simple and intuitive, and generalize to
packing Steiner forests. Their algorithm uses Thedremftl®wed by a reduction to a theorem of Fraek

al. [19] that uses Edmonds’ matroid partition theorem. Onedatilempt to pack Steiner forests using their
approach (with the stronger Reduction Lemma in place of féme@l.3), but the theorem df [19] does not
have a natural generalization for Steiner forests. Thenigdes of both[[1] and this paper extend to graphs
of small genus or treewidth; we discuss this further in $&¢8.2. We refer the reader ta [4,12, 5] for more
discussion of recent work on single-sink vertex connegtivihcluding hardness results| [4] and extensions to
related problems such as the node-weighted case [12] andtduylk network design [5]. Nutov [36] has



recently given alternate algorithms, based on the primal-dhethod, for the single-sink vertex-connectivity
network design with approximation ratios comparable tséhfvom [12]. These algorithms do not have have
the advantage of the structural decomposition_of [12]. Watioe that if 7" = V/, that is, we wish to find a
min-cost subgraph of! that isk-connected then a@(log? k) approximation is knowrl [14, 30, 10]. We also
refer the reader to a survey on network design by Kortsar\artdv [29].

2 The Reduction Lemma

Let G(V, E) be a graph, with a given sét C V(G) of terminals. For ease of notation, we subsequently refer
to terminals ablack vertices, and non-terminals (also called Steiner vertiass/hite The elements of; are
white vertices and edges; two paths alement-disjoinif they have no white vertices or edges in common.
Recall that the element-connectivity of two black vertieesnd v, denoted byk,(u,v), is the maximum
number of element-disjoint (that is, disjoint in edges arit@vvertices) paths betweenandwv in G. We omit

the subscriptZ when it is clear from the context.

For this section, to simplify the proof, we will assume ttiahas no edges between black vertices; any such
edge can be subdivided, with a white vertex inserted betweztwo black vertices. It is easy to see that two
paths are element-disjoint in the original graph iff theg alement-disjoint in the modified graph. Thus, we
can say that paths are element disjoint if they share no whitices, or that: andv arek-element-connected
if the smallest set of white vertices whose deletion sepatafrom v has sizek.

Recall that our lemma generalizes Theolem 1.3 on preseguitil connectivity. We remark that our proof
is based on a cutset argument unlike the path-based prof&%,(€] for the global case.

Reduction Lemma. GivenG(V, E) andT, letpqg € E(G) be any edge such thatand ¢ are both white. Let
G1 = G —pgandG2 = G/pq be the graphs formed frod by deleting and contractingq respectively. Then,
(i) Yu,v € T, kg, (u,v) = kg (u,v) or (i) Yu,v € T, kg, (v, v) = kg (u,v).

Proof. Consider an arbitrary edgey. Deleting or contracting an edge can reduce the elememtenbimity of

a pair by at most. Suppose the lemma were not true; there must be pairandz, y of black vertices such
thatrg, (s,t) = kg (s, t) — 1 andrg, (,y) = kg(r,y) — 1. The pairs have to be distinct since it cannot be the
case that;, (u,v) = kg, (u,v) = K (u,v) — 1 for any pairu, v. (To see this, if one of the(; (v, v) u-v paths
usespq, contracting the edge will not affect that path, and wilMedhe other paths untouched. Otherwise,
no path useq, and so it can be deleted.). Note that onesaf could be the same vertex as onexoiy; for
simplicity we will assume thafs, ¢} N {x,y} = ), but this does not change our proof in any detail. We show
that our assumption on the existencesof andz,y with the above properties leads to a contradiction. Let
ke (s, t) = ki andrky; (z,y) = kao. We use the following facts several times.

1. Any cutset of size less thdn that separates andt in G; cannot includep or ¢. (If it did, it would also
separate andt in G.)

2. kg, (z,y) = ka sincerg, (v,y) = k2 — 1.

We define a vertex tri-partition of a grajghas follows: (A, B, C) is a vertex tri-partition of7 if A, B, and
C partitionV(G), B contains only white vertices, and there are no edges betwesC. (That is, removing
the white vertices irB disconnectsd andC'.)

Sincerg, (s,t) = ki — 1, there is a vertex-tri-partitions, M, T') such thaiM| = k; — 1 ands € S and
t € T. From Fact 1 above)/ cannot contairp or q. For the same reason, it is also easy to seejitzatd ¢
cannot be both it (or both inT); otherwiseM would be a cutset of sizk; — 1 in G. Therefore, assume
w.l.o.g. thatp € S,q € T.



Similarly, sincexg, (z,y) = k2 — 1, there is a vertex-tri-partitiofX, N',Y') in G with [N'| = k; — 1 and
z € X andy € Y. We claim thatN’ contains the contracted vertgy for otherwiseN’ would be a cutset of
sizeky — 1in G. Therefore, it follows thatX, N, Y) whereN = N' U {p, ¢} — {pq} is a vertex-tri-partition
in G that separates from y. Note that|N| = k2 and N includesbothp andq. For the latter reason we note
that(X, V,Y) is a vertex-tri-partition also i .

Subsequently, we work with the two vertex tri-partitiofts M, T) and(X, N,Y) in G; (we stress that we
work in Gy and not inG or GG3). Recall thats,p € S, andt,q € T, and thatM has sizek; — 1; also, N
separates: from y, andp, ¢ € N. Fig. 1 (a) below shows these vertex tri-partitions. Sinéeand N contain
only white vertices, all terminals are #or 7', and inX or Y. We say thatS N X is diagonally oppositérom
TNY,andSNY is diagonally opposite frorfi' N X. Let A, B,C, D denoteSNN, XN M, TNN andY N M
respectively, withl denotingN N M; note that4, B, C, D, I partition M U N.

(@) (b)
Figure 1: Part (a) illustrates the vertex tri-partitioits M, T) and(X, N,Y).
In parts (b) and (c), we consider possible locations of thaitealss, ¢, x, y.

We assume w.l.o.g. thate S. If we also havey € S, thenz € SN X andy € SNY’; therefore, one aof, y
is diagonally opposite frory suppose this is. Fig. 1 (b) illustrates this case. Observe tHat/U B separates
fromy; sincex andy areks-connected andV = AUIUC| = ky, it follows that| B| > |C|. Similarly, CUIUD
separates from s, and since&”' containsg, Fact 1 impliesthatC' UIUD| > k; > |[BUIUD = M| = k; — 1.
Therefore|C| > |B|, and we have a contradiction.

Hence, it must be that ¢ S; soy € T'NY. The argument above shows thaandt cannot be diagonally
opposite, s@ must be inT' N X. Similarly, s andy cannot be diagonally opposite, so= SNY. Fig. 1 (c)
shows the required positions of the vertices. Ndseparates from ¢ and containg, ¢; therefore, from fact
1,|N| > k; > |M]|. But M separates from y, and fact 2 implies that, y areks-connected irGy; therefore,
|M| > ko = |N|, and we have a contradiction. O

3 Packing Element-Disjoint Steiner Trees and Forests

Consider a grapld-(V, E), with its vertex setl” partitioned into7}, 75, ... T,,, W. We refer to eacli; as
a group ofterminals and W as the set of Steiner or white vertices; we U3e= | J; 7; to denote the set of
all terminals. A Steiner Forest for this graph is a forest tha subgraph of7, such that eacff; is entirely
contained in a single tree of this forest. (Note tiiatand7; can be in the same tree.) For any grdljpof
terminals, we defing’(T;), the element-connectivity df;, as the largest such that for every,, v € T;, the
element-connectivity of andv in the graphG is at least:.

