
Distortion is Fixed Parameter Tractable

Michael R. Fellows1 Fedor V. Fomin2 Daniel Lokshtanov2 Elena Losievskaja3

Frances A. Rosamond1 Saket Saurabh2

1 University of Newcastle, Newcastle, Australia.
{michael.fellows|frances.rosamond}@newcastle.edu.au

2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
{fedor.fomin|daniello|saket.saurabh}@ii.uib.no

3 Department of Computer Science, University of Iceland, Iceland.
elenal@hi.is

Abstract. We study low-distortion embedding of metric spaces into the line, and more generally,
into the shortest path metric of trees, from the parameterized complexity perspective. Let M =
M(G) be the shortest path metric of an edge weighted graph G, with the vertex set V (G) and
the edge set E(G), on n vertices. We give the first fixed parameter tractable algorithm that for
an unweighted graph metric M and integer d either constructs an embedding of M into the line
with distortion at most d, or concludes that no such embedding exists. Our algorithm requires
O(nd4(2d + 1)2d) time which is a significant improvement over the best previous algorithm of
Bădoiu et al. that runs in time O(n4d+2dO(1)). Because of its apparent similarity to the notoriously
hard Bandwidth Minimization problem, we find it surprising that this problem turns out to be
fixed parameter tractable.

We extend our results on embedding unweighted graph metric into the line in two ways. First, we
give an algorithm to construct small distortion embeddings of weighted graph metrics. The running
time of our algorithm is O(n(dW )4(2d + 1)2dW ) where W is the largest edge weight of the input
graph. To complement this result, we show that the exponential dependence on the maximum edge
weight is unavoidable. In particular, we show that deciding whether a weighted graph metric M(G)
with maximum weight W < |V (G)| can be embedded into the line with distortion at most d is
NP-Complete for every fixed rational d ≥ 2. This rules out any possibility of an algorithm with
running time O((nW )h(d)) where h is a function of d alone. Secondly, we consider more general
host metrics for which analogous results hold. In particular, we prove that for any tree T with
maximum degree ∆, embedding M into a shortest path metric of T is fixed parameter tractable,
parameterized by (∆, d).

1 Introduction

Given an undirected graph G with the vertex set V (G) and the edge set E(G) together with
a weight function w that assigns a positive weight w(uv) to every edge uv ∈ E(G), a natural
metric associated with G is M(G) = (V (G), DG) where the distance function DG

1 is the
weighted shortest path distance between u and v for each pair of vertices u, v ∈ V (G). We
call M(G) as the (weighted) graph metric of G. If w(uv) = 1 for every edge uv ∈ E(G), we
say that M(G) = (V (G), DG) is an unweighted graph metric. For a subset S of V (G), we say
that M [S] = (S,D′′) (where D′′ is D restricted to S2) is the submetric of M(G) induced by
S. Given a graph metric M and another metric space M ′ with distance functions D and D′, a
mapping f : M → M ′ is called an embedding of M into M ′. The mapping f has contraction
cf and expansion ef if for every pair of points p, q in M , D(p, q) ≤ D′(f(p), f(q)) · cf and
D(p, q) · ef ≥ D′(f(p), f(q)) respectively. We say that f is non-contracting if cf is at most 1. A
non-contracting mapping f has distortion d if ef is at most d.

Embedding a graph metric into a simple metric space like the real line has proved to be
a useful tool in designing algorithms in various fields. A long list of applications given in [8]

1 We also denote the distance function DG by D if the graph in consideration is clear from the context.



includes approximation algorithms for graph and network problems, such as sparsest cut, mini-
mum bandwidth, low-diameter decomposition and optimal group steiner trees, and online algo-
rithms for metrical task systems and file migration problems. These applications often require
algorithms for finding low distortion embeddings, and the study of the algorithmic issues of
metric embeddings has recently begun to develop [1–3, 11]. For example, Bădoiu et al. [1, 3]
describe approximation algorithms and hardness results for embedding general metrics into the
line and tree metrics respectively. In particular they show that the minimum distortion for a
line embedding is hard to approximate up to a factor polynomial in n even for weighted trees
with polynomial spread (the ratio of maximum/minimum weights). Hall and Papadimitriou [9]
studied the hardness of approximation for bijective embeddings. Independently from the algo-
rithmic viewpoint, the problem of finding a low-distortion embedding between metric spaces is
a fundamental mathematical problem [10, 12] that has been studied intensively.

In many applications one needs the distortion of the required embedding to be relatively
small. Hence it is natural to study the algorithmic issues related to small distortion embeddings
within the framework of parameterized complexity [6, 7, 13]. This paradigm associates a natural
secondary measurement to the problem and studies the algorithmic behavior of the problem
in terms of the associated measurement, called the parameter. In this paper we consider a
natural parameter, the distortion d, and consider the feasibility of having an algorithm of time
complexity g(d) · nO(1) for the problem of embedding weighted graph metrics into the line with
distortion at most d.

What would one expect about the complexity of embedding an unweighted graph metric into
the line, parameterized by the distortion d? At a glance, the problem seems to closely resemble
the Bandwidth Minimization problem. In the Bandwidth Minimization problem one is
given a graph G and asked to find a bijective mapping f : V (G) → {1, . . . , n}, for which the
bandwidth, i.e. b = max(u,v)∈E(G) |f(u)−f(v)|, is minimized. This problem is known to be W [t]-
hard for all t ≥ 1 [4, 5], when parameterized by b. Unless an unlikely collapse of parameterized
complexity classes occurs, this rules out any possibility of having an algorithm with running
time g(b) · nO(1) for Bandwidth Minimization and thus the algorithm of Saxe [14] running
in time O(4bnb+1) is essentially the best possible. Previous to this paper, the best algorithm
(by Bădoiu et al. [2]) to decide whether an unweighted graph metric can be embedded into the
line with distortion at most d has a running time where d appears in the exponent of n, that is
O(n4d+2 ·dO(1)). Because of the apparent similarity to the notoriously hard bandwidth problem,
it is very surprising that, in fact, this fundamental problem of embedding unweighted graph
metrics into the line turns out to be fixed parameter tractable (FPT).

Theorem 1. Given an unweighted n-vertex graph G, it is possible in time O(nd4(2d + 1)2d)
either to embed M(G) into the real line with distortion at most d, or to conclude correctly that
no such embedding exists.

The running time of the algorithm is linear for every fixed d and clearly improves the running
time of the previously known algorithm. In fact, one can apply Theorem 1 in order to check
whether the unweighted graph metric can be embedded into the line with distortion at most
lg n/ lg lg n in time polynomial in n.

Having coped with the unweighted case, we return to the study of low-distortion embeddings
of weighted graph metrics into the line. We show that if the maximum weight of any edge is
bounded by W , then we can modify the algorithm presented in Theorem 1 to give an algorithm
to decide whether M(G) can be embedded into the line with distortion at most d in time
O(n(dW )4(2d + 1)2dW ). However the weights in a graph metric do not need to be small, and
hence this algorithm is not sufficient to give a g(d) · nO(1) time algorithm for the problem of
embedding weighted graph metrics into the line. Can such an algorithm exist? Unfortunately,
it turns out that our O(n(dW )4(2d + 1)2dW ) algorithm essentially is the best one can hope for.
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In fact, our next result rules out not only any possibility of having an algorithm with running
time of the form g(d) · nO(1), but also any algorithm with running time (nW )h(d), where h only
depends on d.

Theorem 2. Deciding whether a weighted graph G metric M(G) can be embedded into the line
with distortion at most d is NP-Complete for every fixed rational d ≥ 2. The problem remains
NP-Complete even when the maximum weight of an edge in G is at most |V (G)|.

Another direction for generalizing Theorem 1 is to look for other simple topologies or host
metrics for which an analogous result to Theorem 1 holds. Kenyon et al. [11] provided FPT
algorithms for the bijective embedding of unweighted graph metrics into the metric of a tree
with bounded maximum degree ∆. The running time of their algorithm is n2 · 2∆α3

where α
is the maximum of cf and ef . An important point, observed in [2], is that constraining the
embedding to be bijective (not just injective, as in our case) is crucial for the correctness of
the algorithms from [11]. We complement the FPT result of Kenyon, Rabani and Sinclair [11]
by extending our results to give an algorithm for the problem of embedding unweighted graph
metrics into a metric generated by a tree with maximum degree bounded by ∆, parameterized
by distortion d and ∆.

Theorem 3. Given an unweighted n-vertex graph G, a tree T with maximum degree ∆, and an
integer d, it is possible to embed M(G) into M(T ) with distortion at most d in time n2 · |V (T )| ·
2O((5d)∆d+1 ·d), or to conclude correctly that no such embedding exists.

