
Dei: A Theorem Prover for Terms with Integer
Exponents

Hicham Bensaid1, Ricardo Caferra2, and Nicolas Peltier2

1 INPT/LIG
Avenue Allal Al Fassi - Madinat Al Irfane - Rabat - Morocco

bensaid@inpt.ac.ma
2 LIG, Grenoble INP/CNRS

Bâtiment IMAG C - 220, rue de la Chimie - 38400 Saint Martin d’Hères - France
Ricardo.Caferra@imag.fr, Nicolas.Peltier@imag.fr

Abstract. An extension of the superposition-based E-prover [8] is de-
scribed. The extension allows terms with integer exponents [3] in the
input language. Obviously, this possibility increases the capabilities of
the E-prover particularly for preventing non-termination.

1 Introduction

Term schematisations allow one to denote infinite sequences of iterated terms,
which frequently occur in many symbolic computation procedures (in particu-
lar in proof procedures). The number of iterations is part of the term syntax
and may be a variable. In some cases, the capability to denote such sequences
avoids non termination [6]. For instance the clause set {even(0),∀x .even(x) ⇒
even(s(s(x)))} can be replaced by the unit clause ∀n.even(s2n(0)).

There exists a hierarchy of term schematisation languages, with different
expressive powers. They mainly differ from each other by the class of in-
ductive contexts that can be handled. The original formalism [2] allows only
ground contexts with no nested iterations. [3] extends the language to any in-
ductive context, provided that the inductive path is unique. [7] showed how
to get rid of this last condition, allowing for instance sequences of the form
a, f(a, a), f(f(a, a), f(a, a)), Finally, the most powerful language of primal
grammars [4] handles contexts depending on the iteration rank (as in the se-
quence [], [0], [s(0), 0], [s(s(0)), s(0), 0], . . .). Unification is decidable for all these
languages, thus they can be included in most symbolic computation procedures,
in particular in first-order theorem provers. This significantly extends the ex-
pressive power of the input language.

In this paper we describe the first (to the best of our knowledge) system to
perform inferences on clauses containing term schematisations. As the new prover
is an extension of the E-prover [8], we have called it Dei (for Deduction with the
E-prover and I-terms). The E-prover has been chosen as a starting point because
it is well-known, widely distributed and efficient. Our system uses the language
of terms with integer exponents [3] also called I-terms. This formalism is a good
compromise between expressive power and simplicity: the ρ-terms [2] are easier
to handle but lack expressivity and the primal grammars are very expressive

but harder to use in practice (one has to define rewrite systems “outside” the
iterated terms, moreover the unification algorithm is rather complex).

We hope that this work, by allowing practical experimentations, will pro-
mote the use of term schematisation languages in automated deduction and will
allow further investigations (potential applications, better understanding of the
formalisms etc.).

2 Terms with Integer Exponents (I-Terms)

We briefly recall the definition of terms with integer exponents (see [3] for de-
tails). We assume that three sets of symbols are given: function symbols Σ,
standard variables V and arithmetic variables VN . Let ¦ be a special symbol,
called the “hole”. This symbol denotes the changing part of a context.

The set of terms with one hole T¦ and the set of terms with integer exponents
TI (or I-terms) are the smallest sets satisfying the following conditions: (i) ¦ ∈ T¦
and V ⊆ TI . (ii) If t1, . . . , tn ∈ TI , t′i ∈ T¦ and f ∈ Σ then f(t1, . . . , tn) ∈ TI and
f(t1, . . . , ti−1, t

′
i, ti+1, . . . , tn) ∈ T¦. (iii) If t ∈ T¦, t 6= ¦, s ∈ TI and n ∈ VN ∪ N

then tn.s ∈ TI . An I-term of the last form is called an N -term. I-terms can
be naturally incorporated as arguments of literals. A clause built on I-terms is
called an I-clause.

The semantics of I-terms are specified by the following rewrite system:
{t0.s → s, tn+1.s → t{¦ ← tn.s}}. These rules obviously rewrite every ground
I-term t to a (unique) standard term, denoted by t↓. The value of t in an in-
terpretation I is the same as the value of t↓. This allows one to assign a value
to every ground term, hence to evaluate every ground clause. The semantics is
extended to the non ground case by interpreting a clause set as the set of its
ground instances (variables in VN are mapped to natural numbers).