We say two Steiner Forests fof are element-disjoint if they share no edges or Steineroesti (Every
Steiner Forest must contain all the terminals.) The Stdtoeest packing problem is to find as many element-
disjoint Steiner Forests fak as possible. By inserting a Steiner vertex between any panjacent terminals,



we can assume that there are no edges between terminalheantheé problem of finding element-disjoint
Steiner forests is simply that of finding Steiner forests ttmnot share any Steiner vertices. A special case is
whenm = 1 in which case we seek a maximum number of element-disjogih&it trees.

Proposition 3.1. If k = min; s, (T;), there are at most element-disjoint Steiner Forests

Cheriyan and Salavatipour|[9] proved that if there is a grggbupT’ of terminals, with<'(T") = k, then
there always exisf)(k/log |T'|) Steiner trees. Their algorithm proceeds by using Thedrénthe global
element-connectivity reduction of [21], to delete and cacit edges between Steiner vertices, while preserving
x'(T) = k. Then, once we obtain a bipartite gragh with terminals on one side and Steiner vertices on the
other side, randomly color the Steiner vertices uginfiglog | 7’| colors; they show that w.h.p., each color class
connects the terminal s&t, giving k/6log |T'| trees. The bipartite case can be cast as a special case ofgack
bases of a polymatroid and a variant of the random colorieg id applicable in this more general setting
[3]; a derandomization is also provided in [3], thus yielglim deterministic polynomial time algorithm to find
Q(k/log |T|) element-disjoint Steiner trees.

In this section, we give algorithms for packing elemenjaiig Steiner Forests, where we are given
groups of terminalg’, 15, . .. T,,. The approach of [9] encounters two difficulties. First, vaamot reduce to
a bipartite instance, using only the global-connectivigysion of the Reduction Lemma. In fact, our strength-
ening of the Reduction Lemma to preserve local connectivitg motivated by this; using it allows us once
again assume that we have a bipartite gradti” U W, E'). Second, we cannot apply the random coloring
algorithm on the bipartite grapf’ directly; we give an example in AppendiX A to show that thipayach does
not work. One reason for this is that, unlike the Steiner ti@se, it is no longer a problem of packing bases of
a submodular function. To overcome this second difficultyuse a decomposition technique followed by the
random coloring algorithm to prove that there always eXigt/(log |T'|log m)) element-disjoint forests. We
believe that the bound can be improvedXg:/ log |T).

We also consider the packing problem in restricted claskgsaphs, in particular planar graphs. We obtain
a much stronger bound, showing the existencgkgh| — 1 Steiner forests. The (simple) technique extends to
graphs of fixed genus to prove the existenc€0f) Steiner forests where the constant depends mildly on the
genus. We believe that there exiitk) Steiner forests in anyZ-minor-free graph wheré/ is fixed; it is shown
in [1] that there exist2(k) Steinertreesin H-minor-free graphs. Our technique for planar graphs doés no
extend directly, but generalizing this technique allowsaimake partial progress; by using our general graph
result and some related ideas, in Seclion 3.3, we proveritgriaphs of any fixed treewidth, there existk)
element-disjoint Steiner Trees if the terminal set4islement-connected.

3.1 AnO(log|T|logm)-approximation for Packing in General Graphs

In order to pack element-disjoint Steiner forests we bortber basic idea fron_[6] in thedge-connectivity
setting for Eulerian graphs; this idea was later used by B&Jiip the much more difficult non-Eulerian case.
The idea at a high level is as follows: If all the terminals &reonnected then we can treat the terminals
as forming one group and reduce the problem to that of pacRieqer trees. Otherwise, we can find a cut
(S,V'\ 9) that separates some groups from others. If the cut is chgg@oiately we may be able to treat
one side, sayb, as containing a single group of terminals and pack Stdieesin themwithout using the
edges crossing the cut. Then we can shishéind find Steiner forests in the reduced graph; unshrinking of
is possible since we have many trees$nin [6, [33] this scheme works to giv(k) edge-disjoint Steiner
forests. However, the approach relies strongly on praggedf edge-connectivity as well as the properties of
the packing algorithm for Steiner trees. These do not géireraasily for element-connectivity. Nevertheless,
we show that the basic idea can be applied in a slightly weakgr(resulting in the loss of af(log m) factor
over the Steiner tree packing factor). We remark that thaatoh to a bipartite instance using the Reduction
Lemma plays a critical role. A key definition is the notion aj@od separator given below.
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Definition 3.2. Given an graphG(V, E) with terminal setsy, 75, . .. T,,,, such that for all;, x'(7;) > k, we
say that a seb of white vertices is g@ood separatadf (i) |S| < k/2 and (i) there is a component ¢ — S in
which all terminals aret /2 log m-element-connected.

Note that the empty set is a good separator if all termina@# A2 log m-element-connected.

Lemma 3.3. For any instance of the Steiner Forest Packing problem glieea polynomial-time algorithm that
finds a good separator.

Proof: Let G(V, E') be an instance of the Steiner Forest packing problem, withitel sets’, 75, . . . T;,, such
that eachl; is k-element-connected. 1 is ﬁ—element connected, the empty $kis a good separator.

Otherwise, there is some set of white vertices of size Im—?tﬁkg—m that separates some of the terminals
from others. LetS; be a minimal such set, and consider the two or more componénts- S;. Note that each
T; is entirely contained in a single component, sifi¢és at least:-element-connected, and;| < k. Among
the components aff — S that contain terminals, consider a compon@ntwith the fewest sets of terminals;
G must have at most/2 sets fromiT, ... T,,. If the set of all terminals i, is % connected, we stop,

otherwise, find inG; a set of white vertice$, with size less tha'@lffﬂ that separates terminals 6. Again,

find a componen@s of G; — S» with fewest sets of terminals, and repeat this proceduriéwatobtain some
subgraph(z; in which all the terminals arglgfw—connected. We can always find such a subgraph, since the
number of sets of terminals is decreasing by a facto? of more at each stage, so we find at mlogtm
separating setS;. Now, we observe that the s8t= ngl S; is a good separator. It separates the terminals in

Gy from the rest off’, and its size is at mo$bg m x k_ — k/2; it follows that each set of terminalg is

2logm
entirely within Gy, or entirely outside it. By construction, all terminalséf are% connected. O

We can now prove our main result, that we can always find a pgaki€2( Steiner forests.

Tog T oz )
log |T'| log m

Theorem 3.4. Given a graphG(V, E), with terminal setd}, T, ... T;,,, such that for all, <'(T;) > k, there
is a polynomial-time algorithm to padR(k/ log |T'| log m) element-disjoint Steiner Forests (i

Proof: The proof is by induction om. The base case af = 1, follows from [2, 3]; G contains at Ieasb{%m
element-disjoint Stein€frees and we are done.

We may assumé& is bipartite by using the Reduction Lemma. Find a good sépafg and a component
Gy of G — S in which all terminals argl()’fw—connected. Now, since the terminalsin are%—connected,

use the algorithm of ][9] to finqm element-disjoint Steiner trees containing all the terfsinaGy;

none of these trees uses verticessoNumber these trees from 1 f@m; let 7; denote thejth tree.