Why stop at bounded degree trees? Can our results be extended to yield FPT algorithms for
low distortion embeddings into other, more complicated topologies? At a first glance, this seems
to be the case. However, even a simple change in the topology of the host metric can change the
behavior of the problem, or even make the problem completely intractable. For embedding into
the line it is enough to control the local properties of the embedding whereas this is not sufficient
for embedding into bounded degree trees. The techniques we use to cope with these difficulties
do not look to be extendable to the problem of finding low-distortion embeddings into cycles, an
interesting open problem that seems to exhibit even more non-locality than that of embedding
into bounded degree trees. A more dramatic example is that of low-distortion embeddings of
unweighted graph metrics into wheels (cycle with one additional vertex adjacent to all the
vertices of a cycle). In fact, it turns out that deciding whether one can embed an unweighted
graph metric into a wheel with distortion at most 2 is NP-complete, by a simple reduction from
the Hamiltonian Cycle problem. Thus, the problems of embedding an unweighted graph
metric into cycles and trees of unbounded degree remain interesting open problems.

2 Algorithms for embedding graph metrics into the line

In this section we give an algorithm for embedding unweighted graph metrics into the line. We
slightly abuse the terminology here by saying embedding of a graph G instead of embedding
of the unweighted graph metric M(G) of G. Before we proceed to the details of the algorithm
we need a few observations that allow us to only consider a specific kind of embeddings. For a
non-contracting embedding f of a graph G into the line, we say that vertex u pushes vertex v
if D(u, v) = |f(u)− f(v)|.

Observation 1 [?] 2 If f(u) < f(v) < f(w) and u pushes w, then u pushes v and v pushes w.

2 Proofs of results labelled with [?] have been moved to the appendix due to space restrictions.
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For an embedding f , let v1, v2, . . . , vn be an ordering of the vertices such that f(v1) <
f(v2) < . . . < f(vn). We say that f is pushing if vi pushes vi+1, for each 1 ≤ i ≤ n− 1.

Observation 2 [?] If G can be embedded into the line with distortion d, then there is a pushing
embedding of G into the line with distortion d. Furthermore, every pushing embedding of G into
the line is non-contracting.

Observation 3 Let f be a pushing embedding of a connected graph G into the line with distor-
tion at most d. Then D(vi−1, vi) ≤ d for every 1 ≤ i ≤ n.

By Observation 2, it is sufficient to work only with pushing embeddings. Our algorithm
is based on dynamic programming over small intervals of the line. The intuition behind the
algorithm is as follows. Let us consider a distortion d embedding of G into the line and an
interval of length 2d + 1 of the line. First, observe that no edge can have one end-point to
the left of this interval and one end-point to the right. This means that if there is a vertex u
embedded to the left of this interval and another vertex v that has been embedded to the right,
then the set of vertices embedded into the interval form an u, v-separator. Moreover, for each
edge, its end-points can be mapped at most d apart, and hence there is no edge with one end-
point to the left of this interval and the other end-point in the rightmost part of this interval.
Thus just by looking at the vertices mapped into an interval of length 2d + 1, we deduce which
of the remaining vertices of G were mapped to the left and which were mapped to the right of
this interval. This is a natural division of the problem into independent subproblems and the
solutions to these subproblems can be used to find an embedding of G. Next we formalize this
intuition by defining partial embeddings and showing how they are glued onto each other to form
a distortion d embedding of the input graph.

It is well known (and it follows from Observation 2) that there always exists an optimal
embedding with all the vertices embedded into integer coordinates of the line. Without loss of
generality, in the rest of this section we only consider pushing embeddings of this type. We also
assume that our input graph G is connected.

Definition 1 For a graph G and a subset S ⊆ V (G), a partial embedding of S is a function
f : S → {−(d + 1), . . . , d + 1}. We define S

[a,b]
f , −(d + 1) ≤ a ≤ b ≤ d + 1, to be the set of

all vertices of S which are mapped into {a, . . . , b} by f (let us remark that this can be ∅). We
also define SL

f = S
[−(d+1),−1]
f and SR

f = S
[1,d+1]
f . For an integer x, −(d + 1) ≤ x ≤ d + 1, we put

Sx
f = S

[x,x]
f . Finally, we put L(f) (R(f)) to denote the union of the vertex sets of all connected

components of G \ S that have neighbors in SL
f (SR

f ).

Definition 2 A partial embedding f of a subset S ⊆ V (G) is called feasible if (1) f is a non-
contracting distortion d embedding of S; (2) L(f) ∩ R(f) = ∅; (3) Every neighbor of S0

f is in

S; (4) if R(f) = ∅, then Sd+1
f is nonempty; (5) if L(f) = ∅, then S

−(d+1)
f is nonempty; (6) if

f(u) + 1 < f(v) and S
[f(u)+1,f(v)−1]
f = ∅, then f(v)− f(u) = D(u, v). (Basically, u pushes v.)

The properties 1, 2, and 3 of this definition will be used to show that every distortion d embed-
ding of G into the line can be described as a sequence of feasible partial embeddings that have
been glued onto each other. Properties 4, 5 and 6 are helpful to bound the number of feasible
partial embeddings.

Definition 3 Let f and g be feasible partial embeddings of a graph G, with domains Sf and
Sg, respectively. We say that g succeeds f if (1) S

[−d,d+1]
f = S

[−(d+1),d]
g = Sf ∩ Sg; (2) for every

u ∈ Sf ∩ Sg, f(u) = g(u) + 1; (3) Sd+1
g ⊆ R(f); (4) S

−(d+1)
f ⊆ L(g).
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The properties 1 and 2 describe how one can glue a partial embedding g that has been
shifted one to the right onto another partial embedding f . Properties 3 and 4 are employed to
enforce “intuitive” behavior of the sets L(f), R(f), L(g) and R(g). That is, since g is glued on
the right side of f , everything to the right of g should appear in the right side of f . Similarly,
everything to the left of f should be to the left of g.

Lemma 1. [?] For every pair of feasible partial embeddings f and g of subsets Sf and Sg of
V (G) such that g succeeds f , we have R(f) = R(g) ∪ Sd+1

g and L(g) = L(f) ∪ S
−(d+1)
f .

Lemma 2. For every integer d, a graph G has an embedding of distortion at most d if and
only if there exists a sequence of feasible partial embeddings f0, f1, f2, . . . , ft such that for each
0 ≤ i ≤ t− 1, fi+1 succeeds fi, and L(f0) = R(ft) = ∅.

Proof. Let f be a pushing embedding of G with distortion d which maps all vertices to integers
greater than or equal to −(d+1) and maps one vertex to −(d+1). Let t be the smallest integer
such that f(v) ≤ t + d + 1 for every v ∈ V (G). For every 0 ≤ i ≤ t, let Si be the set of vertices
that f maps to {i − (d + 1), . . . , i + d + 1}. We define fi : Si → {−(d + 1), . . . , d + 1} to be
fi(v) = f(v)−i, v ∈ Si. Then for every i ≤ t−1, fi is a feasible partial embedding, fi+1 succeeds
fi, and L(f0) = R(ft) = ∅.

In the other direction, let f0, f1, f2, . . . , ft be a sequence of feasible partial embeddings such
that for each i, fi+1 succeeds fi and L(f0) = R(ft) = ∅. Let Si be the domain of fi. First we
show that for every vertex v there is an index i such that v ∈ Si. If v /∈ S0, then v ∈ R(f0).
Let k be the largest integer such that v ∈ R(fk). Because R(ft) = ∅, we have that k < t. Thus,
v ∈ R(fk) \R(fk+1). By Lemma 1, R(fk) \R(fk+1) ⊆ Sd+1

fk+1
which implies that v ∈ Sk+1.

We claim that for every v ∈ Si∩Sj , fi(v)+i = fj(v)+j. Indeed, let k be the smallest integer
such that v ∈ Sk. Let k′ = min{t, fk(v) + k + d + 1}. For every i and j, such that k ≤ i, j ≤ k′,
we have fi(v) + i = fj(v) + j. Furthermore, if k′ < t, then v ∈ L(fk′+1) and thus by Lemma 1,
v ∈ L(fk′′) for every k′ < k′′ ≤ t. Since k is the smallest integer such that v ∈ Sk, we have that
if v ∈ Si ∩ Sj , then fi(v) + i = fj(v) + j.

From the previous two paragraphs, we conclude that there is a function f such that for
every v ∈ Si, f(v) = fi(v) + i. It remains to prove that f is a distortion d embedding of G into
the line. We say that a pair of vertices u and v are in conflict if either |f(u)− f(v)| < D(u, v),
or if |f(u)− f(v)| > d ·D(u, v). Let us note that if no pair of vertices are in conflict, then f is
a distortion d embedding of G. We prove that no two vertices in Si ∪ L(fi) are in conflict by
induction on i. For i = 0 this is true as f0 is a feasible partial embedding. Assume now that the
statement is true for every i < k.