3 The Dei System

The Dei system is freely available from the webpage:
http://capp.imag.fr/dei.html. It is based on the 0.999 − 004 ”Longview2”
release of E-Prover. The extension as for E-Prover is written in ANSI C, using
the gcc compiler (the 4.2.4 version) and was successfully tested on a GNU Linux
x86 platform (Ubuntu 8.04 Hardy Heron).

In order to preserve modularity and allow further extensions, we have tried
to restrict as much as possible the modifications in the original code. Additional
data structures have been designed to represent linear Diophantine expressions
and the algorithm of [3] for unifying I-terms has been implemented. The Polylib
library [5] is used for solving arithmetic constraints. About 4000 lines of code
have been added to the E-prover (excluding the Polylib library). Modifications
have been necessary in various parts of the code: term sharing handling, term
definitions, input/output algorithms and inference machine. As unification of I-
terms gives in general several maximal unifiers, many changes in the code were
needed to take into account this important new feature.

3.1 Input Syntax

The syntax has been kept almost identical to the one of the E-prover. All options
are supported. An N -term tn.s is denoted by $iterm(t,s)^{n}, where $iterm is
a reserved keyword. @ denotes the hole ¦. Exponents can be any linear diophan-
tine expression, which makes the language more flexible than using variables
only (as it is done in [3] to simplify theoretical work). For instance the I-term
even(¦)2n(0) of page 1 is encoded by $iterm(even(@),0)^{ n+n }. This flexi-
bility also has the advantage that all the arithmetic constraints can be expressed
in the terms themselves, which avoids having to use constrained clauses (for in-
stance the clause p(fn(¦).0) with constraint ∃m.n = m + m can be denoted by
p(f2×m(¦).0). Arithmetic expressions must only occur in an exponent (e.g. the
term g(n, f(¦)n.a) is not allowed).

The arithmetic variables are interpreted by non-zero natural numbers. This
assumption slightly simplifies some steps of the unification algorithm. For in-
stance the occur check rule (x = t) → false can be applied as usual, whereas it
would not be correct if t contains exponents that can be interpreted as 0, for
instance f(x, ¦)n.a = x has a solution, namely {n 7→ 0, x 7→ a}.
3.2 Inferences

All the inference rules of the E-prover (i.e. the SP calculus) are supported. Ob-
viously, correctness is preserved. The calculus is complete for non equational
I-clause sets (it is easy to see that one can “lift” the ground derivations to I-
clauses). However, it is no more complete in general for equational I-clauses (this
does not depend on the strategy). A simple counterexample proving this is the
following: {p(f(a, ¦)n.b,¬p(c), f(a, b) ≈ d, f(a, d) ≈ c} is clearly unsatisfiable
(it suffices to replace n by 2 in the first clause) but the superposition calculus
generates only the clause p(d). This is due to the fact that superposition can
be applied at an arbitrary deep position in the standard terms denoted by an
N -term – in particular at positions not occurring in the N -term. Allowing su-
perposition at arbitrary deep positions in an N -term is possible, but this would
make the inference rule infinitary (and inefficient). This has been avoided in Dei,
for practical reasons. The calculus is still complete for some subclasses, e.g. if the
superposition rule cannot be applied along iterated paths (of course, the formal
definition of these classes is outside the scope of the present system description).

The usual term orderings (KBO or LPO) have been adapted in order to be
applied on I-terms (it is obvious that they are not compatible with unfolding3).
The simplification and redundancy rules are supported, but using an incomplete
matching algorithm (thus Dei miss some simplifications). This is due to the
fact that the matching is harder to perform on I-terms than in standard terms.
In particular, the indexing techniques used by the E-prover (e.g. the perfect
discrimination trees) cannot be directly applied.

3 Of course the orderings can be defined as usual at the ground level i.e. on the standard
terms obtained by instantiating arithmetic variables, but this does not help because
there exist an infinite number of ground instances.

The term sharing is maintained except in the exponent part of the
term (only the variable(s) are shared). For example if we consider the
terms $iterm(s(@),0)^{N1}, $iterm(s(@),0)^{N2}, $iterm(s(@),0)^{N1}
and $iterm(s(@),0)^{2.N1} the splay tree will be the following one:

Fig. 1. The splay tree

4 A Short Example

We show Dei at work on the following set of clauses:

{p(f(x1, g(x2, ¦))n, s(¦)n) ∨
¬p′(x3), p′(a), q(g(x1, f(x2, ¦))n.g(x3, x2), s(¦)m(0)) ∨

¬q′(x3), q′(b), r(g(y, x), z) ∨ ¬p(x, z),¬q(x, y) ∨ ¬r(x, y)}.
This little example has been constructed to illustrate the possibilities of the

language (contexts containing variables, shared arithmetic variables etc.). The
reader can check that it is unsatisfiable. Dei constructs the following refutation
(due to space restriction we use the lowest level of verbosity):

#p1(a) <- .