The setS separates&s, from the terminals irG — Gy. If S is not a minimal such set, discard vertices until it
is. If we deleteGG, from GG, and add a clique between the white vertice$ ito form a new grapld:’, it is clear
that the element-connectivity between any pair of ternsiimad=’ is at least the element-connectivity they had in

G. The grapha’ hasm’ < m — 1 groups of terminals; by induction, we can fiqﬁog@“ogm < 1210gu’3|10gm,
element-disjoint Steiner forests for the terminal€#h As before, number the forests from 1@#%;

we useF; to refer to thejth forest. These Steiner Forests may use the newly added bdgeeen t%e vertices
of S; these edges do not exist . However, we claim that the Steiner Forést of G’, together with the
Steiner tre€e7; in G, gives a Steiner Forest @f. The only way this might not be true is Jf; uses some
edge added between verticesy € S. However, every vertex i§ is adjacent to a terminal i&,, and all the
terminals ofG, are in every one of the Steiner trees we generated. Theréfiere is a path from to v in 7.
Hence, deleting the edge betweeandv from F; still leaves each component & U 7; connected.

Therefore, for each < j < ijgm, the vertices inF; U 7; induce a Steiner Forest f6r. O



3.2 Packing Steiner Trees and Forests in Planar Graphs

We now prove much improved results for restricted classegraphs, in particular planar graphs. df is
planar, we show the existence [df/5| — 1 element-disjoint Steiner Fore@sThe intuition and algorithm are
easier to describe for the Steiner tree packing problem andonthis first. We achieve the improved bound by
observing that planarity restricts the use of many whitgiees as “branch points” (that is, vertices of degree
> 3) in forests. Intuitively, even in the case of packing treéshere are terminalg, to, t3, ... that must
be in every tree, and white vertices , w2, ws . .. that all have degree 3, it is difficult to avoidfgz 3 minor.
Note, however, that degré@awhite vertices behave like edges and do not form an obsbructVe capture this
intuition more precisely by showing that there must be a phaierminalst;, t; that are connected b (k)
degree-2 white vertices; we can contract these “paraligeégtl and recurse.

We describe below an algorithm for packing Steiner Treestodgh the rest of the section, we assume
k > 10; otherwise,[k/5] — 1 < 1, and we can always find 1 Steiner Tree in a connected graph.

Given an instance of the Steiner Tree packing problem ingolgnaphs, we constructraduced instance
as follows: Use the Reduction Lemma to delete and contraggstetween white vertices to obtain a planar
graph with vertex sef’ U W, such thati¥ is a stable set. Now, for each vertexc W of degree 2, connect
the two terminals that are its endpoints directly with aneedmd deletev. (All edges have unit capacity.) We
now have a planamultigraph though the only parallel edges are between terminals, exe tivere the only
edges added while deleting degree-2 verticdd’'inNote that this reduction preserves the element-conrigctiv
of each pair of terminals; further, any set of element-dgjtrees in this reduced instance corresponds to a set
of element-disjoint trees in the original instance. We nidedfollowing technical result:

Theorem 3.5(Borodin, [2]). If G is a planar graph with minimum degrekx it has an edge of weight at most
13, where the weight of an edge is the sum of the degrees of ipoasl.

Lemma 3.6. In a reduced instance of the Planar Steiner Tree Packinglprabif T' is k-element-connected,
there are two terminalg, , ¢, with at least[k/5] — 1 parallel edges between them.

Proof: We prove this lemma in Appendix A.1; here, we give a proof shgvthe weaker result that there exist
terminalsty, to with [k/10] edges between them. L@&tbe the planar multigraph of the reduced instance. Since
T is k-element-connected i¥, every terminal has degree at ledsh G. Construct a planar graph’ from G

by keeping only a single copy of each edge. We argue belowstitae terminat; € 7" has degree at mos0

in G'; it follows thatG must contain at least:/10] copies of some edge incident#g ast; has degree at least

k in G. These edges must be incident to another termtinaompleting the proof.

To see that some terminal has degree at mo$0 in G’, we first assume that no terminal has degre®,
or we are already done. Now, as every vertex16fin a reduced instance has degree at I8aste may use
Theoreni 3.5; this implies th&t’ has an edge, such that the sum of the degrees of the endpointsoat most
13. The edge must be incident to a terming], as the white vertices are a stable set. The other endpoint of
has degree at lea3f so the degree af; is at mostl0. O

It is now easy to prove by induction that we can pagk5| — 1 disjoint trees.

Theorem 3.7. Given an instance of the Steiner Tree packing problem on aaplgraph G with terminal set
T, if k'(T) > k, there is a polynomial-time algorithm to find at ledét/5] — 1 element-disjoint Steiner trees
in G. Moreover, in each tree, the white (non-terminal) vertiahave degree.

Proof: We prove this theorem by induction ¢fi|; if |T'| = 2, there are disjoint pathsin G from one terminal
to the other, so we are done (including the guarantee of d@gw white vertices).

!Note that in the special case of packing Steiner Trees, therpd Aazamet al. [1] shows that there argk /2| — 1 element-disjoint
Steiner Trees.



Otherwise, apply the Reduction Lemma to construct a redinsgéaince’, preserving the element-connectivity
of T. Now, from Lemmd 316, there exist a pair of terminalst, that have[k /5] — 1 parallel edges between
them (Note that the parallel edges betwegandt; may have non-terminals on them in the original graph but
they have degreg.). Contractty, t, into a single terminat, and consider the new instance of the Steiner Tree
packing problem with terminal s&’ = T U {t} — {t1,t2}. Itis easy to see that the element-connectivity of
the terminal set is still at leagt by induction, we can findk /5] — 1 Steiner trees containing all the terminals
of T, with the property that all non-terminals have degze@aking these trees together with/5] — 1 edges
betweent; andts gives[k/5] — 1 trees inG’ that span the original terminal sét O

Packing Steiner Forests in Planar Graphs:The algorithm described above for packing Steiner treesienc
ters a technical difficulty when we try to extend it to Steifimests. Lemma_3]6 can be used at the start to
merge some two terminals. However, as the algorithm praceday get stuck in the following situation: it
merges all terminals from some groiipinto a single terminal. Now this terminal does not requirg arore
connectivity to other terminals although other groups ateyet merged together. In this case we term this ter-
minal as dead. In the presence of dead terminals Lemrha 3dhgei applies; we illustrate this with a concrete
example in Appendik’/Al2. We overcome this difficulty by shogithat a dead terminal may be replaced by a
grid of white vertices — the grid is necessary to ensure tiatdsulting graph is still planar. We can then apply
the Reduction Lemma to remove edges between the newly aduiéel wertices and proceed with the merging
process. See Appendix A.2 for details.

Extensions: Our result for planar graphs can be generalized to graphgeif fienus; lvancao [22] generalized
Theoreni 3.5 to show that a graphof genusg has an edge of weight at magt+ 13 if 0 < ¢ < 3 and an edge
of weight at mostlg + 7 otherwise. This allows us to prove that there ekistc| forests where < 4¢ + 8; we
have not attempted to optimize this constanAazamiet al. [1] also give algorithms for packing Steiner Trees
in these graph classes, and graphs excluding a fixed minoth¥8emake the following natural conjecture:

Conjecture 1. LetG = (V, E) be aH-minor-free graph, with terminal sefg,, 75, . .. T,,,, such that for alli,
k' (T;) > k. There exisf)(k/c) element-disjoint Steiner forests @ wherec depends only on the size Hf.