If Sd+1
fk

is empty, then the statement trivially holds for k. Otherwise, for some vertex v,
Sd+1

fk
= {v}. To complete the proof, it is sufficient to show that v is not in conflict with

any other vertex u in Sk ∪ L(fk). If u is in Sk, u and v are not in conflict because fk is
a feasible partial embedding. If u is not in Sk, then u is in L(fk) and every shortest path
from u to v in G must contain a vertex w ∈ SL

k . Since f(u) ≤ f(w) ≤ f(v), we have that
|f(v) − f(u)| = f(v) − f(w) + f(w) − f(u) ≥ D(v, w) + D(w, u) = D(v, u). Therefore, |f(v) −
f(u)| = f(v) − f(w) + f(w) − f(u) ≤ d · D(v, w) + d · D(w, u) = d · D(v, u). Thus no pair of
vertices in Si ∪ L(fi) are in conflict for every i ≤ t. However, for i = t, Si ∪ L(fi) = V (G) and
we conclude that no pair of vertices are in conflict. ut

For a vertex v of a graph G and integer r ≥ 0 we denote the ball of radius r centered in
v, which is the set of vertices at distance at most r in G, by B(v, r). The local density of a
graph G is δ = maxv∈V (G),r>0

|B(v,r)−1|
2r . We will apply the following well known lower bound on

distortion.
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Lemma 3 ([1]). [Local Density] Let G be a graph that can be embedded into the line with
distortion d. Then d is at least the local density δ of G.

Applying Lemma 3 we can bound the number of possible feasible partial embeddings. Ob-
serve that each feasible partial embedding f can be represented as a number 1 ≤ t ≤ d and a
sequence of vertices v0v1 . . . vq such that t +

∑q
i=1 D(vi−1, vi) ≤ 2d + 1 and D(vi−1, vi) ≤ d for

every i ≥ 1. This is done by simply saying that the domain S of f is the set {v0, v1, . . . , vq} and
that f(va) = −(d + 1) + t +

∑a
i=1 D(vi−1, vi). Let N (x) be the maximum number of sequences

v0v1 . . . vq such that
∑q

i=1 D(vi−1, vi) = x, where maximum is taken over all v0 ∈ V (G). For any
negative number x, N (x) = 0.

Lemma 4. For x ∈ Z, N (x) ≤ (2d + 1)x.

Proof. We prove the Lemma by induction on x. For x ≤ 0, the statement is trivially true.
Suppose that the inequality holds for every x′ < x. For a vertex v0, let S be the set of all
vertex sequences v0v1 . . . vq starting with v0 with the property that

∑q
i=1 D(vi−1, vi) = x. For

i ∈ {1, . . . , x}, let Si be the set of sequences in S such that D(v0, v1) = i. Let C(v0, i) =
|B(v0, i) \ B(v0, i − 1)|. Then |Si| ≤ C(v0, i) · N (x − i) and |S| =

∑x
i=1 |Si| ≤

∑x
i=1 C(v0, i) ·

N (x− i). By the induction assumption,
∑x

i=1 C(v0, i) · N (x− i) ≤ ∑x
i=1 C(v0, i) · (2d + 1)x−i.

Furthermore, by Lemma 3, we have that
∑i

j=1 C(v0, i) ≤ 2di for every i. Because (2d + 1)y

is a convex function of y, it follows that the sum
∑x

i=1 C(v0, i) · (2d + 1)x−i subject to the
constraints

∑i
j=1 C(v0, j) ≤ 2di, 1 ≤ i ≤ x, is maximized when each of C(v0, i) = 2d. In this

case
∑x

i=1 C(v0, i) · (2d + 1)x−i ≤ 2d ·∑x
i=1(2d + 1)x−i which is a geometric sequence with sum

upper bounded by 2d · (2d + 1)x ·∑∞
i=1(2d + 1)−i = (2d + 1)x. Since this holds for each choice

of v0, the inequality holds also for x. ut

Corollary 1. For a graph G with local density at most d the number of possible feasible partial
embeddings of subsets of V (G) is at most O(n(2d + 1)2d).

Proof. By discussions preceding Lemma 4, for each fixed first vertex v0 and each value of t,
there are at most N (2d + 1− t) feasible partial embeddings that map v0 to −(d + 1) + t Thus
the number of feasible partial embeddings is at most

∑d
t=1 nN (2d + 1 − t). By Lemma 4, this

is at most n ·∑d
t=1(2d + 1)2d+1−t ≤ 3

2n(2d + 1)2d. ut

Now we are in the position to prove Theorem 1.

Proof. [of Theorem 1] The algorithm proceeds as follows. First, check whether G has local
density δ bounded by d. Checking the local density of G can be done in time linear in n because
if |E(G)| ≥ nd we can immediately answer “no”. If δ > d, answer “no”. Otherwise, we can
test whether the conditions of Lemma 2 apply. That is, we construct a directed graph D where
the vertices are feasible partial embeddings and there is an edge from a partial embedding fx

to a partial embedding fy if fy succeeds fx. Checking the conditions of Lemma 2, reduces to
checking for the existence of a directed path starting in a feasible partial embedding f0 with
L(f0) = ∅ and ending in a feasible partial embedding ft with R(ft) = ∅. This can be done in
linear time in the size of D by running a depth first search in D. The number of vertices in
D is at most O(n(2d + 1)2d). Every vertex of D has at most O(d2) edges going out of it, as
a feasible partial embedding fy succeeding another feasible partial embedding fx is completely
determined by fx together with the vertex that fy maps to d + 1 (or the fact that fy does
not map anything there). Using prefix-tree-like data structures one can test whether a given
partial embedding fx succeeds another in O(d2) time. The total running time is then bounded
by O(nd4(2d + 1)2d). ut
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In the remaining part of this section we show how the algorithm of Theorem 1 can be
generalized to handle metrics generated by weighted graphs. More precisely, let G be a graph
with weight function w : E(G) → Z+ \ {0} and M = (V (G), D) be the weighted shortest
path distance metric of G. Now we give an outline of an algorithm for embedding M into
the line, parameterized by the distortion d and the maximum edge weight W , that is, W =
maxe∈E(G){w(e)}. The definition of a pushing embedding and Observations 1 and 2 work out
even when G is a weighted graph. Once we define the notion of partial embeddings, other notions
like feasibility and succession are adapted in an obvious way. Given a graph G and a subset
S ⊆ V (G), a partial embedding of S is a function f : S → {−(dW + 1), . . . , (dW + 1)}.
We can prove results analogous to Lemma 1 and Lemma 2 with the new definitions of partial
embeddings, feasibility and succession. Thus, we can give an algorithm for this problem similar to
the algorithm presented in Theorem 1. The runtime of this algorithm is dominated by the number
of different feasible partial embeddings. Let Bw(v, r) denote the set of vertices at weighted
distance at most r from v and δw be the analogous notion of weighted local density of a graph
G. It is easy to see that if M can be embedded into the line with distortion at most d then
d ≥ δw. This result immediately upper bounds the number of feasible partial embeddings by
n · (dW )O(dW ). In what follows next we show that the number of feasible partial embeddings
actually is bounded by n · (2d + 1)2dW . Let N (x) be as in Lemma 4. For each fixed first
vertex v0 in the partial embedding, and each value of 1 ≤ t ≤ (2dW + 1), there are at most
N (2dW + 1− t) feasible partial embeddings that map v0 to −(dW + 1) + t. Thus the number
of feasible partial embeddings is at most

∑dW
t=1 n ·N (2dW +1− t). By Lemma 4, this is at most

n ·∑dW
t=1(2d + 1)2dW+1−t ≤ 3

2n(2d + 1)2dW .

Theorem 4. Given a weighted graph G with maximum edge weight W , it is possible in time
O(n(dW )4(2d+1)2dW ) to embed M(G) into the real line with distortion at most d, or to conclude
correctly that no such embedding exists.