#

#q1(b) <- .

#

#r(g(X1,X2),X3) <- p(X2,X3).

#

<- r(X1,X2), q(X1,X2).

#

#p($iterm(f(X1,g(X2,@)),X3)^{0+1.X4},$iterm(s(@),0)^{0+1.X4}) <- p1(X3).

#

#p($iterm(f(X2,g(X3,@)),a)^{0+1.X1},$iterm(s(@),0)^{0+1.X1}) <- .

#

#r(g(X5,$iterm(f(X2,g(X3,@)),a)^{0+1.X1}),$iterm(s(@),0)^{0+1.X1}) <- .

#

#q($iterm(g(X1,f(X2,@)),g(X3,X2))^{0+1.X4},$iterm(s(@),0)^{0+1.X4})

<- q1(X3).

#

#q($iterm(g(X2,f(X3,@)),g(b,X3))^{0+1.X1},$iterm(s(@),0)^{0+1.X1}) <- .

#

#r(g(X6,$iterm(f(X2,g(X3,@)),X4)^{0+1.X1}),$iterm(s(@),0)^{0+1.X1})

<- p1(X4).

#

<- r($iterm(g(X2,f(X3,@)),g(b,X3))^{0+1.X1},$iterm(s(@),0)^{0+1.X1}).

Of course, I-terms can be “encoded” into first-order logic (by adding the
semantic axioms in Section 2 in the clause set). However, a system as Dei
with built-in I-terms handling allows one to encompass some deductive steps
in the unification algorithm, which reduces the length of the proofs, improves
the readability and the termination behavior. I-terms are especially useful for
satisfiability detection.

5 Future Work

Future work includes the extension of Dei to more expressive term schema-
tisation languages (such as the primal grammars [4] or the terms with several
holes [7]) and the adaptation to these languages of the reasoning techniques that
are commonly used by successful deduction systems (in particular the indexing
techniques). We are presently working on an extension of the discrimination
trees handling I-terms. Designing a superposition calculus that is complete on
I-clauses is a problem that also deserves to be investigated.

In order to fully benefit of the expressive power of I-terms, we also plan
to implement additional inference rules to generate automatically I-terms from
standard clauses (as in [7,6]). The use of inductive reasoning techniques (in
connection with the system presented in [1]) will also be investigated.

References

1. Bensaid, H., Caferra, R., and Peltier, N. Towards systematic analysis of
theorem provers search spaces: First steps. In Proc. Wollic’07 (Workshop on Logic,
Language, Information and Computation) (July 2007), Springer, pp. 38–52. LNCS
4576.

2. Chen, H., Hsiang, J., and Kong, H. On finite representations of infinite sequences
of terms. In Conditional and Typed Rewriting Systems, 2nd International Workshop
(1990), Springer, LNCS 516, pp. 100–114.

3. Comon, H. On unification of terms with integer exponents. Mathematical System
Theory 28 (1995), 67–88.

4. Hermann, M., and Galbavý, R. Unification of Infinite Sets of Terms schematized
by Primal Grammars. Theoretical Computer Science 176, 1–2 (1997), 111–158.

5. Loechner, V. Polylib: A library for manipulating parametrized polyhedra. Tech.
rep., ICPS, Universite Louis Pasteur de Strasbourg, 1999.

6. Peltier, N. A General Method for Using Terms Schematizations in Automated
Deduction. In Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR’01) (2001), Springer LNCS 2083, pp. 578–593.

7. Salzer, G. The unification of infinite sets of terms and its applications. In Logic
Programming and Automated Reasoning (LPAR’92) (July 1992), Springer, LNAI
624, pp. 409–429.

8. Schulz, S. System Description: E 0.81. In Proc. of the 2nd IJCAR, Cork, Ireland
(2004), D. Basin and M. Rusinowitch, Eds., vol. 3097 of LNAI, Springer, pp. 223–
228.