We note that Lemmla_3.6 fails to hold féf-minor-free graphs, and in fact fails even for bounded tiddw
graphs. Thus, our approach cannot be directly generalizediever, instead of attempting to contract together
just two terminals connected by many parallel edges, we reaghbite contract together a constant number of
terminals that are “internally” highly connected. Usingebhem 3.4 and other ideas, we prove in the next
section that this approach suffices to pack many trees irhgrayith small treewidth. We believe that these
ideas together with the structural characterizationHefinor-free graphs by Robertson and Seymaout [37]
should lead to a positive resolution of Conjecture 1.

3.3 Packing Trees in Graphs of Bounded Treewidth

Let G(V, E) be a graph of treewidtk » — 1, with terminal sef” C V' such that'(T") > k. In this section, we
give an algorithm to find, for any fixed Q(k) element-disjoint Steiner Trees @i Our approach is similar to
that for packing Steiner Trees in planar graphs, where weearin Lemma_3J6 that there exist two terminals
t1,to with Q(k) parallel edges between them, so we could contract themhigand recurse on a smaller
instance. In graphs of bounded treewidth, this is no lonigeccase; see the end of Appendix A for an example
in which no pair of terminals is connected by many parallglesd However, we argue that there exists a small
set of terminalg” C T that is highly “internally connected”, so we can fifik) disjoint trees connecting all
terminals inT”, without affecting the connectivity of terminalsi— 7”. We can then contract togethgf and

the white vertices used in these trees to form a single newitai ¢, and again recurse on a smaller instance.
The following lemma captures this intuition:
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Lemma 3.8. If G(V, E) is a bipartite graph of treewidth at most— 1, with terminal setl’” C V such that
T > 2", k'(T) > k, there exists a se¥ C V — T such that there is a compone@t of G — S containing
k/12r2 log(3r) element-disjoint Steiner trees for the (at least 2) terrsina G’. Moreover, these trees i@’
can be found in polynomial time.

Given this lemma, we prove below that for any fixedve can pacK2(k) element-disjoint trees in graphs
of treewidth at most — 1. The proof combines ideas of Theorem|3.7 and The@rem 3.4.

Theorem 3.9. Let G = (V, E) be a graph of treewidth at most— 1. For any terminal sel” C V with
ki (T) > k, there exist2(k/12r? log(3r)) element-disjoint Steiner trees @h

Proof: As for Theorent 37, we prove this theorem by induction. Gdie a graph of treewidth at most- 1,
with terminal setl". If |T| < 2", we havek/6log |T'| > k/6r element-disjoint trees from the tree-packing
algorithm of Cheriyan and Salavatipour [9]anbitrary graphs.

Otherwise, we use the Reduction Lemma to ensure Ghi bipartite. LetS be a set of white vertices
guaranteed to exist from Lemrha B.8. dfis not a minimal such set, discard vertices until it is. Nowgdfi
k/12r2 log(3r) element-disjoint trees containing all terminals in someponentG’ of G — S; note that each
vertex of S is incident to some terminal i6”’, and hence to every tree. (This follows from the minimalitySo
and the fact that- is bipartite.) ModifyG by contracting all ofG’ to a single terminat, and make it incident
to every vertex ofS. It is easy to see that all terminals in the new graphiastement-connected; therefore,
we now have an instance of the Steiner Tree packing probleangsaph with fewer terminals. The new graph
has treewidth at most — 1, so by induction, we havi/12r2 log(3r) element-disjoint trees for the terminals
in this new graph; taking these trees together withithi2r-2 log(3r) trees ofG’ givesk/12r% log(3r) trees of
the original graplG. O

We devote the rest of this section to proving the crucial Lei@®. Subsequently, we may assume, w.l.0.g.
(after using the Reduction Lemma) that the grapls bipartite; we may further assume ttat> 122 log(3r)
and|T'| > 2". First, observe that has a small cutset that separates a few terminals from the res

Proposition 3.10. G has a cutset of size at most such that some component@®&f— C contains between
and2r terminals.

Proof Sketch: Fix a tree-decompositiofi of G; every non-leaf node of corresponds to a cutset, and each
node of7 contains at most vertices ofG. Start at a leaf of, and walk upwards until reaching a nodsuch
that the subtree of rooted at some child af contains between and2r terminals. (This is always possible
since walking up one step only gives at meshore terminals.) O

We find the setS and component ofr — S in which we contract together a small number of terminals by
focusing on the cutset’ and component off — C that are guaranteed to exist from the previous proposition.
We introduce some notation before proceeding with the proof

1. LetC be a cutset of size at mastand letl”’ be the vertices of a component@f- C containing between
r and2r terminals.

2. Since terminals i’ are k-connected to the terminals in the rest of the graph, |&fd< r < k, C
contains at least one black vertex. I(&tbe the set of black vertices .

3. LetG’ = G[V' U C'] be the graph induced By’ andC"”.

We omit a proof of the following straightforward propositidhe second part of the statement follows from
the fact that each terminal ¥’ is k-connected to terminals outsid#, and these paths to terminals outsiefe
must go through the cutsét’ of size at most:.
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Proposition 3.11. The graphG’ contains between and 3r terminals (asC’ may contain up to- terminals),
and each terminal iV’ is at leastk/r-connected to some terminal @if.

LetT” be the set of terminals i@’ If «[,,(T") > k/2r?, we can easily find a set of white vertices satisfying
Lemma[3.8: LetS be the set of vertices af that are adjacent (i) to vertices ofG’. It is obvious thatS
separates&:’ from the rest of7, and all terminals iff” are highly connected; from the tree packing result of [9],
we can find the desired disjoint treesGi. Finally, note that all vertices o are white, as the only neighbors
of G’ are either white vertices of the cutgetor the neighbors of the black verticesdh all of which are white
as(@ is bipartite.

However, it may not be the case that all terminalg’6o&re highly connected i6”. In this event, we use the
following simple algorithm (very similar to that in the prioof Lemmal3.3B) to find a highly-connected subset
of T": Begin by finding a sef; of at mostk/2r? white vertices inG’ that separates terminals Bf. Among
the components of’ — Sy, pick a componené’; with at least one terminal df’. If all terminals of G, are
k/2r? connected, stop; otherwise, find@ a setS, of at mostk/2r2 white vertices that separates terminals
of G, pick a component; of G; — S that contains at least one terminaléf, and proceed in this manner
until finding a component, in which all terminals aré:/2r? connected.

Claim 3.12. We perform at mostiterations of this procedure before we stop, having foundessubgrapliz,
in which all the (at least 2) terminals are/2r? connected.

Proof: At least one terminal o€’ must be lost every time we find such a $bt if this is true, the claim
follows. To see that this is true, observe that when we findsetd; ., in G;, there is a component that we do
not pick that contains a terminal If this terminalt is in C’, we are done; otherwise, it must belifi. But from
Propositior 3.1]1 all terminals i’ arek /r connected to some terminal @/, and so some terminal 6’ must
be in the same component @swWhen we stop with the subgraggly, it contains at least one termindle V’,
and at least one terminal 6f to whicht’ is highly connected; therefor€;, contains at least 2 terminals.

All terminals in the subgraplé:, are k:/2r2-connected, and there are at m8stof them, so we can find
k/12r2 log(3r) disjoint treesin G, that connect them, using the tree-packing result bf [9]. $. &k the set of
vertices ofG that are adjacent (ifr) to vertices ofG,; obviously, S separategs, from the rest ofGG, and to
satisfy Lemma_3]8, it merely remains to verify tiabnly contains white vertices. Every terminal@ — G,
was separated fror@', by white vertices in somé;, and terminals irG — G’ can only be incident to white
vertices of the cutsef', which are not ini’, let aloneG,. This completes the proof of LemrmaB.8.