3 Graph metrics into the line is hard for fixed rational d ≥ 2

We complement Theorem 4 by proving that deciding whether a given weighted graph metric
can be embedded into the line with distortion at most d is NP-complete for every fixed rational
d ≥ 2. Our reduction is from 3-Coloring, one of the classical NP -complete problems. For
input G to 3-Coloring we construct an edge weighted graph G′. For an edge uv ∈ E(G′),
w(uv) will be the weight if the edge uv. The weighted shortest path metric M(G′) will then be
the input to our embedding problem. Let n = |V (G)|, m = |E(G)| and d = a

b ≥ 2 for some
integers a and b. Let e1, e2, . . . , em be an ordering of the edges of G, and choose the integers
g = 5a − 1, r = 10b, q = m(2n + 1), L = 10qb and t = abL + 1. We start constructing G′

by making two cliques C1 and C2 of size t. Let C1 = {c1, c2, . . . , ct} and C2 = {c′1, c′2, . . . , c′t}.
Let w(cicj) = w(c′ic

′
j) = d|i − j|/de. Now, we make q − 1 separator vertices and label them

s1, . . . , sq−1. We make q gadgets T1, . . . , Tq encoding the edges of G. For every edge ei = uv
there are 2n + 1 gadgets, namely Ti+mp for every 0 ≤ p < 2n + 1. Each such gadget, say Ti+mp,
consists of three vertices, one vertex corresponding to u, one vertex corresponding to v and
one vertex corresponding to ei. These three vertices form a triangle with edges of weight 1. For
every j between 1 and q we connect all vertices of Tj to sj−1 and sj with edges of weight g.
Whenever this implies that we need to connect something to the non-existing vertices s0 and
sq we connect to ct and c′1 respectively. Now, for every pair of vertices x ∈ Ti and y ∈ Tj that
correspond to the same vertex or edge of G we add an edge of weight r|i − j| between x and
y. Finally, we add an edge with weight L between ct and c′1. This concludes the construction of
G′. Figure 1 shows the general structure of the construction. The next lemma essentially shows
that if there is an edge uv ∈ E(G′) then that is the shortest weight path between u and v in G′.
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Fig. 1. The figure shows the overall structure of the construction. The numbers appearing between C1 and C2

indicate edge weights.

Lemma 5. [?] For every edge uv in E(G′), DG′(u, v) = w(uv).

Lemma 6. [?] If G is 3-colorable then there is an embedding f of M(G′) into the line with
distortion at most d.

Lemma 7. If there is an embedding f of M(G′) into the line with distortion at most d then G
is 3-colorable.

Proof. Without loss of generality, we assume that f is a pushing embedding (Observation 2).
Let σ be the ordering of the vertices of G imposed by f . Now we describe the structure of the
ordering σ. Towards this, we first prove that σ orders the vertices of the clique C1 consecutively.
That is, if u and v are the leftmost and the rightmost vertex of C1 with respect to the ordering
σ, then there is no vertex w in V (G′) \ C1 such that f(u) < f(w) < f(v). We know that
|f(u)− f(v)| ≥ |C1| − 1. However c1ct is the only edge in C1 satisfying |f(u)− f(v)| ≤ w(uv)d.
Furthermore w(c1ct)d = |C1| − 1 and hence σ must order the vertices of C1 consecutively with
c1 and ct as its endpoints. Similarly σ must order the vertices of C2 consecutively with c′1 and
c′t as its endpoints. Also, without loss of generality we can assume that C1 appears before C2 in
our ordering, because if C2 appears first we can reverse our ordering. Now, if ct is the leftmost
vertex of C1 or c′1 is the rightmost vertex of C2 then the edge ctc

′
1 is stretched by a factor more

than d, as t > Ld. Thus, ct is the rightmost endpoint of C1 and c′1 is the leftmost endpoint of
C2. Now, every vertex not in C1 or C2 has to appear in between C1 and C2 because no edge
with at least one endpoint outside of C1 ∪ C2 is long enough to stretch over the entire expanse
of C1 or C2.

Next, we prove that σ orders the vertices as follows C1, T1, s1, T2, s2, T3, . . . , Tq, C2. To show
this, we introduce the notion of gaps. A gap between two vertices u and v appearing consecutively
in σ is simply the interval [f(u), f(v)] on the real line. We say that a gap is incident to a vertex
u if the vertex u is one of the endpoints of the gap. The size of the gap is |f(u)− f(v)|. In the
layout, there are 4q − 1 vertices and 4q gaps that appear between ct and c′1. In the following
discussion we will treat ct and c′1 as separator vertices. Each gap that is incident to two separator
vertices, one separator vertex and no separator vertex has size at least 2g, g and 1 respectively.
Let x0, x1 and x2 be the number of gaps incident to 0, 1 and 2 separator vertices respectively.
Then |f(ct)−f(c′1)| ≥ 2gx2 +gx1 +x0 and x0 = 4q−x2−x1. Furthermore each separator vertex
(except ct and c′1) is incident to exactly two gaps, while ct and c′1 are incident to exactly one
gap each among the gaps between ct and c′1. Therefore we have that x1 +2x2 = 2q. Substituting
x1 = 2q − 2x2, we get x0 = 2q + x2 and |f(ct) − f(c′1)| ≥ 2gq + x0. Hence, if x2 > 0 we have
|f(ct) − f(c′1)| > 2gq + 2q = 2(5a − 1)q + 2q = 10aq = 10aqb/b = 10qbd = 10Ld = w(ctc

′
1)d,

contradicting that the expansion of f is at most d. Thus, x2 = 0, x1 = x0 = 2q and hence
|f(ct)−f(c′1)| ≥ 2gq +2q = w(ctc

′
1)d. Also, if any gap not incident to any separator vertices has

size more than 1, or if any of the gaps incident to a separator vertex have size more than g then
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|f(ct)− f(c′1)| > 2gq + 2q = w(ctc
′
1)d, again contradicting that the expansion of f is at most d.

Finally note that g > d and hence no edge with weight one can ever be stretched over a gap of
size g. Since the only edges of weight 1 in G′ are within a gadget Ti and every edge incident to
a separator vertex has weight g, we have that σ must order the vertices in the aforementioned
order C1, T1, s1, T2, s2, T3, . . . , Tq, C2. This concludes the description of ordering σ.

For a vertex v in V (G), if there is a vertex v′ in a gadget Ti corresponding to v, we look at
the position that v′ is assigned by σ compared to the other vertices of Ti. If the relative position
of v′ given by σ with respect to other vertices of Ti is k ∈ {1, 2, 3}, then we say that the color
of v in the gadget Ti is k and denote it by χ(v, i). In all of these cases we say that v has a
color in Tj . We prove that for any i,j with i < j and vertex v ∈ V (G) such that v has a color
in both Ti and Tj then χ(v, j) ≤ χ(v, i). Suppose this is not the case, and let u′ and v′ be the
vertices corresponding to v in gadgets Ti and Tj such that χ(v, j) > χ(v, i). Then we know that
|f(v′)− f(u′)| > (2g + 2)|j − i| = (2(5a− 1) + 2)|j − i| = 10a|j − i|b/b = 10b|j − i|d = r|j − i|d.
However since both u′ and v′ correspond to v there is an edge of weight r|j − i| between u
and v which is stretched more than d by the embedding. Thus we obtain a contradiction which
allows us to conclude that χ(v, j) ≤ χ(v, i). Notice that since a vertex (in a gadget) can have
one of three different colors this implies that as we scan the gadgets from T1 to Tq the color
of a vertex can change at most twice. Thus, there must be some 0 ≤ p < 2n + 1 such that
every vertex of G has the same color in all the gadgets it appears in among T1+mp to Tm(p+1).
Notice that every vertex and every edge of G has a color in at least one of these gadgets. We
can now make a coloring ψ of the vertices of G. For every vertex v ∈ V (G), we look at the
gadget Ti, 1 + mp ≤ i ≤ m(p + 1), such that there is a vertex corresponding to v ∈ Ti and
assign ψ(v) = χ(v, i). All that remains to prove is that ψ is a proper coloring. For every edge
uv ∈ E(G) there is an i between 1 + mp and m(p + 1) such that the edge uv has a color in Ti.
Then both u and v have colors in Ti and their colors in Ti must be different. Since ψ(u) is equal
to u’s color in Ti and ψ(v) is equal to v’s color in Ti this implies ψ(u) 6= ψ(v) concluding the
proof. ut

Together with the construction of G′ from G, Lemmata 6 and 7 imply Theorem 2.

4 Embedding graphs into trees of bounded degree

To proceed with the proof of Theorem 3, we need a number of auxiliary results.
Let G be an n-vertex graph with the shortest path metric DG and let T be a tree with

maximum degree ∆ with shortest path metric DT , We assume that the tree T is rooted, and
we will refer to the root of T as r(T ). For a vertex v in the tree, Tv is the subtree of T rooted
at v, and C(v) is the set of v’s children. Finally, for an edge uv of T , let Tu(uv) and Tv(uv) be
the tree of T \ uv that contains u and v respectively. Notice that if u is the parent of v in the
tree, then Tv(uv) = Tv and Tu(uv) = T \ V (Tv). As in the previous section, we need to define
feasible partial embeddings together with the notion of succession. For a vertex u ∈ V (T ) and
a subset S of V (G), a u-partial embedding is a function fu : S → B(u, d + 1).

Definition 4 For a u-partial embedding fu of a subset S ⊆ V (G) and a vertex v ∈ N(u) we
define S[v, fu] = {x ∈ S : fu(x) ∈ V (Tv(uv))}. Given two integers i and j, 0 ≤ i ≤ j ≤ k,
let S[i,j][fu] = {x ∈ S : i ≤ D(fu(x), u) ≤ j}. Finally, let S[i,j][v, fu] = S[i,j][fu] ∩ S[v, fu],
Sk[v, fu] = S[k,k][v, fu] for k ≥ 1 and S0[fu] = S[0,0][fu].

Definition 5 For a u-partial embedding fu of a subset S ⊆ V (G) and a vertex v ∈ N(u) we
define M [v, fu] to be the union of the vertex sets of all connected components of G \S that have
neighbors in S[v, fu].
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Definition 6 A u-partial embedding fu of a subset S of V (G) is called feasible if (1) fu is a non-
contracting distortion d embedding of S into B(u, d + 1); (2) for any distinct pair v, w ∈ N(u),
M [v, fu] ∩M [w, fu] = ∅; (3) N(S0[fu]) ⊆ S.

Definition 7 For a feasible u-partial embedding fu of a subset Su of V (G) and a feasible v-
partial embedding fv of a subset Sv of V (G) with v ∈ C(u) we say that fv succeeds fu if (1)
Su ∩Sv = (S[0,d]

u [fu]∪Sd+1
u [v, fu]) = (S[0,d]

v [fv]∪Sd+1
v [u, fv]); (2) for every x ∈ Su ∩Sv, fu(x) =

fv(x); (3) M [v, fu] =
⋃

x∈N(v)\u(M [x, fv]]Sd+1
u [x, fv]); and (4) M [u, fv] =

⋃
x∈N(u)\v(M [x, fu]]

Sd+1
v [x, fu]).

Suppose we have picked out a subtree Tv for a vertex v ∈ V (T ) and found a non-contracting
embedding f ′ with distortion at most d of a subset Z of V (G) into T ′ = T [

⋃
u∈V (Tv) B(u, d+1)].

We wish to find a non-contracting distortion d embedding of G into T such that for every vertex
u with f(u) ∈ V (T ′), we have that u ∈ Z and such that if u ∈ Z then f(u) = f ′(u). At this point,
a natural question arises. Can we impose constraints on the restriction of f to V (T )\V (Tv) such
that f restricted to V (T ) \ V (Tv) satisfies these conditions if and only if f is a non-contracting
distortion d embedding of G into T? One necessary condition is that f restricted to V (T )\V (Tv)
must be a non-contracting distortion d embedding of {u ∈ V (G) : f(u) ∈ V (T ) \ V (Tv)}. We
can obtain another condition by applying the definition of feasible u-partial embeddings. For
each vertex u, we can use arguments similar to the ones in Section 2 in order to determine which
connected components of T \V (Tv) f must map u to in order to be a non-contracting distortion
d embedding of G into T .

For the line, these two conditions are both necessary and sufficient. Unfortunately, for the
case of bounded degree trees, this is not the case. The reason the conditions are sufficient when
we restrict ourselves to the line is that every embedding of a graph metric into the line that
is locally non-contracting and locally expanding by a factor at most d, also is globally non-
contracting and expanding by a factor at most d. When we embed into trees of bounded degree,
every embedding that is locally expanding by a factor at most d, also has this property globally.
However, every locally non-contracting embedding need not be globally non-contracting. To cope
with this issue, we introduce the concept of vertex types. Intuitively, vertices of the same type
in Tv are indistinguishable when viewed from T \V (Tv). We show that the set of possible vertex
types can be bounded by a function of d and ∆. Then, to complete f from f ′ we only need to
know the restriction of f ′ to B(v, d+1) and which vertex types appear in Tv. Then the amount
of information we need to pass on from f ′ to f is bounded by n · h(d,∆). We exploit this fact
to give an algorithm for the problem. In the rest of this section, we formalize this intuition.

For a vertex u ∈ V (T ), a neighbor v of u and a feasible u-partial embedding fu of a subset
S of V (G) we define a [v, fu]-type to be a function t : S[v, fu] → {∞, 3d+2, d, . . . ,−d,−(d+1)}
and a [v, fu]-typelist to be a set of [v, fu]-types. For an integer k let β(k) = k if k ≤ 3d + 2 and
β(k) = ∞ otherwise.

Definition 8 For a vertex u ∈ V (T ) with two neighbors v and w, and a feasible u-partial
embedding fu of a subset S of V (G) together with a [v, fu]-typelist L1 and a [w, fu]-typelist L2

we say that L1 and L2 agree if for every type t1 ∈ L1 and t2 ∈ L2 there is a vertex x ∈ S[v, fu]
and a vertex y ∈ S[w, fu] such that t1(x) + t2(y) ≥ DG(x, y).

Definition 9 For a vertex u ∈ V (T ), a neighbor v of u, a feasible u-partial embedding fu of
a subset S of V (G) and a [v, fu]-typelist L we say that L is compatible with S[v, fu] if for
every vertex x in S[v, fu] there is a type t ∈ L such that for every y ∈ S[v, fu], DT (fu(x), u)−
DG(x, y) = t(y).

Definition 10 A feasible u-state is a feasible partial embedding fu of a subset S of V (G)
together with a [v, fu]-typelist L[v, fu] for every v ∈ N(u) such that the following conditions are
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satisfied: (1) L[v, fu] is compatible with S[v, fu] for every v ∈ N(u); and (2) For every pair of
distinct vertices x and y in N(u), L[x, fu] agrees with L[y, fu].

Definition 11 Let u ∈ V (T ), v ∈ C(u). Let Xu be a feasible u-state and Xv be a feasible v-state.
We say that Xv succeeds Xu if

1. fv succeeds fu;
2. For every w ∈ (N(v) \ u) and a type t1 ∈ L[w, fv] there is a type t2 ∈ L[v, fu] such that

(a) For every node x ∈ S[v, fu] ∩ S[w, fv], t2(x) = β(t1(x) + 1);
(b) For every node x ∈ (S[v, fu] \ S[w, fv]), t2(x) = β(maxy∈S[w,fv](t1(y) + 1−DG(x, y))).

3. For every w ∈ (N(u) \ v) and a type t1 ∈ L[w, fu] there is a type t2 ∈ L[u, fv] such that
(a) For every node x ∈ S[u, fv] ∩ S[w, fu], t2(x) = β(t1(x) + 1);
(b) For every node x ∈ (S[u, fv] \ S[w, fu]), t2(x) = β(maxy∈S[w,fu](t1(y) + 1−DG(x, y))).

The main result of this section relies on the next two lemmas.

Lemma 8. [?] If there is a distortion d embedding F of G into T then, for every vertex u of
V (T ) there is a feasible u-state Xu such that for every vertex v ∈ V (T ), w ∈ C(v), Xw succeeds
Xv.

Lemma 9. [?] If there is a feasible u-state Xu for every vertex u of V (T ) such that for every
vertex v ∈ V (T ), w ∈ C(v), Xw succeeds Xv then there is a distortion d embedding F of G into
T .

Next we give the proof of Theorem 3.

Proof. [of Theorem 3]The algorithm proceeds as follows. First, check that ∆(G) ≤ ∆d (follows
from local density argument). Now, we do bottom up dynamic programming on the tree T . For
each vertex u of the tree we make a boolean table with an entry for each possible feasible u-state.
For every leaf of the tree all the entries are set to true. For an inner node u and a feasible u-state
Xu we set Xu’s entry to true if for each child v of u there is a feasible v-state Xv that succeeds
Xu and so that Xv’s entry is set to true. The algorithm returns “yes” if, at the termination of
this procedure, there is a feasible r(T )-state Xr(T ) with its table entry set to true. The algorithm
clearly terminates, and correctness of this algorithm follows from Lemmas 9 and 8.

We now proceed to the running time analysis. In our bottom up sweep of T , we consider
every edge and every vertex of T exactly once, which yields a factor of nt = |V (T )|. For each
vertex u we consider each feasible u-state Xu once, and for each such state and every child v of u
of the state we need to enumerate all feasible v-states that succeed Xu. In fact, we enumerate a
larger set of candidate feasible v-states and for each such state Xv we check whether Xv succeeds
Xu.

First we show that the number of feasible u-partial embeddings is at most n ·∆O(d2·∆d+1).
This follows from the fact that for any vertex u of the tree |B(u, d + 1)| ≤ ∆d+1 and that the
domain of a any feasible u-partial embedding fu is contained in a ball of radius at most 2d + 2
in G. Because the degree of G is bounded, a ball of radius 2d + 2 in G can contain at most
∆O(d2) vertices.