4 Single-Sink Vertex-Connectivity

Recall that in the SS-CONNECTIVITY problem, one is given an undirected gragh= (V, E) with edge
costs, a specified sink/root vertexand a subset of terminal6 C V, with |T'| = h. The goal is to find a
minimum cost subgrapli that containg: vertex-disjoint paths from each terminak 7T to the root. In this
section we give a very simple proof of the main technical ltéay12] using the Reduction Lemma. We lead
up to the technical lemma via a description of the (simplgdathm for SSk-CONNECTIVITY.

The basic algorithmic idea comes from [4]; this is the ideasihgaugmentationLet 7’ C T be a subset
of terminals and lef/’ be a subgraph of' that is feasible foff”. For a terminak € 7'\ T’ a set ofk paths
p1,...,pk iS said to be an augmentation fowith respect tal” if (i) p; is a path fromt to some vertex in
T" U {r} (ii) the paths are internally vertex disjoint and (iii) arteénal ¢ € 7" is the endpoint of at most one of
the k paths. Note that the root is allowed to be the endpoint of ntttae one path. The following proposition
is easy to prove via a simple min-cut argument.

Proposition 4.1. If p1, ps, ..., pi is an augmentation fot with respect tal” and H' is a feasible solution for
the SS&-CONNECTIVITY instance with terminal sét’, thenH U (|, p;) is a feasible solution fof” U {t}.
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Given T’ andt, the augmentation cost ofwith respect tdl” is the cost of a min-cost set of paths that
augmentt w.r.t. to7”. We can find the augmentation cost for a terminbl solving a simple min-cost flow
problem. The key theorem i [12] is the following.

Theorem 4.2(Vertex-Connectivity,[[12]) If OPTdenotes the cost of an optimal solutior88+-CONNECTIVITY,
and AugCost(t) the cost of an augmentation for terminalv.r.t. T — {t}, >, AugCost(t) < 8k - OPT.

We now briefly describe the algorithm 6f [5] for SSCONNECTIVITY; a variant is used in[4, 12].

Permute the terminals randomly; fgtdenote thejth terminal in the permutation and & = {¢1,...,t;}.
SubgraphH « ()
Fori=1to|T)|.
Add to H a min-cost augmentation ¢f with respect tdl;_.
Output the subgrapi .

Note that the above is a greedy algorithm except for theainiéindomization. Interestingly, as notedlin [5],
the randomization is key; even fér= 2 there exist permutations that yield a solution of ca@str’| - OPT).
Using Theoreni 4]2 it is easy to prove that the above algorithenrandomized)(k log |T'|)-approximation
for SS4-CONNECTIVITY: simply observe that thexpectedaugmentation cost for the last terminal in the
permutation is at mostkOPT/|T'|; a straightforward inductive argument then completes thefp

The main ingredient in the proof of Theordm14.2, as shown[ 2], [ the following weaker statement
involving paths that arelement-disjointas opposed to vertex-disjoint.

Lemma 4.3 (Element-Connectivity, [12]) Given an instance d8S+%-CONNECTIVITY, let ElemCost(t) de-
note the minimum cost of a set/ofnternally vertex-disjoint paths from any terminato 7’U {r} — ¢t. Then,
> ier ElemCost(t) < 20PT, whereOPTis the cost of an optimal solution to this instance.

It is shown in [12] that one can prove Theoréml4.2 by repegtsiking Lemmée 4.8 to obtain a large
collection of paths from each € T to other terminals, and applying a flow-scaling argumente fbart of
the proof of the crucial Lemma 4.3, is a structural theorerfil@af on spiders A spider is a tree containing at
most a single vertex of degree greater than 2. If such a verisks, it is referred to as theeadof the spider,
and each leaf is referred to agaot Thus, a spider may be viewed as a collection of disjoint péthalled
legs from its feet to its head. If the spider has no vertex of de@®r more, any vertex of the spider may be
considered its head. Vertices that are not the head or feetadled intermediate vertices of the spider. The
Reduction Lemma allows us to give an extremely easy indeignoof of the Spider Decompaosition Theorem
beIO\/\E greatly simplifying the proof of [12].

Theorem 4.4([12]). LetG(V, E) be a graph with a seB C V' of black vertices such that every pair of black
vertices isk-element connected. There is a subgrdplof G whose edges can be partitioned into spiders such
that:

1. For each spider, its feet are distinct black vertices, alidntermediate vertices are white.
2. Each black vertex is a foot of exactlyspiders, and each white vertex appears in at most one spider.

3. If a white vertex is the head of a spider, the spider hasastlavo feet.

Before giving the formal short proof we remark that if themras bipartite then the collection of spiders
is trivial to see: they are simply the edges between the hladices and the stars rooted at each white vertex!

2In the decomposition theorem 6 [12], the spiders satisfgréain additional technical condition; the proof of Theufé2 in [12]
relies on this condition. We give a modified proof of Theofe@ that does not require the condition.

13



Thus the Reduction Lemma effectively allows us to reduceptbblem to a trivial case.

Proof: We prove this theorem by induction on the number of edgesdmiwhite vertices idr. As the base
case, we have a gragh with no edges between white vertices; therefards bipartite. (Recall that there are
no edges between black vertices.) Each pair of black verigk-element connected, and hence every black
vertex has at leagt white neighbors. Let every € B markk of its (white) neighbors arbitrarily. Every white
vertexw that is marked at least twice becomes the head of a spiddeghef which are the black vertices that
markedw. For each white vertexx marked only once, ldi be its neighbor that marked it, antbe another
neighbor. We leb — w — b’ be a spider with fook and head’'. It is easy to see that the spiders are disjoint, and
that they satisfy all the other desired conditions.

For the inductive step, consider a gra@twith an edgepg between white vertices. If all black vertices are
k-element connected if; = G — pq, then we can apply induction, and find the desired subgragh, aind
hence ofGG. Otherwise, by Theorefll 1, we can find the desired set of spid€¥; = G/pq. If the new vertex
v = pq is not in any spider, this set of spiders existsgdnand we are done. Otherwise, Igtbe the spider
containingw. If v is not the head of, let z, y be its neighbors irt. Eitherxz andy are both adjacent tp, or
both adjacent tq, or (w.l.0.g.)z is adjacent tgp andy to ¢q. Therefore, we can replace the path- v — y in S
withoneofx —p —y,z —qg—y,0rx — p— g — y. If vis the head of5, we know that it has at least 2 feet.
If at least 2 legs of5 are incident to each qgf andg, we can create two new spide$s and S,, with headsp
andq respectively;S, contains the legs of incident top, andS, the legs incident tq. If all the legs ofS are
incident top, we letp be the head of the spider @; the case in which all legs are incidentg¢@s symmetric. If
neither of these cases holds, it follows that (w.l.0.g.)cllyaone legl of S is incident top, with the remaining
legs being incident tg. We letq be the head of the new spider, and add the leg¢. a

The authors of [12] showed that, once we have the Spider Dgasition Theorem, it is very easy to prove
Lemmd4.38.