One can easily prove that if the feasible partial embedding fu is given, the number of types
and typelists that can appear in a feasible u-state together with fu is bounded by (5d)∆d+1

and

2O((5d)∆d+1
) respectively. Thus, the number of feasible u-states is bounded by 2O((5d)∆d+1 ·d). If

the domain Sv of a feasible partial embedding fv for a child v of u is non-empty then we can
use the fact that Sv must have a non-empty intersection with the domain of fu to bound the
number of potential successors of a u-state by 2O((5d)∆d+1 ·d) ·∆d ≤ 2O((5d)∆d+1 ·d). One can check
whether a particular u-feasible state succeeds another in time n · 2O((5d)∆d+1 ·d), and the overall
running time of the algorithm is bounded by n2nt · 2O((5d)∆d+1 ·d). ut
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5 Concluding remarks and open problems

We find it very natural to study low-distortion embeddings from parameterized complexity per-
spective. An explanation, why these important problems have not been studied systematically
within parameterized settings can be a “psychological barrier”—finding embeddings even into
the simplest metrics like the line, should be at least as hard as one of the hardest problems
in parameterized hierarchy, the Bandwidth Minimization problem. In this paper we remove
this barrier, by providing FPT algorithms for embedding unweighted graph metrics into a tree
metric for a tree of maximum degree ∆, parameterized by (∆, d) where d is the distortion. For
the case when the host metric is the line, we generalized our result and showed that embedding
weighted graph metrics into the line is FPT parameterized by distortion d and maximum edge
weight W . A similar generalization can also be obtained for embedding weighted graph metrics
into weighted bounded degree tree metrics, parameterized by d, ∆ and W where W is the max-
imum edge weight in the input graph. We postpone the details for the full version of the paper.
Our hardness result that embedding a weighted metric into the line is NP-hard for every fixed
distortion d ≥ 2 showed that our algorithms qualitatively are the best possible.

All these results demonstrate that the parameterized complexity landscape of low-distortion
embeddings is very rich and worth to be explored. We believe that our results will lead to
further investigation of the combinatorially challenging field of low-distortion embeddings within
the framework of parameterized algorithmics. We conclude with two concrete interesting open
problems: What is the parameterized complexity of embedding unweighted graph metrics into
(unbounded degree) trees parameterized by distortion d? What about embeddings into cycles?
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6 Appendix

Proof of Observation 1: If f(u) < f(v) < f(w) and u pushes w, then u pushes v and v
pushes w.

Proof. By the triangle inequality, D(u,w) ≤ D(u, v) + D(v, w). Since u pushes w and because
f is non-contracting, we have that D(u,w) = f(w) − f(u) = (f(w) − f(v)) + (f(v) − f(u)) ≥
D(u, v) + D(v, w) = D(u, w). Since f(w)− f(v) ≥ D(v, w) and f(v)− f(u) ≥ D(u, v) we have
f(w)− f(v) = D(v, w) and f(v)− f(u) = D(u, v). ut

Proof of Observation 2: If G can be embedded into the line with distortion d, then there is a
pushing embedding of G into the line with distortion d. Furthermore, every pushing embedding
of G into the line is non-contracting.

Proof. Among all embeddings of G into the line with distortion d, let us choose f such that
∑

2≤i≤n

|f(vi)− f(vi−1)| is minimized.

We claim that f is pushing. Indeed, if f is not pushing, then there is a minimum integer
q ≥ 1 such that vq does not push vq+1. By Observation 1, for every p ≤ q and r ≥ q + 1,
D(vp, vr) > f(vr)−f(vp). But then embedding f ′, f ′(vi) = f(vi) for i ≤ q and f ′(vi) = f(vi)−1
for i > q, is non-contracting embedding of distortion d, which is a contradiction to the choice
of f .

To prove that every pushing embedding of G into the line is non-contracting, we observe that
for each b > a ≥ 1, f(vb)− f(va) =

∑b
i=a+1 f(vi)− f(vi−1) =

∑b
i=a+1 D(vi, vi−1) ≥ D(va, vb).

ut

Proof of Lemma 1: For every pair of feasible partial embeddings f and g of subsets Sf and
Sg of V (G) such that g succeeds f , we have R(f) = R(g) ∪ Sd+1

g and L(g) = L(f) ∪ S
−(d+1)
f .

Proof. Let us prove that R(f) = R(g) ∪ Sd+1
g . (The proof of L(g) = L(f) ∪ S

−(d+1)
f is similar.)

Because g succeeds f , we have that Sd+1
g ⊆ R(f). Let C be the vertex set of a connected

component of G \ Sg such that C ⊆ R(g). As S
−(d+1)
f ⊆ L(g), the subgraph G[C] induced by

C, is a connected component of G \ (Sf ∪Sg). If C contains a neighbor of Sd+1
g , then C ⊆ R(f)

(this is because Sd+1
g ⊆ R(f) and C and Sd+1

g are in the same connected component of G \Sf ).

On the other hand, if C contains no neighbor of S
(d+1)
g , then, as C ⊆ R(g), C has a neighbor

in S
(1,d)
g ⊆ SR

f . Therefore C ⊆ R(f), which in turn implies that R(g) ⊆ R(f). Thus, we have
proved that R(g) ∪ Sd+1

g ⊆ R(f).
Let us now show that R(f) ⊆ R(g)∪Sd+1

g . Let C be the vertex set of a connected component

of G \ Sf such that C ⊆ R(f). C contains no neighbors of S
−(d+1)
f thus C is a connected

component of G \ S
(−(d+1),d)
g . If C does not contain Sd+1

g , then C is a connected component of

G\Sg. Furthermore, as C ⊆ R(f), C has a neighbor in S
(1,d+1)
f ⊆ S

(0,d)
g . As S0

g has no neighbors
outside of Sg, C has a neighbor in SR

g implying C ⊆ R(g). On the other hand, if C contains
Sd+1

g , then every connected component C ′ of G[C] \ Sd+1
g is a connected component of G \ Sg

that has a neighbor in Sd+1
g ⊆ SR

g . This concludes the proof that R(f) ⊆ R(g) ∪ Sd
g , implying

R(f) = R(g) ∪ Sd+1
g . ut

Proof of Lemma 5: For every edge uv in E(G′), DG′(u, v) = w(uv).
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Proof. Clearly, DG′(u, v) ≤ w(uv) for every edge uv, so it is sufficient to prove DG′(u, v) ≥
w(uv). If w(uv) = 1 then DG′(u, v) ≥ w(uv), so suppose w(uv) > 1. In this case uv either has

– both endpoints in C1 or C2, or
– is the edge ctc

′
1, or

– is an edge from ct to a vertex in T1, or
– an edge from c′1 to a vertex in Tq, or
– an edge incident to a separator vertex or
– an edge between a vertex in a gadget Ti and a vertex in a gadget Tj .

If both u and v lie inside C1 every shortest u − v path lies entirely within C1. For every w in
C1 we have that w(u, v) ≤ w(u, w) + w(w, v) so w(uv) ≤ DG′(u, v). Similarly, if both u and v
lie inside C2 then w(uv) ≤ DG′(u, v). If uv is incident to a separator vertex then w(uv) = g
and DG′(uv) ≥ g because every separator vertex is only incident to edges with weight g. If uv
is an edge from ct to a vertex in T1 or an edge from c′1 to a vertex in Tq then w(uv) = g and
DG′(uv) ≥ g because every edge with one endpoint inside C1 ∪ C2 and one endpoint outside of
C1 ∪ C2 has weight exactly g.

Now, if uv is an edge between a vertex in a gadget Ti and a vertex in a gadget Tj , w(uv) =
r|i − j|. Observe that a path from u to v with length smaller than r|i − j| can never use the
edge ctc

′
1 and thus will never visit the set C1 ∪C2. We prove that the distance between u and v

is at least r|i− j| by induction on |i− j|. If |i− j| = 1 then any path containing an edge with
one endpoint in Ti′ and another in Tj′ with i′ 6= j′ will have length at least r. Any path from
u to v that does not contain any such edges must contain at least one separator vertex as an
in intermediate vertex and thus have length at least 2g = 20a− 2 > 10b = r. We now suppose
that the induction hypothesis is true whenever |i− j| < z and show that it also must hold when
|i− j| = z. If a path P from u to v contains a vertex u′ from a gadget Ti′ with i′ 6= i, i′ 6= j and
|i′ − i|+ |j − i′| = |i− j| then the induction hypothesis implies that the length of P is at least
|i′− i|r + |j− i′|r = |i− j|r. If P contains no such vertices as intermediate vertices then P must
contain at least one edge with one endpoint in Ti′ and another in Tj′ such that |i′− j′| ≥ |i− j|.
In this case the length of P is at least |i′− j′|r ≥ |i− j|r, concluding the proof that the distance
between a vertex u in a gadget Ti and a vertex v in a gadget Tj is at least r|i− j|.

It remains to show that DG′(ctc
′
1) > L. If a shortest path P from ct to c′1 avoids the edge

ctc
′
1, the first vertex in P after ct must be a vertex u in T1, and the last vertex in P before c′1

must be a vertex v in Tq. Thus, by the discussion in the previous paragraph, the length of P is
at least 2g + (q − 1)r ≥ qr = 10qb = L, concluding the proof. ut
Proof of Lemma 6: If G is 3-colorable then there is an embedding f of M(G′) into the line
with distortion at most d.