Proof of Lemmal4.3([12]) In an optimal solution” to an instance of S&-CONNECTIVITY, every terminal

is k-vertex-connected to the root. Let the terminals be blackioss, and non-terminals be white; it follows
that all the terminals ark-element connected to the rootih, and hence to each other. Therefore, we can find
a subgraph off of total cost at most OPT which can be partitioned into sgiderin Theorer 4.4. For each
spiderS and every terminat that is a foot ofS, we find a path entirely contained with# from ¢ to another
terminal. Each edge &f is in at most two such paths; since the spiders are disjotheach terminal is a foot

of k spiders, we obtain the desired result.

If the head ofS is a terminal, the path for each foot is simply the legSdrom that foot to the head. Each
edge ofS is in a single path. If the head 6fis a white vertex, it has at least two feet. Fix an arbitraigesing
of the feet ofS; the path for foot follows legi from the foot to the head, and then lég- 1 from the head to
footi + 1. (The path for the last foot follows the last leg, and thenlldgbm the head to the foot.) It is easy to
see that each edge §fis in exactly two paths; this completes the proof. a

Finally, we give a proof of Theorein 4.2 that relies only on ghatement of Lemm@a_4.3. Our proof is
a technical modification of the one in]12] and as previousimarked, does not need rely on the additional
condition on the spiders that [12] guarantees. Our proofgilges a slightly stronger bound on, AugCost(t)
(8% - OPT instead of 18k + 3) - OPT).

Proof of Theorem[4.2: We give an algorithm to find an augmentation for each terntima proceeds ink?
iterations: In each iteration, for every termirtalit finds a set ofk internally vertex-disjoint paths fromto
other terminals or the root. L&;(¢) denote the set of paths found for terminat iterationi. These paths have
the following properties:

1. For each terminal, every other terminal is an end-point of fewer thigr + 2k paths in(J; P;(t).

2. In each iteration, >, Cost(P;(t)) < 4kOPT.
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Given these two properties, we can prove the theorem asvli8eparately for each terminalsend 1 unit
of flow along each of the paths fj, P; (¢); we thus have a flow ofk? - k units from¢ to other terminals. Scale

this flow down by4k? - (k + 1) /k, to obtain a flow of#f/2 > k — 1/2 from ¢ to other terminals. After the
scaling step, the net flow through any vertex (terminal or-tesminal) is at most 1, since the maximum flow
through a vertex before scaling wéls® + 2k. Let FlowClost(t) denote the cost of this scaled flow for terminal
t; if we now scale the flowp by a factor of 2, we obtain a flow of value greater ti2dn— 1 from ¢ to other
terminals, in which the flow through any vertex besidésat most 2. Therefore, by the integrality of min-cost
flow, we can find an integral flow &fk — 1 units from¢ to other terminals, of total cost at matlowCost(t).
Let E; be the set of edges used in this integral flow; it follows that(E,) < 2FlowCost(t). Itis also easy
to see that; containsk disjoint paths front to & distinct terminals, by observing that a hypothetical cuige

sizek — 1 contradicts the existence of the flow of valele— 1 in which the flow through a vertex is at most 2.

Therefore, we have found disjoint paths fron¥ to & other terminals, of total costF'lowCost(t). To
bound the cost over all terminals, we note that from the sgqgooperty above, we have, FlowCost(t) <

412 - 4kOPT/ (4k22E2), which is less tharkOPT. It follows that the total cost of the set of paths is at
most2 )", FlowCost(t) < 8kOPT.

It remains only to show that we can find a set of paths for eachital in every iteration that satisfies the
two desired properties. The proof below uses induction emtimber of iterationsto prove property 1: After
i iterations, for each termina) every other terminal is an end-point of fewer thiah 2k paths inl_J, P;(t).

In iteration, for each terminat, let Blocked(t) denote the set of terminals i — ¢ that have been the
endpoints of at leagti — 1) + & paths in{J'_} 7;(¢). (Note that the root is never in anyBlocked(t).) Since
the total number of paths that have been found so far-isl)k, | Blocked(t)| < k. Construct a directed graph
D on the set of terminals, with edges from each terminialthe terminals irBlocked(t). Since the out-degree
of each vertex inD is at mostk — 1, there is a vertex of in-degree at mast- 1; therefore, the digrapl is
2k — 2 degenerate and so can be colored ugikhg- 1 colors. LetCy,Cs, ... 5,1 denote the color classes
in a proper coloring oD; if t1,t, € Cj, then in iteration;, t; ¢ Blocked(t2) andty ¢ Blocked(t1). For
each color clas€’; in turn, consider the terminals ¢f; as black, and the non-terminals and terminals of other
classes as white. There is a graph of cost OPT in which evenyrtal of C; is k-vertex-connected to the root,
soC} is k-element-connected to the root in this graph even if tertainat inC'; are regarded as white vertices.
From Lemma 4.3, for everg';, we can find a set of internally disjoint paths from eachC; to C; U{r} —{t}
of total cost at mos2OPT. If these paths contain other terminaldin- C; as intermediate vertices, trim them
at the first terminal they intersect. It follows that Ztecj Cost(P;(t)) < 4kOPT, establishing property 2
above.

To conclude, we show that for each termihadfter iterationi, every other terminal is an end-point of fewer
thant + 2k paths inUéz1 Pj(t). LetC be the color class containingif ' € Blocked(t), at most one new
path inP;(¢) ends int’, as the paths farare disjoint except at terminals @, andt’ ¢ C'. By induction, before
this iterationt’ was the endpoint of fewer thdin — 1) + 2k paths fort, and so after this iteration, it cannot be
the endpoint of + 2k paths fort. If ¢’ ¢ Blocked(t), it was the endpoint of at mo$t — 1) + k£ — 1 paths
for ¢t before this iteration; even if all the paths fort in this iteration ended at, it is the endpoint of at most
1+ 2k — 2 paths fort after the iteration. This gives us the desired property tpeting the proof. O

Theorem[ 4.2 and Lemnia 4.3 have applications to more gensshlems including the node-weighted
version of SSk-CONNECTIVITY [12] and rent-or-buy and buy-at-bulk network desigh [5]. ¥veit discussion
of these applications in this version of the paper.
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5 Conclusions

Having generalized the reduction steplofi[21] to handlellet@ment connectivity, we demonstrated applica-
tions of this stronger Reduction Lemma to packing elememd @dge) disjoint Steiner trees and forests, and
also to SSk-CONNECTIVITY. We believe that the Reduction Lemma will find other appiaa in the future.
We close with several open questions:

e We believe that our bound on the number of element-disjoiaingr forests in a general graph can be
improved fromQ(k/(log |T'|log m)) to Q(k/log |T).

e Prove or disprove Conjecturé 1, on packing disjoint Steff@ests in graphs excluding a fixed minor.

¢ In a natural generalization of the Steiner Forest packimiplem, each non-terminal/white vertex has a
capacity and the goal is to pack forests subject to these capacitstreonts. In general graphs, it is
easy to reduce this problem to the uncapacitated/uniteitgpeersion (for example, by replacing a white
vertex of capacitye by a clique of size:), but this is not necessarily the case for restricted ctas$e
graphs. In particular, it would be interesting to p&ti) forests for the capacitated planar Steiner Forest
problem.

e The known hardness of approximation factor for S&ONNECTIVITY is 2(log n) whenk is a polyno-
mial function ofn, the number of vertice$ [28]. Can the current rati@Xk log |T'|) be improved?
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A Packing Element-Disjoint Trees and Forests

A Counterexample to the Random Coloring algorithm for packing Steiner Forests.

We first define a grapi/;,, which we use subsequentl§f;. has two black vertices andy, andk white vertices,
each incident to botl andy. (That is, there aré disjoint paths of white vertices fromto y.) Given a graph
G, we define the operation of insertid, along an edgeq € E(G) as follows: Add the vertices and edges of
H. to G, delete the edggg, and add edges fromto x andq to y. (If we collapsedH}, to a single vertex, we
would have subdivided the edge.) Figure 2 below show#l, and the effect of insertingl, along an edge.

We now describe the construction of our counterexample. ®ginbwith 2 black vertices and¢, andk
vertex-disjoint paths between them, each of length 1; there are no edges besides the ones just described.
Each of thek? vertices besides andt is white. It is obvious that andt arek-element-connected in this graph.
Now, to form our final graplt7, insert a copy ofd; along each of thé(k — 1) edges between a pair of white
vertices. Fig. 3 below shows the constructior(f.

The following claims are immediate:
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Figure 2: On the left, the grapH,. On the right, inserting it along a single edgge

Figure 3: The construction @¥s.

e The verticess andt arek-element-connected ify..
e For every copy off{;, the verticest andy arek-white connected ity

e The graphGy is bipartite, with the white vertices and the black vertit@sning the two parts.

We useGy, as an instance of the Steiner-forest packing probleandt form one group of terminals, and
for each copy offH}, the verticest andy of that copy form a group. From our claims above, each group is
k-element-connected.

If we use the algorithm of Cheriyan and Salavatipour, theeere edges between white vertices to be
deleted or contracted, so we move directly to the coloringsgh If colors are assigned to the white vertices
randomly, it is easy to see that no color class is likely tonemh ups andt¢. The probability that a white vertex
is given colori is Cl%m, for some constant. The verticess andt can be connected iff the same color is
assigned to all the white vertices on one of khgaths froms to ¢ in the graph formed frongs;, by contracting
eachH; to a single vertex. The probability thateryvertex on such a path will receive the same color is

k
(“%'T» ; using the union bound over thepaths gives us the desired result.

A.1 Packing Trees in Planar Graphs

Lemma A.1. LetG(T U W, E) be a planar graph with minimum degree 3, in whidhis a stable set. There
exists a vertex € T of degree at most0, with at most neighbors in7".

Proof: Our proof uses thelischargingtechnique. Assume, for the sake of contradiction, thatyevertex
t € T has degree at least 11, or has at least 6 neighbdrs By multiplying Euler’s formula by 4, we observe
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that for a planar grapli:(V, E) with face setF, (2|E| — 4|V|) + (2|E| — 4]|F|) = —8. We rewrite this as
> wev (d(v) —4) + 3 (I(f) — 4) = —8, whered(v) andl(f) denote the degree of vertexand length of
face f respectively.

Now, in our given grapltz, assignd(v) — 4 units ofchargeto each vertex € T"U W, and assigr(f) — 4
units of charge to each fage Note that the net charge on the graph is negative. (It islequag.) We describe
rules for redistributing the charge through the graph shelt after redistribution, if every vertexe T has
degree at least 11 or has at least 6 neighboffs, ithe charge at each vertex and face will be non-negative. But
no charge is added or removed (it is merely rearranged), @amagbtain a contradiction.

We use the following rules for distributing charge:

1. Every terminat € T distributesl /3 unit of charge to each of its neighborsli.

2. Every terminak € T distributesl /2 unit of charge to each triangular faget is incident to, unless the
face contains 3 terminals. In this case, it distributg3 unit of charge to the face.

We now observe that every vertex I6f and every face has non-negative charge. Each vertexV has
degree at leas (the graph has minimum degrég so its initial charge was at leastl. It did not give up
any charge, and rule 1 implies that it receiviet from each of its (at least) neighbors, all of which are in
T. Thereforeu has non-negative charge after redistribution. If a fideas lengthd or more, it already had
non-negative charge, and it did not give up anyjy I a triangle, it starts with chargel. It is incident to at
least2 terminals, sincéV is a stable set; we argue that it gaihgnit of charge, to end with charge From
rule 2, if f is incident to 2 terminals, it gaink/2 unit from each of them, and if it is adjacentiderminals, it
gainsl1/3 unit from each of them.

It remains only to argue that each termimaé 7' has non-negative charge after redistribution. For ease
of analysis, we describe a slightly modified version of thecharging in which each terminal loses at least as
much charge as under the original rules, and show that eatintd has non-negative charge under the new
discharging rules, listed below:

1. Every terminat gives1/3 unit of charge ta@veryneighbor.
2. Every terminak € T gives1/3 unit of charge to each adjacent triangle.

3. Every terminalt gets backl /3 unit of charge from each facg such that botht’s neighbors onf are
black.

We first prove that every terminaloses at least as much charge as under the original ruleals®Eig[4.
The terminalt is now giving 1/3 unit of charge to all its black neighbors, besides giving ttiharge to its
white neighbors. Itis giving less chargk/8 instead ofl /2) to some triangular neighbors, but every triangle is
incident to a black vertexX besideg; this neighbor ot received an extra/3 unit of charge front, and it can
give 1/6 = 1/2 — 1/3 to each face incident to the edge- ¢'. That is, the extra charge @f3 given byt to
t" is enough to compensate for the fact thatay givel/6 units less charge to the two faces incident to¢'.
Finally, note that if botht’s neighbors on some facgare black, the original rules requiteto give only1/3
unit to f, which it also does under the new rules. However, it has glv@nunit of charge to these two black
neighbors, and they do not need to use this to compensatgifdng too little charge tgf; therefore, they may
each returri /6 unit of charge ta.

We now argue that every terminal has non-negative chargeruhd new rules. Let € T have degreé;
we consider three cases:
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(a): Old Rules. (c): New Rules.
1/2 1/ 1/3 ' 1/3
13 1'/3 1/‘3 1'/3

(d): Old Rules. (e): Equivalence of the rules (f): New Rules.

Figure 4: Terminals lose at least as much charge under theuiesv
Part (a) shows the charge given away by a terminal under tiginak rules, while part (c) shows the charge given
away under the new rules; the triangles now receive lesggehaPart (b) shows that the extra 1/3 unit of charge
given to the black neighbor under the new rules can be splialsgamong the two triangles, which has the same
effect as giving 1/2 unit to the triangles. Similarly, pad) Shows the charge given away by a terminal under the
original rules, while part (f) shows the charge under the mele 3: The central triangular face receives 1/3 unit
of charge, but also returns 1/3 charge to the terminal as i®theighbors on this face are black. Part (e) shows
that the extra 1/3 unit of charge given to each black neighlyater the new rules can be split among the trian-
gles, so the effect is the same as giving 1/3 unit of chargdnéocentral face, and 1/2 to each of the other faces.

1. If d > 12, t gives awayl /3 to each of itsd neighbors and incident faces, so the total charge it gives
away is2d/3. (It may also receive some charge, but we ignore this.) Toerethe net charge onhis
(d—4)—2d/3 = (d/3) — 4; asd > 12, this cannot be negative.

2. If d = 11, we count the number of triangles incidentttdf there are 10 or fewet, gives awayl /3 unit
of charge to each of its 11 neighbors, and at mog8 to its adjacent triangles, so the net charget on
is at least(11 — 4) — 11/3 — 10/3 = 0. If ¢t is incident to 11 triangles, it must be adjacent to at least 6
black vertices, as each triangle incident imust be adjacent to a black neighbortpénd no more than
2 triangles incident t@ can share a neighbor of Sincet has degree 11 and at least 6 black neighbors,
some pair of black neighbors 6fire on a common face, ananust receivel /3 unit of charge from this
face. It follows that the charge aris at least11 —4) —11/3 —11/3+1/3 = 0.