Proof. Let ψ : V (G) → {1, 2, 3} be a proper 3-coloring of the vertices of G. We extend ψ to
also color the edges, by defining ψ(uv) = {1, 2, 3} \ {ψ(u), ψ(v)} for every edge uv ∈ E(G), that
is every edge gets a color different from its two endpoints. We give an ordering of the vertices of
G′, and the embedding f of G′ into the line is the pushing embedding imposed by this ordering.
We order the vertices of G′ as follows: C1, T1, s1, T2, s2, . . . , Tq, C2. Here, the vertices inside C1

and C2 are ordered like {c1, . . . , ct} and {c′1, . . . , c′t} respectively and the vertices inside each
gadget Ti are ordered by color. That is, if Ti corresponds to an edge e = uv and contains the
vertices u′, v′ and e′ corresponding to u, v and e respectively, we sort u, v and e in increasing
order by ψ and use the corresponding order imposed by this for the vertices in Ti.

Observation 2 implies that the pushing embedding f is non-contracting. Thus, it suffices
to show that the expansion of f is at most d. Because of Lemma 5 it suffices to show that
|f(u) − f(v)| ≤ w(uv)d for every edge uv ∈ E′. For edges with both endpoints in C1 or both
endpoints in C2 this inequality holds. For an edge uv between a separator vertex and a vertex
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in a gadget Ti we have |f(u) − f(v)| ≤ g + 2 ≤ dg = dw(uv). For an edge uv between two
vertices in the same gadget Ti we have |f(u) − f(v)| ≤ 2 ≤ dw(uv). Now, for the edge ctc

′
1,

|f(c′1)− f(ct)| = (2g + 2)q = 10aq = 10qba/b = Ld = w(ctc
′
1)d. Similarly, any edge uv with one

endpoint in Ti and the other in Tj for i 6= j has the property that u and v correspond to the
same vertex (or edge) of G and thus are given the same color by ψ. Hence |f(c′1) − f(ct)| =
(2g + 2)|i − j| = 10a|i − j| = 10b|i − j|a/b = r|i − j|d = w(uv)d. As all edges of G′ now are
accounted for, this means that the expansion of f is at most d. ut
Proof of Lemma 8 If there is a distortion d embedding F of G into T then, for every vertex
u of V (T ) there is a feasible u-state Xu such that for every vertex v ∈ V (T ), w ∈ C(v), Xw

succeeds Xv.

Proof. We start by giving a feasible u-partial embedding fu for each vertex of the tree. Recall
that a feasible u-state contains a feasible u-partial embedding fu of a subset Su of V (G). For a
vertex u ∈ V (T ) we define fu to be the restriction of F to B(u, d + 1). It is easy to see that fu

indeed is a feasible partial embedding for every u and that for every vertex v ∈ V (T ), w ∈ C(v),
fw succeeds fv.

Now, for every vertex u ∈ V (T ) and v ∈ N(v) we give a typelist L[v, fu]. For every
vertex x ∈ (S[v, fu] ∪ M [v, fu]) we add a [v, fu]-type tx[v, fu] to L[v, fu]. For a vertex y ∈
S[v, fu], tx[v, fu](y) = β(DT (F (x), u) − DG(x, y)). Notice that since y ∈ B(u, d + 1) and F
is non-contracting, by the triangle inequality it follows that tx(y) ≥ −(d + 1) and thus tx
is a [v, fu]-type. Furthermore, for every u ∈ V (T ), L[v, fu] is compatible with S[v, fu] be-
cause for every x and y in S[v, fu] we have that tx[v, fu](y) = β(DT (F (x), u) − DG(x, y)).
In order to show that each state Xu is a feasible u-state it remains to show that for ev-
ery vertex u ∈ V (T ) and every pair of distinct vertices v and w in N(u), L[v, fu] agrees
with L[w, fu]. Assume for contradiction that there is a type ta[v, fu] ∈ L[v, fu] and a type
tb[w, fu] ∈ L[w, fu] such that ta[v, fu](x) + tb[w, fu](y) < DG(x, y) for every x ∈ S[v, fu]
and y ∈ S[w, fu]. Let x′ ∈ S[v, fu] and y′ ∈ S[w, fu] be the pair of vertices that maxi-
mizes ta[v, fu](x′) + tb[w, fu](y′) − DG(x′, y′). There is a vertex a ∈ (S[v, fu] ∪ M [v, fu]) and
a vertex b ∈ (S[w, fu] ∪ M [w, fu]) such that β(DT (f(a), u) − DG(a, x)) = ta[v, fu](x) for ev-
ery x ∈ S[v, fu] and β(DT (F (b), u) − DG(b, y)) = tb[w, fu](y) for every y ∈ S[w, fu]. This
yields DT (F (a), u) − DG(a, x′) + DT (F (b), u) − DG(b, y′) = (DT (F (a), u) + DT (F (b), u)) −
(DG(a, x′)+DG(b, y′)) < DG(x′, y′). Now, (DT (F (a), u)+DT (F (b), u)) = DT (F (a), F (b)) since
u lies on the unique f(a)-f(b) path in T . Also, Since x′ and y′ are the pair that maximize
ta[v, fu](x′)+tb[w, fu](y′)−DG(x′, y′) and every shortest x′-y′ path in G must pass both through
S[v, fu] and S[w, fu], we conclude that (DG(a, x′)+DG(b, y′)+DG(x′, y′)) = DG(a, b). However
this implies DT (F (a), F (b)) < DG(a, b) contradicting that F is non-contracting.

It remains to prove that for every vertex u ∈ T , v ∈ N(u), w ∈ (N(v) \ u) and type
t1 ∈ L[w, fv] there is a type t2 ∈ L[v, fu] such that

1. for every node x in S[v, fu] ∩ S[w, fv], t2(x) = β(t1(x) + 1);
2. for every node x in S[v, fu] \ S[w, fv], t2(x) = β(maxy∈S[w,fv ](t1(y) + 1−DG(x, y))).

Let ta[w, fv] ∈ L[w, fv], and let a be the vertex of S[w, fv] ∪M [w, fv] such that for every x in
S[w, fv], ta[w, fv](x) = β(DT (F (a), v)−DG(a, x)). Now, S[w, fv]∪M [w, fv] ⊆ S[v, fu]∪M [v, fu]
so a ∈ (S[v, fu] ∪M [v, fu]). Let t′a[v, fu] be the type in L[v, fu] so that for every x′ in S[v, fu],
t′a[v, fu](x′) = β(DT (F (a), u)−DG(a, x′)). As β(DT (F (a), u)) = β(DT (F (a), v)+1) it is easy to
see that for every node x ∈ (S[v, fu]∩S[w, fv]), t′a[v, fu](x) = β(ta[w, fv](x)+1). Finally, observe
that for a vertex x ∈ (S[v, fu] \ S[w, fv]) every a-x path in G must pass through S[w, fv]. Thus
DG(a, x) = miny∈S[w,fv ] DG(a, y) + DG(x, y) and so t′a[v, fu](x) = β(maxy∈S[w,fv ](ta[w, fv](y) +
1−DG(x, y))). This concludes the proof. ut
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Proof of Lemma 9: If there is a feasible u-state Xu for every vertex u of V (T ) such that for
every vertex v ∈ V (T ), w ∈ C(v), Xw succeeds Xv then there is a distortion d embedding F of
G into T .

Proof. For every vertex u, let fu be the feasible u-partial embedding of the subset Su ⊆ V (G)
in Xu. We prove the lemma by proving a series of claims

Claim. For every vertex x ∈ V (G) there is a u ∈ V (T ) such that x ∈ Su.

Proof. If x ∈ Sr(T ) we are done, so assume that x /∈ Sr(T ). This means that the vertex x ∈⋃
v∈C(r(T )) M [v, fr(T )]. Let v1 ∈ C(r(T )) be a vertex such that x ∈ M [v1, fr(T )]. Observe that

the choice of v1 implies that x /∈ M [r(T ), fv1 ]. Now, if x ∈ Sv1 we are done, otherwise x ∈⋃
v∈C(v1) M [v, fv1 ]. Let v2 be the vertex in C(v1) so that x ∈ M [v2, fv1 ]. Again, the choice of v1

implies that x /∈ M [v1, fv2 ]. If x ∈ Sv2 we are done, otherwise we can select v3, v4 and so on
until we select a leaf vq. The choice of vq implies that x ∈ Svq ∪

⋃
v∈C(vq) M [v, fvq ] = Svq . ut

Claim. For every vertex x ∈ V (G), the set {u ∈ V (T ) : x ∈ Su} induces a connected subtree of
T .