3. If d < 10, t has at least 6 black neighbors by hypothesis. It has at thest white neighbors, so there
are at leasé — (d — 6) = 12 — d facesf such that botht’s neighbors oryf are black. (Delete the white
neighbors; there are at ledstaces incident t@ on which both its neighbors are black. When each white
vertex is added back, it can only decrease the number of swgs foy 1.) The terminalgives away
1/3 unit of charge to each of it neighbors and at mostincident triangles, and receivég3 unit of
charge from each face on which both its neighbors are blatleréfore, the net charge ans at least
(d—4)—2d/3+ (12 —-d)/3=0. O

Proof of Lemmal3.6: Our argument is very similar to that of the proof in SecfidtBat there are two terminals
with at least[k/10] edges between them, except that here we use Lémma A.1 irdt&adoreni 3.5.

Let G be the planar multigraph of the reduced instance; everyitairhas degree at leaktin G. Construct
a planar graphG’ from G by keeping a single copy of each edge; from Lenimd A.1 abovegserminal
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t has degree at most 10, and at most 5 black neighborswldagnote the number of white neighbors tof
andb the number of black neighbors. Since each white vertex islémt to only a single copy of each edge
in G, there must be at leastk — w)/b] copies inG of some edge betweenand a black neighbor. But
b < 5andb+ w < 10; it is easy to verify sincék > 10, the smallest possible value ¢fk — w)/b] is
[(k—5)/5] = [k/5] — L. O

A.2 An Algorithm for Packing Steiner Forests in Planar and Bounded-genus Graphs

For the Planar Steiner Forest Packing problem, we use arithlgovery similar to that for packing Steiner Trees
in Sectior 3.2. Now, as input, we are given sEts. . . T,,, of terminals that are each internaltyconnected, but
someT; and7; may be poorly connected. Precisely as before, as long asig¢acimtains at least 2 terminals,
Lemmd3.6 is true, so we can contract some pair of terminals that have[k /5| — 1 parallel edges between
them. Note that it, 5 are in the sam&;, after contraction, we have an instance in whiglcontains fewer
terminals, and we can apply induction.t{f ¢, are in different set§;, 7}, then after contracting, all terminals
in T; andT; are pairwisek-connected, So we can merge these two groups into a single set

In proving the crucial Lemma_3.6, we argued that in the mudfip G of the reduced instance, every
terminal has degree at leds{since it isk-element-connected to other terminals), and in the gtajph which
we keep only a single copy of each edge, some terminal hag@egmost 10; therefore, there dig/10]
copies of some edge. However, in the Steiner Forest proldemeT; may contain only a single terminal
(after several contraction steps). The terminalay be poorly connected to the remaining terminals; theeefo
it may have degree less thanin the multigraphG. If ¢ is the unique low-degree terminal &, we may not
be able to find a pair of terminals with a large number of edgdwden them. As a concrete example, consider
the graphGy, defined at the beginning of this appendix. (See also Fig. @ nate thaiy, is planar.) We have
one terminal sef; = {s,t}, and other set%; containing the two terminals of each copydf. After several
contraction steps, each copy Hf, may have been contracted together to form a single termazalh such
terminal is only 2-connected to the rest of the graph. In #teiced instance, there is only a single copy of each
edge, and Lemmnia 3.6 does not hold.

We solve this problem by eliminating a sEtwhen it has only a single terminal; at this point, we can apply
induction and proceed. We formalize this intuition in thédaing lemma:

LemmaA.2. LetG(V, E) with a givenT' C V be a planar graph, and € T be an arbitrary terminal of degree
d. LetG’ be the graph constructed froti by deletingt, and inserting ad x d grid of white vertices, with the
edges incident toin G made incident to distinct vertices on one side of the newigr@'. Then:

1. G’ is planar.
2. For every pairu, v of terminals inG’, ki, (u,v) = kg (u,v).

3. Any set of element-disjoint subgraphsfcorresponds to a set of element-disjoint subgraphs.of

Proof Sketch: See Figurél5 showing this operation; it is easy to observediian a planar embedding of
G, one can construct a planar embedding=6f It is also clear that a set of element-disjoint subgraph&’in
correspond to such a setdy every subgraph that uses a vertex of the grid can contaitethenalt.

It remains only to argue that the element-connectivity @rgwther pair of terminals is preserved. ket
be an arbitrary pair of terminals; we show that their eleraminectivity inG’ is at least their connectivity
k' (u,v) in G. Fix a set ofx’(u,v) paths inG from u to v; let P be the paths that use the terminaland
let ¢ = |P|. We locally modify these paths in? by routing them through the grid, so we obtaif{u, v)
element-disjoint paths 6.

Let P, denote the set of prefixes fromto ¢ of the ¢ paths inP, and letP, denote the suffixes fromto v
of these paths. Lelf denote thel x d grid that replacesin G’; we useP,, andP,, to denote the corresponding
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Figure 5: Replacing a terminal by a grid of white verticessprees planarity and element-connectivity.

paths inG’ from u to vertices ofH, and from vertices i to v respectively. LeZ andO denote the vertices
of H incident to paths irP,, andP,. It is not difficult to see that there are a set of disjoint gaththe gridH
connecting thée distinct vertices irZ to those inO; using the paths dP,,, together with the paths througfi
and the paths oP,, gives us a set of disjoint paths @ from « to v. O

A Counterexample to the existence of 2 terminals witlf2(k) “Parallel edges” between them: Recall that
in the case of planar graphs (or graphs of bounded genus)rguedathat there must be two terminalst,
with Q(k) “parallel edges” between them. (That is, there @f&) degree-2 white vertices adjacentttoand
t2.) This is not necessarily the case even in graphs of treBw8idThe graphk(s ., the complete bipartite graph
with 3 vertices on one side aridon the other, has treewidth 3. If the three vertices on oreaid the terminal
setT" and thek vertices of the other side are non-terminals, it is easy ¢otlsetx’(T') = k, but every white
vertex has degree 3.

In this example, there are only 3 terminals, so the treeipgcadgorithm of Cheriyan and Salavatipoli [9]
would allow us to find2(k/ log |T'|) = Q(k) trees connecting them. Adding more terminals incidentltthal
white vertices would raise the treewidth, so this examplesdwot immediately give us a low-treewidth graph
with a large terminal set such that there are few paralleésdgtween any pair of terminals. However, we can
easily extend the example by defining a gr&ph as follows: Letly,Ts,...T,, be sets of 2 terminals each,
let Wy, W, ... W,,_1 each be sets df white vertices, and let all the vertices in eddh be adjacent to both
terminals in7; and both terminals iff; ;. (See Figlb below.) The gragh,, has2m terminals, T = | J; T;
is k-element-connected, and it is easy to verify thaf has treewidth 4. However, every white vertex has
degree 4, so there are no “parallel edges” between termirf@ee can modify this example to construct a
counterexample grapfi,,, with treewidth 3 by removing one terminal from each altegrigt)

o) e} J o)
n W Ty Wy, T3 Wy T, Wi Ty
Figure 6: A graph of treewidth 4 with many terminals, but naralel edges”.
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