Proof. Suppose for contradiction that this is not the case. Then there is a pair of vertices
u, v ∈ V (T ) such that x ∈ Su, x ∈ Sv, uv /∈ E(T ) and for every w on the u-v-path in T ,
x /∈ Sw. Let w′ and w′′ be the predecessor and successor of w on the u-v path respectively.
By the properties of succession of feasible u-partial embeddings both M [w′, fw] and M [w′′, fw]
must contain x. This contradicts that fw is a feasible partial embedding. ut

From Claim 6 together with property 2 of succession feasible u-partial embeddings it is clear
that for every pair of vertices u and v in V (T ) such that x ∈ Su and x ∈ Sv, fu(x) = fv(x). We
can therefore define a function F : V (G) → V (T ) such that for every x ∈ V (G) and u ∈ V (T ) it
holds that if x ∈ Su then F (x) = fu(x). This property also guarantees F maps distinct vertices
of G onto distinct vertices of T . In the rest of the proof of Lemma 9 we will prove that the
expansion of F is at most d and that F is non-contracting.

Claim. The expansion of F is at most d.

Proof. It suffices to prove that F expands every edge of G by at most a factor of d. Let
xy ∈ E(G). Let u = F (x). By the property 3 of feasible u-partial embeddings y ∈ Su. Fur-
thermore, since fu is a feasible u-partial embedding, DT (F (x), F (y)) = DT (fu(x), fu(y)) ≤ d
which completes the proof. ut

We now proceed to prove that F is non-contracting.

Claim. For every path P = v1v2...vk in T , with v1 = u and vk = w the following must apply.

1. F restricted to
⋃

vi∈P Svi is non-contracting.
2. For every vertex x ∈ Sw one of the following two conditions must hold.

(a) either there is a vj ∈ P , y ∈ Svj such that DT (F (x), vj)−DG(x, y) > 3d + 2
(b) or there is a type tx[v2, fu] ∈ L[v2, fu] such that for every y ∈ S[v, fu],

tx[v2, fu](y) = DT (F (x), u)−DG(x, y).

Proof. We prove the claim by induction on k. If k = 1 then (1) is true because fu is a feasible
partial embedding and (2b) holds because of the compatibility constraints of feasible u-states.

For k = 2, we first prove that (2b) holds for every x ∈ Sw. If x ∈ Su then (2b) holds because of
the compatibility constraints of feasible u-states. Therefore, consider a vertex x ∈ Sw \Su. Then
x ∈ Sd+1

w [w′, fw] for a w′ ∈ (N(w)\u). By compatibility, there is a type t1[w′, fw] ∈ L[w′, fw] such
that for every y in Sw, t1[w′, fw](y) = DT (F (x), w)−DG(x, y). By the properties of succession
of feasible u-states, there is a type t2[w, fu] ∈ L[w, fu] such that
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1. For every node y in S[w, fu] ∩ S[w′, fw],

t2[w, fu](y) = β(t1[w′, fw](y) + 1)
= t1[w′, fw](y) + 1
= DT (F (x), w)−DG(x, y) + 1
= DT (F (x), u)−DG(x, y).

2. For every node y in S[w, fu] \ S[w′, fw],

t2[w, fu](y) = β

(
max

z∈S[w′,fw]
(t1[w′, fw](z) + 1−DG(z, y))

)

= max
z∈S[w′,fw]

(
t1[w′, fw](z) + 1−DG(z, y)

)

= max
z∈S[w′,fw]

(DT (F (x), w)−DG(x, z) + 1−DG(z, y))

= DT (F (x), u)−DG(x, y).

Thus (2b) holds for every x in Sw. Using this fact we can now prove (1). Observe that it is
sufficient to prove that F does not contract any vertex y ∈ (Su \ Sw) and x ∈ (Sw \ Su). Let u′

be the neighbor of u such that y ∈ S[u′, fu]. By (2b) there is a type tx[w, fu] such that for every
z ∈ S[w, fu], tx[w, fu](z) = DT (F (x), u)−DG(x, z). By the properties of feasible u-states there
is a type ty[u′, fu] such that for every z ∈ S[u′, fu], ty[u′, fu](z) = DT (F (y), u)−DG(y, z). Since
tx[w, fu] and ty[u′, fu] must agree, it follows that there is a vertex x′ ∈ S[w, fu], and a vertex
y′ ∈ S[u′, fu] such that tx[w, fu](x′)+ ty[u′, fu](y′) ≥ DG(x′, y′). By substituting for tx[w, fu](x′)
and ty[u′, fu](y′) we obtain

DT (F (x), F (y)−DG(x, y) ≥ (
DT (F (x), u)−DG(x, x′)

)

+
(
DT (F (y), u)−DG(y, y′)

)−DG(f(x′), f(y′)
≥ 0.

Finally, suppose the statement of the claim holds for every k′ < k for some k > 2. We
prove that the statement also must hold for k. We start by showing (2). Consider a vertex
x ∈ Sw such that for every vj , j ≥ 1 and every y ∈ Svj we have that DT (F (x), vj)−DG(x, y) ≤
3d + 2, that is, (2a) does not hold for x. We need to show that (2b) must hold for x. By
the inductive hypothesis there is a type tx[v3, fv2 ] ∈ L[v3, fv2 ] so that for every y ∈ S[v3, fv2 ],
tx[v3, fv2 ](y) = DT (F (x), v2) − DG(x, y). Furthermore, by the assumption that (2a) does not
hold for x, tx[v3, fv2 ] ≤ 3d + 2. By the properties of succession of feasible u-states there must
be a type t′x[v2, fu] ∈ L[v2, fu] such that:

1. For every node y in (S[v2, fu] ∩ S[v3, fv2 ]):

t′x[v2, fu](y) = β(tx[v3, fv2 ](y) + 1)
= β (DT (F (x), v2)−DG(x, y) + 1)
= β (DT (F (x), u)−DG(x, y)) .

Observe that if β(DT (F (x), u)−DG(x, y)) = ∞ then DT (F (x), u)−DG(x, y) > 3d+2 which
implies that (2a) holds for x which is a contradiction. Therefore, β(DT (F (x), u)−DG(x, y)) 6=
∞ so β(DT (F (x), u)−DG(x, y)) = DT (F (x), u)−DG(x, y).

2. For every node y in S[v2, fu] \ S[v3, fv2 ],

t′x[v2, fu](y) = β

(
max

z∈S[v3,fv2 ]
(tx[v3, fv2 ](z) + 1−DG(z, y))

)
.
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As before, t′x[v2, fu](y) ≤ 3d + 2 because otherwise (2a) holds for x. Thus

t′x[v2, fu](y) = β

(
max

z∈S[v3,fv2 ]
(tx[v3, fv2 ](z) + 1−DG(z, y))

)

= max
z∈S[v3,fv2 ]

(tx[v3, fv2 ](z) + 1−DG(z, y)) .

Following this

t′x[v2, fu](y) = max
z∈S[v3,fv2 ]

(DT (F (x), v2)−DG(x, z) + 1−DG(z, y))

= DT (F (x), u)−DG(x, y).

Thus (2b) holds for x and (2) is true for |P | = k. It remains to prove that (1) is true for
|P | = k as well. It is sufficient to prove that F does not contract any x ∈ (Su \ Sv2) with any
y ∈ (Sw \Svk−1

). There are two cases, either (2a) holds for y or (2a) does not, and in that case,
(2b) holds for y. In the latter case let ty[v1, fu] be the type in L[v1, fu] such that for every z in
S[v2, fu], ty[v1, fu](z) = DT (F (y), u) − DG(y, z). Also, let u′ ∈ (N(u) \ v1) be the neighbor of
u such that x ∈ S[u′, fu]. As in the proof of (1) for k = 2, let tx[u′, fu] be the type in L[u′, fu]
such that for every z in S[u′, fu], tx[u′, fu](z) = DT (F (x), u)−DG(x, z). Again as in the proof
of (1) for k = 2, tx[u′, fu](z) and ty[v1, fu] must agree which in turn implies that F does not
contract x and y

To conclude, we consider the case when (2a) holds for y. Let vj be a vertex such that there
is a y′ ∈ Svj so that DT (F (y), vj) − DG(y, y′) > 3d + 2. By the induction hypothesis, F does
not contract x and y′. This gives us the following inequality for DT (F (x), F (y)) and DG(x, y):

dT (F (x), F (y)) = DT (F (x), vj) + DT (vj , F (y))
≥ (DT (F (x), F (y′))−DT (vj , F (y′))) + DT (vj , F (y))
≥ DG(x, y′) + DG(y, y′) + 3d + 2−DT (vj , F (y′))
≥ DG(x, y) + 2d + 1 ≥ DG(x, y).

This implies that the statement of the claim holds for every positive k.

The claims together prove the existence of a non-contracting embedding F of G into T with
distortion at most d. ut
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